Difference between revisions of "TBT and Imposex"

From MarineSpecies Introduced Traits Wiki
Jump to: navigation, search
(New page: This article describes the use of Tributyltin (TBT) in aquatic antifouling paints, its behaviour in the marine environment and one of its powerful negative effects in non-target species - ...)
 
 
(96 intermediate revisions by 5 users not shown)
Line 1: Line 1:
This article describes the use of Tributyltin (TBT) in aquatic antifouling paints, its behaviour in the marine environment and one of its powerful negative effects in non-target species - the phenomenon of masculinization (imposex) in marine gastropods, which has led to the partial ban of this coumpound.
+
This article describes the use of [[TBT|Tributyltin (TBT)]] in aquatic antifouling paints, its behaviour in the marine environment and one of its powerful negative effects in non-target species - the phenomenon of imposex in marine [[Gastropod|gastropods]] - which have led to the partial ban of this compound.
  
  
 
===Introduction===
 
===Introduction===
Tributyltin (TBT) is a compound which integrates certain anti-fouling paints used on the hulls of vessels to prevent biological fouling - a phenomenon which has considerable economic costs and environmental risks. Although very efficient, TBT has been subject to restrictions due to its toxic effects in non-target species, detected at the end of the 1970s. One of this harmful effects is imposex – the masculinisation of prosobranch gastropod females in response to exposure of TBT concentration in the magnitude of ng.l-1. So far this phenomenon has been described for over 150 species. The sensitiveness and high correlation between the intensity of this phenomenon and the environmental concentrations of TBT allow the use of certain neogastropod species as indicators of the degree of contamination in coastal zones. Though the use of TBT has been forbidden in many countries for vessels smaller than 25 m, the contamination levels are still a concern, particularly close to areas of intense boating and associated activities, such as fishing and commercial ports, marinas and dry-docks.
+
[[TBT|Tributyltin (TBT)]] is a biocide compound which integrates certain antifouling paints used on the hulls of vessels to prevent biological fouling - a phenomenon which has considerable economic costs and environmental risks. Although very efficient, TBT has been subject to restrictions due to its [[Ecotoxicity|toxic effects]] in non-target species, detected at the end of the 1970s. One of this harmful effects is imposex – the masculinisation of females of certain marine snails in response of the exposure to TBT concentration, in the magnitude of ng.l-1. So far this phenomenon has been described for over 150 species. The sensitiveness and high correlation between the intensity of this phenomenon and the environmental concentrations of TBT allow the use of certain [[Gastropod|gastropod]] species as indicators of the degree of contamination in coastal zones. Though the use of TBT has been forbidden in many countries for vessels smaller than 25 m, the contamination levels are still a concern, particularly close to areas of intense boating and associated activities, such as fishing and commercial ports, marinas and dry-docks.
  
  
===The Problem of Fouling in Vessels===
+
===Why the need of antifoulings?===
Any submersed rigid structure can work as substrate and be colonized by several marine organisms. It is estimated that there are over 4000 marine fouling species. In the case of vessels, the degree of fouling of the hull depends on the time of submersion, the time the vessel is immobilized or its speed, but mainly on the features of the marine environment. Without an antifouling protection, the fouling can reach 150 kg per square meter, in less than 6 months. This phenomenon leads to an increase in the weight of the vessel, the drag resistance of the hull surface and therefore a decrease in speed, a consequent increase in the fuel consumption (up to 40%) but also more frequent maintenance operations. Additionally, the hulls can work as vectors of translocation of organisms form one place to the other, which poses the risks of introducing non-native invasive species.
 
