UN NUME NEW GFNEIRA AND SPECIES OF PENNSYLVANIAS FOSSHLS FHOM THE WFWOKA HORMATION OF OKLAMOMA'

3x (inumge M. Gimpy
contents
r'age
latroduction 118
 120
l'rutozon 120
Spungite. 121
Comphteritn 122
Fichinoderuinta 122
Iunelidn 123
I3rachiopxala 135
I'elexypxl: 131
Sriphupend: 135
Gasteropmila 138
Ceplialipexin 142
Crustace: 154

Intronction

Georraphically the Wewokn formation is typically exposed in the northwestern portion of the Coalgate and the southwestera portion of the Weroka quadrangles of Oklahoma. lithologically it consists of alternating bands of sandstone and shale,- four sindstone and three shaie members-and it has a thickness oi about 300 feet. ${ }^{7}$ Geologically the Wewokn formation is part of the Pennsylranian series and in the Oklahoma section lies above a considerable thickness of Pennsy!ranian rocks, lant it probably correlates with the lower portion of the l'enasylvaninn section of Kansas.

The fauna of the Werroka formation, so far as known, occurs in the two lower shales, from which the fossils weather free and for the moat part in an unusuaily periert condition of preservatina. The fauna is highly differentiated, comprising mot dess than 14 K species, and it is not

[^0]confined chiefly to the brachiopoda like so many Carboniferous faunas, but presents all the zoological groups in just proportion. The greater part of the fauna, as one would expect, consists of species already in the literature, but a considerable number of new forms, both genera and species, have been obtained. These are described below, but a report containing descriptions and figures of the entire fauna has been completed and submitted for publication as a bulletin of the I'nited States Geological Survey.

Dr:scriptions of Grinera and Sprcies

Protozoa

Fusulina inconspicua sp. nov.

Abstract

Shell small, subecylindrient to comewhat fusltorun. Tl:e averame length is perbaps 3 mm .. with n dinmeter of nbout 1 oum.. but specimens 3.5 wiu. loug are not uncomumo. it tew birc a length of 4 mu., whlle one example provislonalls referred to this species is nearly 5 mon. long and $\mathbf{1 . 5}$ mun. in thickness. DIferent speriauens vary appreciably in proportions. some being slender and otbers more rohust. As is commou in this gellus, roung specimens are relatively more sleoder than mature oues. Fur the most part, this species is of very renular growth with a sub-cylindrical shape abruptly munded at the ends. Some specimens taper uore distinctly than others. In general. this appears to the an inmature cbaracter, appearing-ln youns sliells-more than in mature ones and being retained to n Inter stape in some than in otbers. Inltial cell rather large, abont .1 mm . In diameter. Tbe largest menanred bad n diameter of .11 mm ., otbers .009 wm., still others . 08 st mun., and others even smaller. It seems reasouabie to infer that the initial rell varies in size in different spechinens, but that the snaller mensurements are in many cases due to the section not passiug through lts center. The walls are thin, the septa and outer wall belng nearly equal in thlekness. The specimens studied do not sbow the miuute structure. In mature specimens (1 inm . in diameter) five or even six revolutions of the outer wall canl be counted in addition to the loltial cell. In a mature specimen (1 nm In. in dianieter) some 25 septn orcur In the outer volution, and this appears to be about dormal. Tbe speclmens exaumbed may not sbow thls ehimacter with acemacy, but the sutures or superficial lines formed by tbe septa are indistiuct and not depressed. They are stralnit or nearly straight at the surface. but a little below. the septa appear to becone strongly pllcaled.

Helght of fanal chamber about 0 in min. or . 09 min.: thickiness of the outer will about one third to one fourtil ne much, or .02 S mm. to .02 mm .

This diminutive species, which occurs in grent numbers at the one horizon in the Wewoka formation where it is found at all, is readily distinguished from all nther American species thus far known, by its much
smaller size, and Trom some of them biy its elongated and cylindrical instead of fusiform shape. Jn size, it resembles the Furopean F. minima, ${ }^{3}$ but is somewhat larger, more sleuder in shape. and less fusiform. The shape is suggestive of F. lutugini Schellwien' and F. longissima Möller, but the size is very much smaller.

Horizon and locality: Wewoka formation: Coalqate quadrangle, Okla.

Spongia
 Wewokella gen. nov.

The general shape of the preseat form is that of acyluder with n large tubmiar cloaca. No dermal Inger has been obsorved. The walls ate bisid and made up of large spleules intertaced with oue anotber. Tbe typleal spicular element appears to the the tetranon, but many spicules do unt sbow this shape and appear to lne elongated. drequalarly branched and more or less contortent. In zeneral. bowever, the trend of the spicules is lomzitudinal.

The form for which this title is introduced is vare in the Wiwoka formation, only two specimens having come to hand. They might perhaps be referred to tire genus Doryderma. were it not for the fact that they indicate a form wioch has a large central cloaca instead of a number of axial canals, and in which the radial canals of Doryderma are also apparentiy wanting. . The gencral relationships of the type are netertheless supposed to be with that genus, which has also been cited from ('arloniferous strata.

Type species, Heurokella solidn.

Wewokella solida sp. now.

Sjonge mody irreanlarly crlindrical, attaining a dimmeter of at least 2.5 mon. Center occup:ed by a la:rge tubular cloaca, the ralls being alout i mm. thick and showing no eridence of being pierced by radial canals. If a dermal lager was orighnally present, it has heen lost. The nalls non are made up of targe spicules, of which the typical shape is probably 4 rayed with one of the rags more or less elongated. At the satue time, some of the rays mny tre aborted so that many of the spleules seem to be Irregularly brabelied. They are so interworen as to makie up a wall of conslderable rigidlty, to aid ill whirh the splutules may be partly cemented, although it is doubtut if they auastonose. The structure, then. Whlle rery varied in detail makes on the whole a homo genenus wall which apparently is the same on the inside as on the out. Anong the large spleules are other tetraxons of cunspicuously smaller size.

Horizon and locality: Wewoka formation: ('oalgate quadrangle. Okla.

