Intro 
Species 
Specimens 
Distribution 
Checklist 
Sources 
Log in 

Porifera source details

Gilis, M.; Grauby, O.; Willenz, P.; Dubois, P.; Heresanu, V.; Baronnet, A. (2013). Biomineralization in living hypercalcified demosponges: Toward a shared mechanism?. Journal of Structural Biology. 183(3): 441-454.
431200
10.1016/j.jsb.2013.05.018 [view]
Gilis, M.; Grauby, O.; Willenz, P.; Dubois, P.; Heresanu, V.; Baronnet, A.
2013
Biomineralization in living hypercalcified demosponges: Toward a shared mechanism?
Journal of Structural Biology
183(3): 441-454
Publication
Available for editors  PDF available [request]
Massive skeletons of living hypercalcified sponges, representative organisms of basal Metazoa, are uncommon models to improve our knowledge on biomineralization mechanisms and their possible evolution through time. Eight living species belonging to various orders of Demospongiae were selected for a comparative mineralogical characterization of their aragonitic or calcitic massive basal skeleton. The latter was prepared for scanning and transmission electron microscopy (SEM and TEM), selected-area elec?tron diffraction (SAED) and X-ray diffraction (XRD) analyses. SEM results indicated distinctive macro- and micro-structural organizations of the skeleton for each species, likely resulting from a genetically dictated variation in the control exerted on their formation. However, most skeletons investigated shared submi?cron to nano-scale morphological and crystallographical patterns: (1) single-crystal fibers and bundles were composed of 20 to 100 nm large submicronic grains, the smallest structural units, (2) nano-scale likely organic material occurred both within and between these structural units, (3) {1 1 0} micro-twin planes were observed along aragonitic fibers, and (4) individual fibers or small bundles protruded from the external growing surface of skeletons. This comparative mineralogical study of phylogenetically dis?tant species brings further evidence to recent biomineralization models already proposed for sponges, corals, mollusks, brachiopods and echinoderms and to the hypothesis of the universal and ancestral character of such mechanisms in Metazoa
RIS (EndNote, Reference Manager, ProCite, RefWorks)
BibTex (BibDesk, LaTeX)
Date
action
by
2022-07-04 16:20:00Z
created



Website and databases developed and hosted by VLIZ · Page generated 2024-07-22 · contact: Nicole de Voogd