  
====(...)====
+
====The Problem of Fouling in Vessels====
A sandwich hybridisation is a molecular probe-based method for rapid target identification that uses two molecular probes targeting ribosomal RNA (rRNA). A capture probe bound to a solid surface immobilises the target ribosomal RNA and forms a hybrid complex with a second signal probe. An antibody-enzyme complex binds to the signal moiety of the signal probe and reacts with a substrate forming an electrochemical current on the biosensor (Metfies et al., 2005.<ref name="MET"> Metfies, K., Huljic, S., Lange, M., & Medlin, L.K (2005). Electrochemical detection of the toxic dinoflagellate ''Alexandrium ostenfeldii'' with a DNA-biosensor. Biosens. Bioelectron, 20, 1349-1357.</ref>).
+
Any submersed rigid structure can work as substrate and be colonized by several marine organisms. It is estimated that there are over 4000 marine fouling species <ref>Almeida, E., Diamantino, T. & Sousa, O. (2007). ”Marine Paints: the particular case of antifouling paints”. Progress in Organic Coatings, 59: 2-20. </ref>. In the case of vessels, the degree of fouling of the hull depends on the time of submersion, the time the vessel is immobilized or its speed, but mainly on the features of the marine environment. Without an antifouling protection, the fouling can reach 150 kg per square meter, in less than 6 months <ref>Bray S. (2006). “Tributyltin pollution on a global scale. An overview of relevant and recent research: impacts and issues.” Langston, W.J. (Ed). </ref>. This phenomenon leads to an increase in the weight of the vessel and the drag resistance of the hull surface, which directly affect the speed, manoverability and the fuel consumption (increasing up to 40%), leading to more frequent maintenance operations, higher costs and higher emissions of polluting gases <ref name="omae">Omae, I. (2003). “Organotin antifouling paints and their alternatives”. Applied Organometallic Chemistry.17: 81-105. </ref>. Additionally, the hulls can work as vectors of translocation of organisms from one place to another, increasing the risks of introducing non-native, [[Non-native species invasions|invasive species]] <ref name="champ">Champ, M. (2000). “A review of organotin regulatory strategies, pending actions, related costs and benefits”. The Science of the Total Environment, 258: 21-71. </ref>.
 +
[[Image:Fouling_boat.jpg|thumb|250px|left|Fouling on the hull of a small boat]]
  
====(...)====
+
====Antifouling methods and TBT====
Molecular probes are short oligonucleotides (18-25 bases) that are complementary to specific sequences in the genomes of the target organism. Ribosomal RNA genes are widely used targets for the development of molecular probes. They appear in high numbers in target cells and have both conservative and highly variable regions, which make it possible to develop probes that are specific at different taxonomic levels (Groben et al., 2004.<ref name="G"> Groben, R., John, U., Eller, G., Lange M. & Medlin L.K. (2004). Using fluorescently-labelled rRNA probes for hierarchical estimation of phytoplankton diversity – a mini-review, Nova Hedwigia, 79, 313-320.</ref>).
+
The problem of fouling in vessels was recognised since the beginning of navigation. The ancient Phoenicians and Carthaginians were thought to have used copper sheathing and the Greeks and Romans both used lead sheathing on their ships’ hulls <ref>Callow, M. E. & Callow, J. A. (2002). “Marine biofouling: a sticky problem”. The Biologist, 49: 10-14. </ref>. More recent methods included the use of paints containing organic compounds of lead, arsenic, mercury and halogens (''e.g.'' DDT) and copper oxide <ref name="omae"/>. The later is still widely used.
 +
The first antifouling paints using organic compounds of tin started appearing in the second half of the 20th century and quickly dominated the markets during the following decades. Even today, TBT is globaly considered as the most effective solution developed so far to prevent fouling.
  
===(...)===
+
====Sources and behaviour of TBT in aquatic systems====
The goal of ALGADEC was the automatic detection of the different toxic algae species in three different areas in Europe: Skagerrak in Norway, the Galician coast in Spain and the area of the Orkney Islands in Scotland. Thus, chip sets for different toxic algae have been developed and tested in the lab for specificity with cultures of known toxic and non-toxic varieties of the same species (Diercks et al., 2008.<ref name="Dier"> Diercks, S., Metfies, K. and Medlin, L.K (2008). Molecular probes for the detection of toxic algae for use in sandwich hybridization formats. Journal of Plankton Research, In press.</ref>). The applicability of the ALGADEC biosensor for the detection of toxic algae in the hands of lay persons was evalutated in a workshop with end users of the device. After an introduction of the end users to the handling manual, contaminated field samples from the Orkney Islands (UK) were successfully screened by the end users for the presence of cells from the genus ''Pseudonitzschia''. Chip sets for the following toxic algae are currently available:
+
Antifouling systems represent the biggest and direct source of this pollutant.
 +
A TBT-based paint can be composed up to 3% of tin and a large commercial vessel can release more than 200g of TBT to the aquatic environment in only 3 days of permanence in a port <ref>Batley, G. (1996). “The distribution and fate of tributyltin in the marine environment”. In Tributyltin: case study of an environmental contaminant. de Mora, S. (ed). Cambridge University Press: London, U.K. p. 139-166. </ref>.  
 +
Aditionally, dry-docks and boatyards can also be relevant sources of antifouling paints (and other pollutants), where old paint removal and repaint procedures take place. Most of the residues end up in the surrounding environment.
  