[^1]
Calenterata

Lophophyllum profundum var. radicosum var. nov.
Assoclated with Individuals bnving the cbaracter of Lophaphyllum pro-, fundum, occur other specimens whleh differ strikiugly in the profuse development of hollow, sphiform stolons. Correlated with this character are usually a more rapid expansion, a more incegular growth, a rather stralghter shape and the possession of a thinuer, more knlfe-IIke pseudo-columella. The stolons which are usually broken off close to the epithecu, disclosing their tubular structure, are especially developed in the lower portion of the corallum. It seems doubtful whether these structures served promarily for support. since they are found in spectmens baving an unsually broad and secure attachment nad are absent from others lin whild tbe polat of attachment is small, and the anchornge npparēntly inisecure.
The stolods vary froul dirge and very abundant to small and reduced to only one or two in aumilet. In this was. a gradual traustion is effected between tbe two forms which in their extreme expressions look very wuch unlite each other. while amonin intermediate and less strongly chanctertzed specimens, n diplding liue can hardly be drawn. The forms with more or less straght, irregulnt, rapidly expauding coralla graduate on the one hand into those with verg abuadaut stolons, and on the other into the unrrow. more or less curved, regular coralla of isplcal profundum. It seems to be true, however, that the narrow, regular growtlus seldon exblbit aus develonament of the root-like process.

Horzzon and locality: Wewoka formation: Wewoka quadrangle, Coalgate quadrangle, Okla.

Echinodermata

Hydreionocrinus patulus sp. nov.

This species is based ou a somewhat imperfect calyx whleb is distiuguished by its low couvexity. The median portion of the under side is strongly concave and the belgit of the whole is but hittle greater than the thichnes of the plates. These peculinities way, howerer, be somewhat eabanced by compresslon.

The general shape is pentagonal, wlth angular notches at the corncrs and a wider irregularity at the azygous angle. The plates themselres are thlels and they are bighly tumid on the outer side. They tend to recurve gear the marglas so that the sutures are not as depressed as the general curcature of the surface, If continued to the edges, would wake them. The pintes ne:ar their margins tend to be ratuer regularly and finels crenulated aud the lafira-basals and adjacent portions of the basals are finels granulose. Unless lost through eroston, these marbings do not exteud to the other plates.

The infrabasals form a sumnll nentagon of which the radius of the srar of the stem occupies balf the distance from the ceuter to the slde. The scar is
small. crenulated about the circumference, and with a diminutive round aslal caval. The basals are irregularly hexagonal, shaped more like a triangle with its basal angles truncated. That to the right of the azygous plates is slightly larger than the others and not symmetrical:
The radials are seven-sided, twice as wide as high, the base of the beptagon being uppermost and very long. The two apical sides are also long and somewhat concave, while the two lateral sides are short. The two plates near the azygous group are unsymmetrical, and have the apical sides of unequal length. Just below the upper margin of each of the radials occurs a short slit-like excavation. Abore this on the broad upper slde of the plate, there is a triangular depresslon defined by tro elerations or ridges which also bend outward and extend along the outer margin of the upper surface. a somewhat slmilar triangular excavation marks the inner side of the upper edge of the thick plate.
The azygous basal is subquadrate, much longer than wide, in reality belng i -sided with a relatively broad base. The sides are formed by a broken llue of which the lower portion is much shorter than the upper. Tbe upper side is also made by a broken line, the dextral part of which is long and oblique and the sinistral short, merely truncating the angle which the other would otherwise make with the left slde. This plate is therefore bounded below by the lufrabasal, on the right and left sides by the basal and the radial, and on the upper side by the two other azrgous plates. The second and third azrgous plates are missing from the specimen, as are also the brachials.

Hydrcionocrinus patulus resembles H. discoilalis and H. crassidiscus. From the former it may be distinguished by its larger size, more convex plates, granulose surface and by the shape and arrangement of the azygous plates. The azygous basal in the present species is differently shaped, so that it is in contact at the right with the radial, thus separating the second azygous plate from the adjacent basal on that side.

The relationship with crassidiscus is rather more close. The basals ("subradials") are however described as all hexagonal, while here they are five-sided, except the azygous one, which is scven-sided. The azygous basal does not in crassidiscus reach the second basal "as is usual in this genus." Furthermore, in the present species, the second azygous plate intervenes between the first and the radial to the right.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Annelida

Enchostoma serpuliforme sp. nov.
Attached to a large undetermined Ortboceras are sone slender tubular organisus seeming to belong to the genus Enchostoma. One, from which the present description is drawn, bas a diameter of 1 nm. or less and winds about on the Orthoceras to a length of almost 140 mm ., without appreciably

Increasing its diameter. Neither the initial point nor the true aperture appears to be shown. The cross-sectlon must have been nearly circular. The shell substance, when preserved, is lamellose, phosphatic, of a light blaish color and in places distinctly nacreous. For the most part, however, the shell appears to be missing and only the muddy laflling of the tube remains, of a rusty color and partly with a dark llmonitic coating. Where the entire organism is removed, its place is represented by a groove. As the original test of the Orthoccins is now absent, this impression naturally occurs on the mold of the inside and the explanation of the phenomenon is difficult. I think we can not assume that the organism was originally attached to the inside of the Orthoceras. because of the septa. It may, however, have been attached to the outside or bave been partly imbedded in the shell, tbrough the gradnal solution of whlch these external bodies, insoluble under prevalling conditions, were brought into contact with the mud which filled the interior. This bypothesis, however, is unsatisfactory, because the specinen is not bent but broken by the compression which It has suffered, showing a rigid condition at the time the force was applled.

The sbape and plosphatlc appearance of this organism are characteristle of Enchostoma, but such Enchostomas as I bave heretofore seen are free and of larger size. The small size, sesslle condition, and probably false appearance of having been partly imbedded in the shell of its host, are very suggestive of the organism which I bave here called Serpulopsis insita, but none of the specimens of Scrpulopsis shows any evidence of having had a phosphatic shell. They are also small and very much shorter. The true relationship of this form and its position in the animal kingdom remain problems as yet unsolved.

Horizon and locality Wewoka formation, Wewoka quadrangle, Okla.

Serpulopsis gen. nov.

This nawe is Introduced for some small tubular organisms which enlarge very gradually and are frequently much contorted during partiof their growth. They have the hablt of attachment to other organisms and are more or less imbedded in the shell of their host. They always keen near the surface, but are perhaps as seldom completely superficial as they are completely imbedded.

I can scarcely doubt that the fossils on which this genus is founded belong to White's Serpula insita, which, consequently, is taken as the type.

Serpulopsis is distinguished from Serpula by its burrowing habit, which is in fact abnormal for the annelids. Even if the excavations alone and not the tubes which ordinarily occupy them were known, it would be impossible to refer these structures to the boring sponges which they somewhat suggest, because of their strictly superficial, linear and not inosculating character. In some respects, they suggest Rhopalonaria among the Bryozoa, but, while specimens frequently occur together in considerable numbers, they appear to form groups of independent indi-
viduals and not colonies, nor is there any evidence that the individual tubes were composite. On the whole, therefore, it seems more probable that this fossil was an abnormal type of annelid.

Type species, Serpulopsis insita.

Conularia crustula var. holdenvilla var. nov.

