Integrated Marine Information System (IMIS)

Persons | Institutes | Publications | Projects | Datasets
[ report an error in this record ]basket (0): add | show Print this page

Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea
Neukermans, G.; Reynolds, R.A.; Stramski, D. (2014). Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea. Deep-Sea Res., Part II, Top. Stud. Oceanogr. 105: 59-73. hdl.handle.net/10.1016/j.dsr2.2014.03.014
In: Deep-Sea Research, Part II. Topical Studies in Oceanography. Pergamon: Oxford. ISSN 0967-0645; e-ISSN 1879-0100
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 296889 [ OMA ]

Keywords
    Algal blooms
    Dimensions > Size > Particle size
    Particulates > Suspended particulate matter
    Polar waters
    Marine
Author keywords
    Seawater optical properties;

Authors  Top 
  • Neukermans, G., more
  • Reynolds, R.A.
  • Stramski, D.

Abstract
    Variability in the inherent optical properties (IOPs) of seawater and characteristics of the particle assemblage were examined along a transect in the Chukchi Sea during July 2011. This transect encompassed samples from open waters of the marginal ice zone exhibiting low concentrations of chlorophyll-a (Chla1img m-3), as well as an extensive phytoplankton bloom (Chla<30 mg m-3) beneath consolidated pack ice. Measurements included the spectral coefficients for particulate beam attenuation, backscattering, and absorption, bulk indicators of particle concentration and composition, and the particle size distribution. Within the bloom microphytoplankton contributed >95% to the total Chla, and relatively small amounts of nonalgal particles were present. This assemblage exhibited low Chla-specific phytoplankton absorption coefficients (0.006m2 mg-1 at 676 nm) indicating a strong influence of pigment packaging, and a weak spectral dependence of the particulate backscattering coefficient. In contrast, the phytoplankton community in nutrient-depleted surface waters outside the sea ice had a strong contribution of picoplankton to Chla (54%) and an increased abundance of nonalgal particles. The Chla-specific phytoplankton absorption coefficient approached maximum values at 676 nm (0.023 m2 mg-1) and particle backscattering had much stronger spectral dependence. Additional samples from near the sea floor exhibited characteristics of either mineral-dominated assemblages or a mixture of mineral and organic particles, and also displayed optical differentiation from the surface samples. The marked contrast in absorption, attenuation, and backscattering properties of these ecological regimes suggest that they can be discriminated from optical measurements available on a variety of in situ and remote-sensing platforms.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 
[Back]