*''Dinophysis sp.''
+
When released into the water TBT can be degradated into less harmful forms by microrganisms and ultra-violet radiation. However, due to its high affinity to particles it will be easily transported to the sediments, where its concentration is typically higher than in the water. Here, organotin compounds are exceptionally stable and the concentration can remain high for a long time even after the sources have ceased <ref>Langston, W. J., Bryan, G. W., Burt, G. R. & Gibbs, P. E. (1990). "Assessing the impact of tin and TBT in estuaries and coastal regions". Functional Ecology, 4: 433-443. </ref>. In the water, TBT can remain for a few days or months but in the sediments its half-life can extend for several months, years or even decades <ref name="omae"/>.
*''Pseudonitzschia sp.''
 
*''Lingolodinium polyedrum''
 
*''Chrysochromulina polylepis''
 
  
===Prospects===
+
[[Image:Boatyard antifouling.jpg|center|300px|Dry-docks and boatyards: Lack of proper containment during antifouling paint removal can result in deleterious substances being released into the aquatic environment.
In the course of the ALGADEC-project it was possible to develop a semi-automatic nucleic acid biosensor for the detection of toxic algae. The functionality of the device, even in the hands of lay persons, was shown with laboratory algae cultures, field samples spiked with algae cultures and field samples with naturally occurring toxic algae. However, in the future, the system has to be calibrated and optimised in respect to sensitivity for the detection of the target organisms. The sensitivity of the device is a crucial issue and has to be adapted, to the reference values for toxic algae e.g. toxic ''Alexandrium sp.'' in sea water of around ~100 – 250 cells/liter.  
+
|frame]]
The original idea of the ALGADEC project was to develop a nucleic acid biosensor for the detection of toxic algae. But the technology suggests an adaptation e.g. to the monitoring of microalgae in general. Therefore, molecular probes will be developed for key species of the phytoplankton of the North Sea. Furthermore, we are currently working on the automation of all steps involved in the analysis of water samples. In the long term a fully automated nucleic acid biosensor will be available that could work on its own or be implemented to the [[Ships_of_opportunity_and_ferries_as_instrument_carriers|FerryBox-System]] in order to monitor microalgae autonomously at species level.
+
 
 +
===Effects in non-target species===
 +
 
 +
====The case of the Bay of Arcachon (France)====
 +
During the period when TBT was being widely used as antifouling, the production of oisters in the Bay of Arcachon (France) almost collapsed. This coastal area is sumultaneasly a place of production of this shellfish and an area of intense recreative boating <ref name="terlizzi">Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M. & Boero F. (2001). "Environmental impact of antifouling technologies: state of the art and perspectives". Aquatic Conservation: Marine and Freshwater Ecosystems. 11: 311-317. </ref>. Although the knowledge of TBT was very limited at the time, the French Authorities restricted the use of the compound in antifouling paints in the region, in a rare example of precautionary principle <ref>Ruiz, J. M., Bachelet, G., Caumette, P. & Donard, O. F. (1996). "Three decades of tributyltin in the coastal environment with emphasis on Arcachon Bay, France". Environmental Pollution, 93: 195-203. </ref>. Later on, it became clear that TBT was responsible for the failures in the reproduction  and abnormal shell development of the oisters.
 +
 
 +
[[Image:Dog_whelk_nucella_lapillus.jpg|thumb|250px|right|Dog whelk ''Nucella lapillus'']]
 +
 