A few specimens from the Wewok arreeing in a general way with C. crustula differ in having the sculpture on a much finer scale. Unlike typlall crustuta also, these specimens are more or less compressed and distorted, the other form whicb aparently had an uusually thick rigid test not baving suffered much in that way. About $2 \overline{5}$ costre occur in a linear distance of 5 mm ., and thus they are much more closely arranged than in the typical iorm.

Among the specimens examined this variety is readily distinguished by its sculpture, the difference being so marked that it seems desirable to discriminate it as a new variety if not as a new species. It may possibly be a young stage of C^{\prime}. raperi, the only other Pennsylvanian Conularia which has been described, although this form tapers more rapidly than C. raperi, which has nearly parallel sides.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Brachiopoda

Rcemerella patula sp. nov.

Shell rather small for the genus. rarely exceeding 18 mu. in diameter, though in one instance reaching nearly 30 mm . Slinue sliglitly oral in some specimens, apparently circular In others.

Convexity of dorsal valve low, remulin. Lpex small, slighty though conspicuously eccentric, situated alout two thids of a radius from the posterlor margin. Outline from the apex to the front slightly curved, so that the shape is not truly conical, being somewhat lutiated in the apical portion.

Curvature of the ventral valve usually compound, more or less strongly courex over the posterior portion and more or less strongly concare at the frout and sides. The piominent portion mojects above the refexed rim. The point of highest courexity is usually well marked and is situated diametrlcally opposite to that of the donsal vilve. or abont two thirds of a radius forward from the posterior marin. On the slope posterior to the point of greatest elevation the pedicle fissure is situated. It is a conspicuous feature, rather long and nurrow, with strongly introverted sides. It exteuds in mature shells from the point of grentest elevation half way to the posterior margin and is surrounded without interruptions by the characteristic sculpture.

The sculpture, as usunl, cousists of uarrow, sharply raised concentric liree with considerably wider, Hattened Interspaces, which are also finely striated. 'The the are somewhat irregular and are probably stronger and more persist-
ent on the veutral than on the dorsal ralve, on whel they are often evanescent about the margins for a greater or less distance. 'Chey vary considerably in different specimens, being more closely arranged tu some than in others, occurring from nine to eleven in 3 mm . They also vary on the same specimen In proportion to their distance froun the apex, and are nore crowderl ou the posterior than ou the anterior slde; consequently, the measurement given above is a relative one, representing the condition toward the frout in wellgrown speclmens. Exfoliatlon obliterates much of the concentric marking and Instead often brings to view fine radial lines and strix, probably due to set:e which projected from the wargin of the shell.

On the interior, the dorsal valre bas a short septum passing longitudinally through the aper, and extending farther on the anterior than the posterior side of it. There are also two symmetrical ridges, straight, parallel and close togetber for some distance anterior to the apex, rapidly diverging and somewhat curved near it, so as partly to surround it. Between the straight extended anterior portion of these arms there is a medium groove which extends backward and graduates into the septum, which has depressed sides. The curred arm-like markings probably represent the boundars of a line of muscular attacbment. In oue specimen these lines are, near the apex, distiuctly expanded iuto oral areas, one on each slde, each of which is separated br an oblique line of division into two scars. These areas, without much question. are the loci of pairs of muscles.

The internal markings of the dorsal valve described above are conspicuous on most of the specimens examined, which are usually preserved as internal molds. They vary in detail in different examples. This peculiar structure seems to be identical with that upon which Hall and Glarke based the subgenus Romerella, and while there may be a little doubt as to whether it is really of subgeneric value, it will, together with the configuration, readily distinguish this form from other Pennsylvanian discinoids. Some specimens, especially if incompletely exfoliated, fail to show this structure, however.

Remerella patula is rather abundant in the Wewoka formation and usually occurs as dissociated valves in small concretions. Occasionally, however, the two valves are found in conjunction, though usually more or less displaced.

Horizon and locality: Wewroka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Streptorhynchus oklahome sp. nov.

There are in the Wewoka collection two spechmens which appenr to belong to the genus Streptorhynchus. They are preserved as internal molds and show dental callosities in the ventral valve without any trace of a septum. In the dorsal valve, the socket plates are fairly well developed and one specinen bas a low dorsal septum. In polut of convexity the dorsal valve is nuly antly
convex, the ventral rather bigh and more or less coutorted. The shell contracts at the binge, the area being moderately high and strongly inclined backward. The sculpture cousists of fine, regular, subequal lire (in one spechenen more or less distinctly alternating). In the type specimen the lire are equal over the median portion and separated by intervals slightly greater than their own width. Here they occur ten in 5 mm . Toward the sides they are rather more distantly spaced and are alternating.

The rarity of this genus in our Pennsylvanian rocks constitutes an a priori argument against these specimens belonging to Streptorhynchus. On the other hand, it is difficult to understand how the process of fossilization, while permitting the dental callosities to be preserved, could obliterate all trace of the septum.

Horizon and locality: Merroka formation; Coalgate quadrangle, Okla.
Chonetes granulifer var. armatus, var. nov.
The fosslls included under this title occur associated with C. mesolobus rar. decipiens, and with the more closely related C. granulifcr. They are of sman slae, 15 mm . being the maximum width observed, of moderate conrexity where not compressed, subquadrate shape, rather promineut beak, and faint though distinct insinuation. About seven cardinal spines occur on each side of the beak.

The surface is marked by obsolescent lire and by aumerous small though prominent spines.

This variety is distinguished from C. granulifer by the smaller and less projecting beak, the nearly obsolete liration, and the number and prominence of the spines, although the latter character may be to some extent the result of preservation. With the evidence at hand, however, I would not feel justified in regarding these shells as true representatives of C. granulifer.

Horizon and locality: Wewoka formation; Coalgate quadrangle, Okla.
Chonetes mesolobus var. decipiens var. nov.
1890. Chonetes mesolobus. Girtr, U. S. Geol. Survey, Nineteenth Aun. Rept., pt. 3, p. 576.
Upper Coal Measures: Atoka quadrangle, Oklahoma.
1903. Chonetes mesololis. Girty, U. S. Geol. Surf., Prof. Paper 1f. p. 35t, pl. 1, figs. 20-23.
Hermosa formation: San Juan region, Colo.
Rico formation: San Juan region, Colo.
Maroon formation: Crested Butte district, Colo.
Carboniferous: Grand River region, Colo.
This form differs from typical C. mesolobus in baving a suooth instead of striated surface. Thougb I was at first disposed to describe it as a new species
rather than a new varlety, the lower taxonomic rank is probably more in accordance with the facts.