 +
====Imposex in marine snails====
 +
Also in the beginning of the 70’s certain reproductive abnormalities in other molluscs were discovered, which were later proved to result from exposure to TBT. In certain species of [[Gastropod|gastropods]] with separate genders, the females presented a penis and/or vas deferens. The term “imposex” was given as “a superimposition of male features in females” and was first described in dog whelk (''Nucella lapillus'') <ref name="gibbs">Gibbs, P. E. & Bryan, G. W. (1994). "Biomonitoring of tributyltin (TBT) pollution using the imposex response of neogastropods molluscs". ''In'' Biomonitoring of Coastal Waters and Estuaries. Kramer, K.J. (Ed), 1994. CRC Press Inc. Boca Raton, p: 205-226. </ref>. Soon it was clear that this was a generalised phenomenon – not only all the populations of dog whelk analysed in southwest England were affected but worldwide the same phenomenon was reported and for different species of snails, particularly in areas of intense maritime traffic. So far, imposex and [[TBT and intersex in periwinkles|intersex]] (a similiar phenomenon) have been described in over 150 species of marine snails <ref name="sousaetal">Sousa, A., Matsudaira, C., Takahashi, S., Tanabe, S. & Barroso, C. (2007). ”Integrative assessment of organotin contamination in a southern European estuarine system (Ria de Aveiro, NW Portugal): Tracking temporal trends in order to evaluate the effectiveness of the EU ban”. Marine Pollution Bulletin, 54: 1645-1653. </ref>. More developed stages of imposex can lead to the sterilization and premature death of the females, affecting the entire population. However, the most dramatic aspect of this [[Endocrine disrupting compounds in the coastal environment|endocrine disruptor]] is the fact that TBT can act at extremely low concentrations: a few nanograms per litre is enough to trigger imposex in marine snails<ref name="gibbs"/> - the equivalent of 1 g of salt dissolved in a square pool of 100 m side and 100m depth! These are so low that they are almost undetectable.
 +
 
 +
====Effects in other species====
 +
The knowledge of TBT, its toxicity and risks to non-target organisms, including humans, is still limited. However, studies suggest several harmful effects on the imune and neurological systems and embrios in mammals <ref>Berge, J., Brevik, E., Bjorge, A., Folsvik, N.., Gabrielsen, G. & Wolkers, H. (2004). “Organotins in marine mammals and seabirds from Norwegian territory”. Journal of Environmental Monitoring, 6: 108-112. </ref> and described toxicity to plankton, algaes, fish and marine birds <ref name="terlizzi"/>. It is known that top predators from marine [[Ecosystem|ecosystems]] can [[Bioaccumulation|accumulate]] significant amounts of [[Pollutant|pollutents]]. TBT is not an exception and has been already detected in [[Cetacean|cetaceans]] and seals, sharks and tunas <ref>Tanabe, S., Prudente, M., Mizuno, T., Hasegawa, J., Iwata, H. & Miyazaki, N. (1998). “Butyltin contamination in marine mammals from North Pacific and Asian coastal waters”. Environmental Science & Technology, 32: 193-198. </ref>.
 +
 
 +
 
 +
===Monitoring of TBT contamination===
 +
====Imposex as an indicator of TBT contamination====
 +
Some species of snails have been used as bio-indicators to evaluate and compare the degree of TBT contamination in aquatic environments. They are suitable species since:
 +
 
 +
*the stage of imposex reflects the amount of TBT present in the tissues of the organism and in the surrounding environment <ref name="gibbs"/>
 +
 
 +
*the imposex is triggered by extremelly low concentrations – close to the level of detection of measuring instruments
 +
 
 +
*marine snails can be very commun in certain habitats and have restricted mobility
 +
 
 +
===Restrictions to TBT===
 +
Since 1988 the International Maritime Organization ([http://www.imo.org/ IMO]), through the Marine Environment Protection Committee (MEPC), has recognised the harmful effects of the antifouling systems, particularly TBT. In 1990 the MEPC recommended the IMO Member States to restrict the usage of TBT in boats smaller than 25m (as the recreation boating was considered to be the main direct input) and to establish maximum release rates for the antifouling paints. As the evidences of the negative impacts and toxicity of TBT increased, IMO adopted the International Convention on the Control of Harmful Anti-fouling Systems on Ships with the intention to globally ban TBT, starting in 2008. The ratification of this proposal was slow and though the number of joining countries has increased, the goals haven't been met.
 +
France, in 1982, was the first country to forbid the use of TBT in boats smaller that 25m, followed by the UK in 1987. The rest of the EU gradually joined the action. Japan has banned the organic compounds of tin from antifouling paints in 1990 and has called for a global ban. Other countries such as Switzerland, Austria and New Zealand voluntarily followed the IMO recomendation. Most developed countries have adopted legislation restricting the use of TBT and alternative methods are being used and developed.
  
 
==See also==
 
==See also==
  
 
===Internal Links===
 
===Internal Links===
*[[Harmful algal bloom]]
+
*[[TBT and intersex in periwinkles]]
*[[Real-time algae monitoring]]
+
*[[Coastal pollution and impacts]]
*[[Eutrophication in coastal environments]]
+
*[[Endocrine disrupting compounds in the coastal environment]]
*[[Ships of opportunity and ferries as instrument carriers]]
 
 
*[[Differentiation of major algal groups by optical absorption signatures]]
 
*[[Differentiation of major algal groups by optical absorption signatures]]
 +
*[[Portal:Ecotox|Coastal Wiki articles related to ecotoxicology]]
  
 
===External Links===
 
===External Links===
*[http://www.algadec.net ALGADEC]  
+
*[http://www.imo.org/en/OurWork/Environment/Anti-foulingSystems/Pages/Default.aspx International Maritime Organization: Antifouling]  
  
 
==References==
 
==References==
Line 44: Line 71:
  
 
{{author  
 
{{author  
|AuthorID=16893
+
|AuthorID=19207
  |AuthorFullName= Metfies, Katja
+
  |AuthorFullName= Veiga, Joana M
  |AuthorName=Username}}
+
  |AuthorName=Veiga, Joana M}}
  
{{author
 
|AuthorID=3042
 
|AuthorFullName= Medlin, Linda
 
|AuthorName=Username}}
 
 
{{author
 
|AuthorID=10981
 
|AuthorFullName= Diercks, Sonja
 
|AuthorName=Username}}
 
  
[[Category:Techniques and methods in coastal management]]
+
[[Category:Coastal and marine pollution]]
[[Category:Biological processes and organisms]]
+
[[Category:Ecotoxicology]]
[[Category:Theme 9]]
 

Latest revision as of 16:42, 1 September 2020

This article describes the use of Tributyltin (TBT) in aquatic antifouling paints, its behaviour in the marine environment and one of its powerful negative effects in non-target species - the phenomenon of imposex in marine gastropods - which have led to the partial ban of this compound.


Introduction

Tributyltin (TBT) is a biocide compound which integrates certain antifouling paints used on the hulls of vessels to prevent biological fouling - a phenomenon which has considerable economic costs and environmental risks. Although very efficient, TBT has been subject to restrictions due to its toxic effects in non-target species, detected at the end of the 1970s. One of this harmful effects is imposex – the masculinisation of females of certain marine snails in response of the exposure to TBT concentration, in the magnitude of ng.l-1. So far this phenomenon has been described for over 150 species. The sensitiveness and high correlation between the intensity of this phenomenon and the environmental concentrations of TBT allow the use of certain gastropod species as indicators of the degree of contamination in coastal zones. Though the use of TBT has been forbidden in many countries for vessels smaller than 25 m, the contamination levels are still a concern, particularly close to areas of intense boating and associated activities, such as fishing and commercial ports, marinas and dry-docks.


Why the need of antifoulings?

The Problem of Fouling in Vessels

Any submersed rigid structure can work as substrate and be colonized by several marine organisms. It is estimated that there are over 4000 marine fouling species [1]. In the case of vessels, the degree of fouling of the hull depends on the time of submersion, the time the vessel is immobilized or its speed, but mainly on the features of the marine environment. Without an antifouling protection, the fouling can reach 150 kg per square meter, in less than 6 months [2]. This phenomenon leads to an increase in the weight of the vessel and the drag resistance of the hull surface, which directly affect the speed, manoverability and the fuel consumption (increasing up to 40%), leading to more frequent maintenance operations, higher costs and higher emissions of polluting gases [3]. Additionally, the hulls can work as vectors of translocation of organisms from one place to another, increasing the risks of introducing non-native, invasive species [4].