The peculiar configuration of C. mesolobus is known to everyone. The typical form is described as possessing fine, radiating strix. Some wellpreserved specimens from Ohio show this feature very clearly. The lira are fine and moderately strong and they give rise to a large number of minute spines, a feature not mentioned by Norwood and Pratten, though it is perhaps represented by one of their figures. Mr. Beede ${ }^{6}$ also appears to record it when he describes the surface as "coarsely punctate." He may, however, be referring to another and an altogether different feature, to more numerous perforations, which occur between the lira instead of on them and which project as rows of spinules or pustules on the inside of the shell. These are best shown on exfoliated specimens or internal molds. The external feature to which I refer above has, also, when the shell is worn, the appearance of puncte, but when better preserved, the punctr show projecting edges as of downward pointing spines, very similar to the minute spines which are found on many orthoids.

The variety which is the subject of this account has the characteristic configuration of C. mesolobus, but the surface is entirely without radiating scuipture, marked only on the best specimens by fine growth lines. The absence of radial striation is not due to erosion or any circumstance of fossilization, for it is a persistent feature shown by an extensive series of specimens from many localities. Furthermore, the radial markings could hardly have been lost, when the more delicate growth lines had been retained.

In characteristic specimens, this difference is so strongly marked that one would be led to refer the two forms to altogether different groups, and as already noted, I was at first disposed to regard them as distinct species. When large series of specimens from different horizons are examined, however, individuals more or less intermediate in character are found. That is, associated with the smooth variety are occasional shells which show faint yet unmistakable traces of radial sculpture. Such specimens must be carefully examined, however, to determine whether this character is not adrentitious, for under exfoliation the rows of internal spinules which have oblique pores connecting with them form little grooves and produce fine, more or less regular radiating markings.

The shells belonging to the smooth rariety rarely show traces of the spines found on the other. Except for occasional incremental lines the surface usually appears to be quite featureless.

[^2]C. mesolobus var. decipiens is very abundant in the Wewoka formation. It is also abundant in some of the earlier Pennsylvanian deposits of the Kansas section at about the horizon of the Parsons formation.

In the literature, no citation can definitely be included in the synonymy except my own identifications of specimens obtained in Oklahoma and in Colorado. I remarked in that connection that the Colorado specimens were characteristic in every way, but I had for comparison not typical, striated C. mesolobus, but specimens of the present variety.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Chonetes mesolobus var. euampygus var. nov.
Considerable variation is shown by shells of the mesolobus group in the strength with which the characteristic lohation is developed. In some of the larger individuals especially, it can uardly be distlugulsbed at all, and when, as is usually (?) the case, such specimens belong to the swooth or decipiens type, they simulate C. gcinitzianus very closely. It Is at least possible that C. gcinitzianus uny have had this derivation, though one would have sald a priori that such phylogeny was of all the least probable.

It is probably true as a geueral statement, though not without exceptions, that the strengtio of the lobation varles inversely as the size of the ludividual. There is at all eveuts a group of shells which stand out strongly aud distinctly by reason of their swall size and deep lobation. That they are mature shells is ladicated by their strong convexity and by the fact that goung individuals of the larger form would be more faintly lobed. Though they intergrade with the larger: less strongly lobate sbells through larger examples which have an almost equal streugth of lobation, they form a distinct, and as a rule an easily discriminated group which sometimes occurs alone to the exclusion of the typical variety. In sculpture, these shells seem to be allied to the variety decipiens. They are usually unstriated, but show traces of strixe mure frequently than decipiens. Seldom, if ever, is the striation as strong as in wellcharacterized specimens of C. mesolobus s. is.
None of the specimens referred here exceeds 10 mm . In width, and the average is nearer T mm.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coaigate quadrangle, Okla.

Productus insinuatus sp. nov.
1892. Productus qquicostahus. Hall and Clarke, Geol. Surv. New York, Pal., vol. 8, pt. 1, pl. 17 A. Ags. 22, 23.
Coal Measures: Nebraska.
1892. Productus aquicostatus. Hall and Clarke, State Geologist New York, Eleventh Anu. Rept., for 1891, pl. 22, figs. 11, 12.
Coal Measures: Nebrnslin.
1894. Productus aquicostatus.; Hall and Clarke, "Introduction to Sludy of Brachiopodu," pt. 1, pl. ne. gies. 11, 1 .
Coal Measures: Nehraska.
1900. Productus cora rar. americanis. Beede. Uuiv. Geol. Surv. Kausa3, Rept., vol. 6, p. 7T, pl. 11, fir. 2.
Upper and Lower Conl Mensures: Kimsas City, Eudora, Anderson Co., Kansas.
100i. Productus cora var. ampricants. Woomuff, Nebraska Geol. Surv., Rept., vol. 2, pt. 2, p. 270, pl. 11, fig. 2.
Carbonlferous: Louisville, Nebraska.
Shell of the cora type, rather large, widest at the binge, more or less strongly transvers. In the lmmature condition, thls form closely resembles P. cora itself, being strongly conrex and more nearly quadrate. In the later stages, the growth is more sprending. especinlly at the sides, and the marglus are fatter. Two varieties can be distlugulshed, oue which is narrow and wore highly arched and the other transverse and less convex. In the mature conditlon, aiso, the rentral valre becomes elerated aud angular along the median line. Correlated with this character is an inflection of the anterlor margin making a deep sinus in the outline. A sinus or depression in the shell itself is uaturally absent.

The sarface is marked by fine, even, rlgid, rounded costre bnving the peculiarities of those of I. corn. As in that species, the costre bifurente freely and sometlmes this takes place simultaneously all around a shell, so thit for a thme the striation is much finer about its margin than over the earller portion. In connection with the carina, the costre in the inmedinte nelghborhood frequently bend inward toward the medlan line which in some cases appears to have been without costre A few large plications are found at the sldes near the binge, but they seldom pass entirely across the shell. They are apt to be more persistent on the dorsal valre, however, than on the rentral. Spines are scattered over the surface of the veutral ralse, but they are usually small, not causing nodes on the costre, and they are liable to be overlooked wheu broken off. They appear to be few in number. A row of larger ones is developed along the cardinal Ilne.

As the synonymy shows, this species has several times appeared in the literature under the title of Productus aquicostatus, but a careful reading of Shumard's description leaves little doubt that P. aquicostatus was a different species and one more closely similar to P. cora itself.

Horizon and locality: Found in the Wewoka formation, but the type specimens are from Kansas.

Pugnax osagensis var. percostata var. nov.
This form is more abundant in the Wewoka formation than the typleal variety. In a geveral way, the sperimens referred here agree with P. osagensis, the only difference or importance belng the more numerous plications which are also smaller and more angular. Of these there are usually five fairly
strong on each side, but there miny be four or sis. Three is the usuill number for the fold, but four and even five occur la race instances. Iudividnals with three wesial plications and four haterals. especially when one or two of the latter are immature or mperfectly developed, might equally well be placed under P. osagensis itself. Apparently this rariety bas been referred by authors to osagensis unqualifiedy, but I believe it ran be distiuguished to adrantage.

This form resembles P. osagensis var. ocridentalis, which is, however, a much larger species, with on the whole, more numerous mesial plications, and it occurs in very different faunal associations.

Horizon and locality: Wewoka formation; Coalgate quadrangle, Okla.

Pelecypoda

Nucula wewokana sp. nov.

Shell small, triangular; width slightly. thourl distiuctly, greater than the height. Beaks set well toward the posterior eud, toward which they nore or less distinctly point. The cousexity is high. The cardinal and posterior ends are abruptly flatteued or depressed Into a usually well-defined escutcheon and lunule. The ventral border is regularly rounded. The anterior aud cardinal lines are stralght or gently convex according as the lunule and escutcheon are fiat or project somewhat from the abrupt infolding of the shell nlong the tro edges. The anterior end is strongly rounded: the posterior is subangular.

The surface is fuely, sharply and regularly striated.
This species is related to N. parva McChesney, with which, in fact, I at first identified it. It differs, to judge by the figures of McChesney and of Meek and Worthen, in being less transperse and in having the shell at the posterior or shorter end less strongly projecting. N. wewolana is also very similar in outline to N. pulchella Beede and Rogers, but N. pulchella is said not to have a distinct lunule and the posterior end seems to be abruptly truncated. In the present species, the shell projects a little, so that the outline at this end is usually gently convex and formed by the edge of the shell, whereas in N. pulchella, it is straight and formed by the angle of flexure, which either overarches the margin or is coincident with it when viewed from above.

Horizon and locality: Weroka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Anthraconeilo subgen. nov.
The shells iucluded under this title are rather large, strongly transverse, very inequilateral, considerably produced anteriorly. The beaks polnt toward the shorter slde. Shell closed all around. Dentition taxodont with a great many
small teeth on the anterior side and a few large teeth on the posterior. Chondrophore probably present but not observed. Anterior and posterior scars large. Probably two otber smaller scars are situated near the hinge, one in front of and the other bebind the benk, between it and the anterior and posterior scars. Palial line apparently entire or with only an obscure sinus.' Sculpture consisting of fine regular concentric strix.

This type in general appearance is intermediate between Nucula and Leda. From Nucula it differs in its transerse shape and produced anterior extremity. From Leda it differs in having the beak directed toward the short side, which is probably posterior as in Nucula. The muscle scars seem to be much as I have observed them in Leda bellistrista, but there is no cblique internal ridge crossing the umbonal region, and the arrangement of the teeth, chiefly to one side of the beak, is another conspicuous difference. This type also much resembles Paleoneilo, from which it differs in lacking an external ligament and being without the sinus, developed in the inferior contour and in the lines of sculpture. The latest species which can with safety be referred to Paleoneilo occur in the early Mississippian. Anthraconeilo differs from Yoldia in not gaping behind and in having the beak directed toward the shorter side.

In addition to the type species described beyond as Anthraconeilo taffiana, there can probably be transferred to this group three species at present included under Yoldia, viz: Y. carbonaria, Y. knoxensis and Y. oweni. The two later differ-from Yoldia and agree with Anthraconeilo in having the beaks turned toward the short side of the shell, and their inclusion in the latter is regarded as probably correct. The case of Y. carbonaria is more doubtful, since it seems presumptuous to suppose that so excellent a conchologist as Meek would assign to Yoldia a shell in which the beaks pointed toward the short side, whereas, if they point toward the long side, Y. carbonaria is clearly not a representative of Anthraconeilo. Even if the beaks point toward the long side, however, I should somewhat doubt the correctness of his reference to Yoldia, on account of the convexity of the shell and the prominence of the beaks.

Type species, Anthraconeilo taffiana.
Anthraconeilo taffiana sp. nov.
Shell mather large, transverse. Width nearly twice the beight. Sbape subelliptical. Posterior end strongly and symmetrically rounded. Dorsal border long, rectillnear. Ventral border convex, more strongly curvel toward the posterior end, subrectilinear anteriorly. Auterior end produced, more or

[^3]less synmetrical, somewhat truncated at the narrow extremity. Greatest height about one third the shell length in front of the posterior margis. Convexity rather bigh, chlefly situated in the posterior third of the shell; compressed auteriorly, somewhat compressed near the postertor margin as well. Beak small, strongly incurved, pointing tomard the short end of the shell.

Surface not well shown, often apparently smooth. A few examples are marked by regular, closely arranged concentric strix, and many show more prominent irregularities of growth.

The dentition consists of about six large posterior teeth and about 30 small anterior teeth. An Interval beneath the beak is probably occupled by a number of additional teeth of small-size.
There is the usual complement of large muscle scars, one anterior and one posterior, sltuated near the dorsal border. Apparently a small elongate scar occurs between the anterior adductor and the beak, close to the cardinal line. Possibly a corresponding scar occurs also between the beak and the posterior adductor. This arrangement is, therefore. very much as I have observed it in Leda bellistriatu, but of the curved oblique internal ridge in the umbonal reglon with Its attachwent (?) scar, no equivalent structure bas been observed In the present form. The sliell is considerably thickened between the beak and the large posterior adductor, however, causing a deep excavation in internal molds, sharply defning the anterior boundary of the scar. The pallal line appenrs to be entire, or with a faint deflection in the anterior portion. It has not been clearly seen in that portion.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate_quadrangle,_Okla.

Nuculopsis gen. nov.

The present genus is based upon Nincula rentricosa of Hall and it is distinguished from Nucula primarily because, though the beaks point toward the short side of the shell, that side is uot posterior but anterior. The determinatlon of thls fact rests upon the occurrence of a llgamental groove or area along the hinge margin ou the long slde of the shell. Though varying in the distinctness with which it is shown, traces of this structure can be observed in nearly all the large number of specimens examined. It is, therefore. a real and perslstent character of the specles and is bardly open to any other luterpretatlon than that which I have put upon It. The existence of this structure then, which bas no homologue in Nucula, and its almost defnitive importance in determining the long side instead of the short slde of the shell as posterior, constitute the most important differences from that genus.
The shape is elliptical rather than triangular and the long side is rather produced for Nucula itself. The beaks are conspicuously turned townid the shorter slde. The typical species bas a distlact, though ill-defined and narrow, constrlction near the anterlor extremity. Tbe lunule and escutcheon are poorly defined. The surface is generally almost smooth. On the luterlor, there are the usual large posterior and anterlor adductors, in addition to which. between those scars and the beaks, a third and fourth pair of muscular imprints can be seen. The dentition consists of a continuous series of taxodont denticles not
apparently interrupted by a chondrophore. The anterior teeth are few and large. the posterior teeth numerous and diminisblug in size toward the beak, where they seem to end abruptly against the large anterior teetb. A chondrophore is almost certainly preseut, but, unlike the structure of living shells, it seems to be situated within and below the row of cardinal teeth without extending to the beak and forming an interruption to them. This cannot, however, be positively asserted as a fact.