Fouling on the hull of a small boat

Antifouling methods and TBT

The problem of fouling in vessels was recognised since the beginning of navigation. The ancient Phoenicians and Carthaginians were thought to have used copper sheathing and the Greeks and Romans both used lead sheathing on their ships’ hulls [5]. More recent methods included the use of paints containing organic compounds of lead, arsenic, mercury and halogens (e.g. DDT) and copper oxide [3]. The later is still widely used. The first antifouling paints using organic compounds of tin started appearing in the second half of the 20th century and quickly dominated the markets during the following decades. Even today, TBT is globaly considered as the most effective solution developed so far to prevent fouling.

Sources and behaviour of TBT in aquatic systems

Antifouling systems represent the biggest and direct source of this pollutant. A TBT-based paint can be composed up to 3% of tin and a large commercial vessel can release more than 200g of TBT to the aquatic environment in only 3 days of permanence in a port [6]. Aditionally, dry-docks and boatyards can also be relevant sources of antifouling paints (and other pollutants), where old paint removal and repaint procedures take place. Most of the residues end up in the surrounding environment.

When released into the water TBT can be degradated into less harmful forms by microrganisms and ultra-violet radiation. However, due to its high affinity to particles it will be easily transported to the sediments, where its concentration is typically higher than in the water. Here, organotin compounds are exceptionally stable and the concentration can remain high for a long time even after the sources have ceased [7]. In the water, TBT can remain for a few days or months but in the sediments its half-life can extend for several months, years or even decades [3].

Dry-docks and boatyards: Lack of proper containment during antifouling paint removal can result in deleterious substances being released into the aquatic environment.

Effects in non-target species

The case of the Bay of Arcachon (France)

During the period when TBT was being widely used as antifouling, the production of oisters in the Bay of Arcachon (France) almost collapsed. This coastal area is sumultaneasly a place of production of this shellfish and an area of intense recreative boating [8]. Although the knowledge of TBT was very limited at the time, the French Authorities restricted the use of the compound in antifouling paints in the region, in a rare example of precautionary principle [9]. Later on, it became clear that TBT was responsible for the failures in the reproduction and abnormal shell development of the oisters.

Dog whelk Nucella lapillus

Imposex in marine snails

Also in the beginning of the 70’s certain reproductive abnormalities in other molluscs were discovered, which were later proved to result from exposure to TBT. In certain species of gastropods with separate genders, the females presented a penis and/or vas deferens. The term “imposex” was given as “a superimposition of male features in females” and was first described in dog whelk (Nucella lapillus) [10]. Soon it was clear that this was a generalised phenomenon – not only all the populations of dog whelk analysed in southwest England were affected but worldwide the same phenomenon was reported and for different species of snails, particularly in areas of intense maritime traffic. So far, imposex and intersex (a similiar phenomenon) have been described in over 150 species of marine snails [11]. More developed stages of imposex can lead to the sterilization and premature death of the females, affecting the entire population. However, the most dramatic aspect of this endocrine disruptor is the fact that TBT can act at extremely low concentrations: a few nanograms per litre is enough to trigger imposex in marine snails[10] - the equivalent of 1 g of salt dissolved in a square pool of 100 m side and 100m depth! These are so low that they are almost undetectable.

Effects in other species

The knowledge of TBT, its toxicity and risks to non-target organisms, including humans, is still limited. However, studies suggest several harmful effects on the imune and neurological systems and embrios in mammals [12] and described toxicity to plankton, algaes, fish and marine birds [8]. It is known that top predators from marine ecosystems can accumulate significant amounts of pollutents. TBT is not an exception and has been already detected in cetaceans and seals, sharks and tunas [13].