Type species, Nucula ventricosa Hall.

Limatula ? fasciculata sp. nov.

Shell of medium size, elongate, slightly oblique. Hinge line short. Anterior and posterlor ontlines probably nearly stralght above but becoming more and more strongly curved below, where they nerge with the (probably) regularly rounded ventral outline. The couvexity is stroug with a bigh area, so that a section cut longitudinally through the two valves would be wedge shaped. On the anterior side the slell descends steeply and abruptly making a rounded angle with the medlan portion. The posterior side seems to fall awny in a low regular flexure.

The surface is marked by regularly arranged costre or grouns of costa. Toward the anterior side, the costor are single with relatively wide interspaces. In the median aud posterlor regions, the costex are in groups of three or sometimes two, laving thelr tops aboat on a lerel, and. in this case, the dirlding strize are essentially equal in width to the groups of costre. T'be auterlor side, from the angulation to the margin, is smooth. Very likely, the coste die out toward the posterior side also.

The area is somewhat imperfectly shown by one of the two spechatens obtalned. It appears to be high aud resupinate, so that the beak overbangs the binge line and it is also rather concare. It is marked bs several strong. broad, transrerse furrows, but shows no defnite pit for a resilium, though, owing to the projecting state of the beak and the concavity of the area, there seems to be an ill-defined hollow under the beak which is ratber longitudinal than transverse to the area.

If Hind's Palcolima is a ralid genus, the present species would be called Paleolima fasciculata, for its characters, so far as observed, are consistent with Paleolima, but if that genus is to be divided into subgenera along the same lines as the living Lima, this species would probably belong in a group as yet unnamed. For the present, however, I am not recognizing Paleolima as distinct from Lima, so that the generic designation to be used is probably Limatula, which is distingushed by being smooth laterally and by having the valves not gaping. The former character seems to be possessed by the L. fasciculata, but the latter can not be determined, as we have only dissociated valves. The only other American species referred to this subgenus is the Guadalupian form Limatula striaticostata. By a clerical error L. striaticostata was de-
scribed under the genus Limatulina, but as the genus was ascribed to Wood instead of de Koninck, the group which I had in mind is apparent. The form is clearly not a Limatulina and the proper title is Cimatula striaticostata. It differs from the species under consideration in being much smaller, more oblique, and in having different surface ornamentation.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Scaphapoda

Dentalium semicostatum sp. nov.
This type is represented by two fragments, which, so far as shown, Indicate a stralght or gently curved, slowly enlarging conlcal shell. The cross section Is distinctly elliptical, having in the larger fragment a diameter of 7 mm . In one direction and 6 mm . in the other. The test is thick and marked by rather fine, rounded, wavy, longitudinal costre, separated by linear strix. These markIngs are confined to one side of the shell, and about four or five occur in 1 mm . There are also transverse constrictions and Incremental lines which have an oblique direction to the axis. The obliquity of these markings is in the direction of the long axis of the section, so that their most distal points occur down one of the narrow sides of the shell, and the most proximal down the other. The costee also are confned to one of the narrow sides, and they occur on that on which the transverse strise are farthest from the apex.

This shell is somewhat similar to D. mexicanum. It has, however. slightly finer costæ at a considerably larger size, and these are restricted to one side of the shell.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Dentalium indianum sp. nov.

Shell rather small, gradually tapering, very slightly curved. Section circular or obscurely elliptical. Surface marked by numerous thin, sharply elevated, longitudinal costre which are separated by intervals of about double their own width. The number of costex can not be counted with accuracy, but It is not far from 42. There appear to be also fine, transverse, crenulating strix.

This form stands nearest to D. mexicanum by reason of its numerous fine costr. These are, however, more numerous and are separated by relatively wider intervals, while the shell itself is gently curved instead of being straight, as in the western form.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Gastropoda

Orestes subgen. nov.
Thls name is introduced for a group of pleurotomariold shells which have a shape generally conical or slightly turreted with a gently convex basal portion. The band is not very strikingly defned and has a peripheral position distinetly below the middle of the whorl. The upper surface is in general fiattened and obllque, with the zone whlch Hes just below the suture more or less prominent and marked by nodes. The sculpture consists of fine, decussating, revolifing and transverse liro. The sllt band is relatively broad and carrles one or more revolving llre which are sometimes nodulose and occaslonally concea! to a greater or less degree the structural character of thls part of the slell. The sllt has not been observed in any of the specitnens seen, but it was probably short. The umbillcus was apparently closed. but a reflezed portion of the lower part of the outer lip produces a small excavation which resembles a minute umblical opening.

The inner Ifp is without a callosity. In fact. the mantle seems to have had the power to resorb the suell on the inner side of the aperture, so that thls portion of the preceding volution is smooth and sligbtly depressed below the external ornamented areas. This has been observed in many specimens and is surely not an accideatal character.

In one extreme, these shells suggest Euconospira, from which they differ in their less regular, conical shape, and in the development of nodes below the suture and of revolving lire in the slit band. They suggest also Phancrotrema, but have a more conical shape with a slit band at once broader, less defined, marked by distinctive sculpture and situated not near the middle of the peritreme, but well below. Worthenia is in some respects the most nearly related group, at least in the ornamented character of the slit band, Worthenia has the band above the middle rather than below, narrow instead of broad, and with the lunules in the band much more prominent than the revolving lire (in Orestes the lunules are hardly more than lamellose growth lines), and it has a more turreted, less conical shape to the whole. It is doubtful if any of the groups mentioned have the peculiar eroded or resorbed character of the inner side of the aperture.

Orestes, then, is referred to a subgeneric position under Worthenia. although its relationship to Phanerotrema is also obvious. The generic name is introduced in honor of Orestes St. John, one of the early paleontologists of the United States and one of the early geological explorers of Oklahoma.

Type species, Orestes nodosus.

Orestes nodosus sp. nov.

Shell small, irregularly conleal. Diameter of last whorl about equal to the greateat height, sometlmes less. Height of last volution about equal to the helght of the spire above. Volutions angular, most prominent below the middle. Spire somewhat turreted. Umbilicus apparently closed, but with the lower llp folded backward upon itself so as to produce a small pit or false umbillcus. Suture considerably depressed. The shell projects strougly from the suture, then bends downward and is fat or concave below to the first carina. Thus the upper third of the upper surface forms a sort of splral ridge just below the sutare. The Interal surface is about one third as broad as the upper surface. It conslsts of two rather thick, rounded carinee guarding between them a relatively broad concave channel to which the band is situated. The upper carina is better defined than the other, but does not profect quite as far. The lower surface is nearly horizontal, gently conpex, more tumid near the umbilicus. The swollen band below the suture is marked by a row of distantly arranged nodes which appear to be independent of the superficial sculpture.

The surface is crossed by regular and nearly equal revolving and transverse Hree of which the former are hearier and dominant, whlle the latter are more closely arranged. The upper surface carries about five (four to six) revoiring lines, arranged at regular and distant intervals. The upper one is situated on the subsutural prominence. An additional lira is necasionally dereloped just above the latter, which gires the nodes a somewhat clongated double-topped appearance. The upper of the two carluse bounding the sllt is a similar revolving lira of somewhat larger size and so ts the lower one. Just within these two llme are two small edges which define the true limits of the sllt band. The band is medially traversed by another fine, revolving thread, or rarely by three. The lower carina carries about tro fairly heary liree, whlle the lower surface is crossed by about twelve others, some of which nasy be fine, and alternating wilth those of larger size. They are beavier and more crowded thau the Hræ above. The transverse Hra, doubtless following the outline of the nperture, bend strongly backward, being convex near the suture and stralghtened or gently concave near the band. Over the latter, thes are deeply concave, producling the, regular, closely sranged crenulations or lunules. On the under slde, they run obliquely backward with a strong convex turn on the lower carlna. For. most of the distance, they are thus nearly stralght. In the region of the suture, they seem to be fine, Irregular and crowded, passing just below the nodose zone into regular, rather distant licex which give a finely nodose appearance to the upper carina and generally tead to produce little promineaces where they cross the revolving liree. Erea below the nodose zone, fine. Intermediate, incremental lines are more or less consplcuous. The transverse liree do not produce crennlations on the projectlag edges of the band, but they have this effect to a greater or less extent on the revolving line or lines which traverse it.

The volutions embrace up to the edge of the baud of the preceding one. They are about five in number.

Horizon and locality: Wewroka formation; Wewoka quadrangle, Coalgate quadrangle, 0 kln .

Bellerophon crassus var. wewokanus var. nov.

The fossils under consideration are all of small slze. They can be described nost advantageously by comparing them with Bellerophon crassus, to which they are clearly pery closely related. For thls purpose, It will be best to use the flgures and description given by Meek and Worthen, not onls because they are the authentic ones, but because although B. crassus has appeared in the literature not Infrequently, the citations have seldom been based on the observation of good and characterlatic specimens. The most essental difference shown by the Wewoka specimens is that the umbilicus instead of helng partly open, is so solldly closed that there must have been a continuous imperforate columella. The size is very mach smaller; the shape of the aperture more transverse, and the band possibly more elevated.

It may be that these differences are due to stage of growth, but shells which I am referring to B. crassus as representing a young condition are quite different. From these the Wewoka fossils differ in the following particulars. The volutions are relatively narrower; the slit band is broader and more prominent; the urabilici are more completely closed; the sculpture, instead of consisting of rather regular, transverse inbrications, is made up of fine, incremental lines which, at irregular intervals. become fasiculate, forming small angular costz or incipient plications.

I may add that the fissure as shown on one of the Wewoka specimens is rather deep, but I am not sure that this feature may not have been exaggerated by erosion_of_the-projecting-band. Furthermore, on the best specimens, the callosity of the inner lip appears to be imperfectly dereloped.

It is possible that this may prove to be the same as B. incomptus, but after comparing my specimens with Gurley's types, which I have had the privilege of examining, thanks to the courtesy of the Walker Museum of Chicago University, I am disposed to think that they are different. The differences appear to me to be those already mentioned as existing between the var. wewokanus and young B. crasstus.

Horizon and locality: Wervoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Pharkidonotus subgen. nov.

The very extensive and varied series of shelis which in the course of time had been grouped under Montfort's genus Bellerophon have of recent years been distributed among a number of genera and subgenera. Wangen bas very properly reatricted the genus Bellerophon to types having a rather narrow. well-developed silt band, moderately deep flssure, a strong callosity on the lnger lip, and sculpture consisting only of more or less strong growth lines.a

[^4]Our well-known Pennsylvanian specles B. crassus and also the Upper Misslssippind B. sublaus are therefore typleal Bellerophons.
We have in our Pennsylvanian fannas a specles, or perbaps a serles of mutations, whlch presents well-marked differences from the characters possessed by typical Bellerophon, so that a subgenerlc separation is Justifed, if not demanded. The dorsum is elevated into a prominent nodose carina on which traces of a slit band seldom remaln. Many spectmens therefore appear to lack such a structure altogether and to be related to the Indlan Warthia and lfogulia. Some specimens retain unmlatakable traces of a band, however, aud there can be ilttle doubt that this structure is a normal leature of this type. That it is obliterated so often is probabls due to its prominent position and also perbaps to the tumald condition of the median lline of the dorsum.

From Bellerophon thls type also differs in the development of coarse, heavy, nogular, transrerse plications, yulte distluct from the growth. Ines, which are not consplcuous, these plleations belng also fin some cases strengthened at two series of polnts, one on nach of the aldes, so as to form more or leas prominent nodes (connected in some cases by revolving ridges). The linear arrangewent of these nodes produces two carine idditional to the median one which is the locus of the slit band.

'lype species, Bellerophon percarinatus.

Meekospira petacuta var. choctawensis var. nov.

Tuls fossil ts very abundant in the Werroka formation and shows certaln variatlons, some of which are probably adventitious. It has an acutely conical form with a vers elongate spire and a narrow spiral angle. The sldes are usually flat with the suture only slightly depressed, but not infrequeatly the sides of the spire are more undulating and the suture deeper. Thls is perhaps due to rarlation in curve of the outer surface of the whorl. In the one case the convexity is more regular; in the other, the upper surface of the volution is fattened and the greatest convexity well below the middle, where It is overlain by the succeeding whorl. The rate of Increase seems to be accelerated somewhat toward matuilty, so that the sides of the splre are slightly concare. As a result, when the apex of speclmens is broken away, which very often happens, the frustum remaining appears to bave a wider spiral angle than was really the case. In comparing these with more perfect specinens, one is somewhat surprised to find that they may belong to the trpical varlety, as well as to find what a large number of volutions is present when the apex is complete, the number belng proportionately much grenter toward the top. On the slde of a specimen 14 mm . long, parts of nlue volutions appear and as the aper is broken, there mast have been one or two more. A full-sized specimen about 30 mm . long shows parts of ten volutions with an apleal break which may possibly account for two more. The number of complete volutions in a mature specimen is probabls eleven and possibly twelve.