Monitoring of TBT contamination

Imposex as an indicator of TBT contamination

Some species of snails have been used as bio-indicators to evaluate and compare the degree of TBT contamination in aquatic environments. They are suitable species since:

  • the stage of imposex reflects the amount of TBT present in the tissues of the organism and in the surrounding environment [10]
  • the imposex is triggered by extremelly low concentrations – close to the level of detection of measuring instruments
  • marine snails can be very commun in certain habitats and have restricted mobility

Restrictions to TBT

Since 1988 the International Maritime Organization (IMO), through the Marine Environment Protection Committee (MEPC), has recognised the harmful effects of the antifouling systems, particularly TBT. In 1990 the MEPC recommended the IMO Member States to restrict the usage of TBT in boats smaller than 25m (as the recreation boating was considered to be the main direct input) and to establish maximum release rates for the antifouling paints. As the evidences of the negative impacts and toxicity of TBT increased, IMO adopted the International Convention on the Control of Harmful Anti-fouling Systems on Ships with the intention to globally ban TBT, starting in 2008. The ratification of this proposal was slow and though the number of joining countries has increased, the goals haven't been met. France, in 1982, was the first country to forbid the use of TBT in boats smaller that 25m, followed by the UK in 1987. The rest of the EU gradually joined the action. Japan has banned the organic compounds of tin from antifouling paints in 1990 and has called for a global ban. Other countries such as Switzerland, Austria and New Zealand voluntarily followed the IMO recomendation. Most developed countries have adopted legislation restricting the use of TBT and alternative methods are being used and developed.

See also

Internal Links

External Links

References

  1. Almeida, E., Diamantino, T. & Sousa, O. (2007). ”Marine Paints: the particular case of antifouling paints”. Progress in Organic Coatings, 59: 2-20.
  2. Bray S. (2006). “Tributyltin pollution on a global scale. An overview of relevant and recent research: impacts and issues.” Langston, W.J. (Ed).
  3. 3.0 3.1 3.2 Omae, I. (2003). “Organotin antifouling paints and their alternatives”. Applied Organometallic Chemistry.17: 81-105.
  4. Champ, M. (2000). “A review of organotin regulatory strategies, pending actions, related costs and benefits”. The Science of the Total Environment, 258: 21-71.
  5. Callow, M. E. & Callow, J. A. (2002). “Marine biofouling: a sticky problem”. The Biologist, 49: 10-14.
  6. Batley, G. (1996). “The distribution and fate of tributyltin in the marine environment”. In Tributyltin: case study of an environmental contaminant. de Mora, S. (ed). Cambridge University Press: London, U.K. p. 139-166.
  7. Langston, W. J., Bryan, G. W., Burt, G. R. & Gibbs, P. E. (1990). "Assessing the impact of tin and TBT in estuaries and coastal regions". Functional Ecology, 4: 433-443.
  8. 8.0 8.1 Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M. & Boero F. (2001). "Environmental impact of antifouling technologies: state of the art and perspectives". Aquatic Conservation: Marine and Freshwater Ecosystems. 11: 311-317.
  9. Ruiz, J. M., Bachelet, G., Caumette, P. & Donard, O. F. (1996). "Three decades of tributyltin in the coastal environment with emphasis on Arcachon Bay, France". Environmental Pollution, 93: 195-203.
  10. 10.0 10.1 10.2 Gibbs, P. E. & Bryan, G. W. (1994). "Biomonitoring of tributyltin (TBT) pollution using the imposex response of neogastropods molluscs". In Biomonitoring of Coastal Waters and Estuaries. Kramer, K.J. (Ed), 1994. CRC Press Inc. Boca Raton, p: 205-226.
  11. Sousa, A., Matsudaira, C., Takahashi, S., Tanabe, S. & Barroso, C. (2007). ”Integrative assessment of organotin contamination in a southern European estuarine system (Ria de Aveiro, NW Portugal): Tracking temporal trends in order to evaluate the effectiveness of the EU ban”. Marine Pollution Bulletin, 54: 1645-1653.
  12. Berge, J., Brevik, E., Bjorge, A., Folsvik, N.., Gabrielsen, G. & Wolkers, H. (2004). “Organotins in marine mammals and seabirds from Norwegian territory”. Journal of Environmental Monitoring, 6: 108-112.
  13. Tanabe, S., Prudente, M., Mizuno, T., Hasegawa, J., Iwata, H. & Miyazaki, N. (1998). “Butyltin contamination in marine mammals from North Pacific and Asian coastal waters”. Environmental Science & Technology, 32: 193-198.


The main author of this article is Veiga, Joana M
Please note that others may also have edited the contents of this article.

Citation: Veiga, Joana M (2020): TBT and Imposex. Available from http://www.coastalwiki.org/wiki/TBT_and_Imposex [accessed on 25-04-2024]