The callus is a very distinct character In well-preserved specimens, extending balf way or a little less than half way up the laner lip. it is formed by a slight beckward flexure on itself of the outer lip as it passes up the arls and is there gradually lost in the aperture.

In its specific characters this. species is intermediate between Meekospira peracuta and Bulimorpha nitidula, and it does not exactly agree with either species. According to Meek and Worther, these types show the following differences: B. uitidula has a lower spire with fewer volutions and broader spiral angle; it is smaller, and the volutions are more rounded with more deeply depressed sutures.

The present form seems almōst invariably to have a slightly broader spiral angle than M. peracuta, though a certain amount of variation is not absent. The agreement in this respect is then distinctly with B. nitidula. As for the convexity of the volutions, some specimens resemble peracuta and others nitidula; but fer, perhaps none, are quite as strongly convex as in Meek and Worthen's figures of the latter species. In fact, one of their figures shows this character more strongly than the other, though both are drawn from the same specimen. The number of volutions is more like peracuta, which is said to have 13, than nitidula, which is said to have 8 or 8.5 . The size is that of nitidula, none of the specimens attaining to the length of M. peracuta. In the most essential respect, the callus and reflexed lip, the Wewoka form agrees with M. peracuta and differs from B. nitidula, and, if this character is regarded as of generic importance, there can be no question about associating it with any species but M. peracuta. Ulrich seems inclined to associate B. nitidula and B. inornata with M. peracuta in his genus Meekospira, butrthe callus, which is such a marked feature of M. peracuta, must be a generic character, or its absence from the two other species accidental. This assumption seems unwarranted, and I am referring those two species to another genus than Meekospira, in which, of course, the present form must be included. Though closely related to M. peracuta, I can hardly place it in the same species, because of its broader spiral angle and smaller size.

Most of the specimens referred to this species are almost absolutely smooth, having but very obscure growth lines. Those from one or two localities, however, are regularly marked by more or less strong incremental lines, some of which are prominent and lend an irregularly and intermittently corrugated appearance where most strongly developed. Some of these shells, furthermore, show slight modifications of curvature in the outer surface of the volution, which gives the spire a slightly different outline from the normal. In others, however, the shape of the whorl section is entirely normal, so that no persistent difference can be pointed out, save in the increased development of the striæ of growth. It is possible that these sculptured specimens should be regarded as a separate variety, but the differences observed hardly seem to justify the distinction.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadraogle, Okla

Ianthinopsis gouldiana sp. nov.

Abstract

Sbell rather large, subovate; length a little lean than 1.5 tlmes the greatest width. Aperture about three fourtiss the entire helght; spire about one eighth of the whole. Volutlons four or five, rather Inflated; especially above, so that the upper surface of the volution appears Iattened and not strongly oblique to the horizontal. Aperture fusiform, more than twlce as long as wide.

Surface smooth but marked on the more glbbous portion with a few (four or five) rather coarse but falnt revolving strix. Axis solld.

The affinities of this type, represented as it is by only one specimen, are much in doubt. If it were not for the sculpture and for the shape with the most prominent part of the volutions so high up, this shell might be placed under Spharodoma in the same series with S. intercalaris and S. primigenia. The striation, though faint, is unmistakably visible in a good light, but it can only be seen in the region of the aperture. The shape has doubtless been somewhat modified by compression, but not sufficiently to have produced the present result from a shell originally having the proportions of either of the apecies named.

On the assumption that the peculiarities presented by this form are inherent, it may he compared with the singular_species described by Meek and Worthen under the name Pleurotomaria ? tumida. While clearly distinct from P. ρ tumida, the resemblance in a general way is so striking that it would appear to be altraconservative not to conclude that it is a generically related species. The most important difference of a fundamental kind is found in the statement by Meek that the columella of the Illinois form is perforated (?), while that of the Wewoka ahell is certainly solid.

Meek had not observed the presence of a slit band in P. (i) tumida, and justly remarked that that apecies differs materially in outline from the usual form of Pleurotomaria. Suspecting that it was a representative of a new genus, he provisionally proposed the name Ianthinopsis. I am ready, without having determined the absence of a slit band, to accept I. tumida as representing a new generic type, and I am employing Ianthinopsis for the type apecimen and for the Oklahoma shell also.

Horizon and locality: Wewoka formation; Wemoka quadrangle, Okla.

Cephalopoda

Orthoceras tuba sp. nov.

Orthoceratưd shells are abundant in the Wewoka formation and many of them possess the singular feature of accelerated expansion, so that they flare consplcuously at the larger end, and, if the tendency were carried out to a high degree, the complete sbell would bave a trumpet-shape, a confguration which many of them even now suggest. Thls pecullarlty, however, la manlfested in shells of very varlous sizes and presumably corresponding ages, and It is found in both the chamber of habltation and in the septate portlon. Both hypotheses-that the fining condition is a feature of maturity (which is the natural supposition) and that it is the normal shape at all stages, the expanded portion belng resorbed so that the shell is regularly conlcal except toward the aperture-are repugnant to the fact that the faring portion is sometimes septate. On the former hypothesis, furthermore, we must also Infer that the mature condition is in some specimens enormousls accelerated or retarded.

Correlated with the pecullarity above described is found a relatively rapld rate of expansion, glving the regular portion of the cone a ratber strong taper. The siphuncle is consplcaously excentric, though this character bas been seen In only a few individuals which at the same time have the trumpetshape in a consplcuons degree. The septation is rather frequent, about 4.5 to 5 chambers occurring within the distance of a diameter.

None of the shells having the characters enumerated possesses the peculiar secondary deposits of Pseudorthoceras. Indeed, they have the chambers filled with ochreous clay, and it is difficult to understand how this condition came about when the partitions are still retained. Possibly the fine mud permeated the chambers through the siphuncle, which seems seldom to be preserved in the specimens examined. For the most part, these are internal molds, but in some instances they retain a substantial outer investment.

With typical 0 . tuba I am provisionally including a group of specimens which do not show the expanded aperture, but have a similarly excentric siphuncle and similarly frequent partitions. They vary much in size and some of them are much larger than some of those which show the aecelerated expansion, but in view of the extreme variation in size of the specimens possessing the latter character, it seems that this fact alone can hardly be regarded as forbidding their union under a single species. This, of course, would only be done on the hypothesis, either that the trumpet shape was not a character of importance, or that these specimens, all of which are naturally now imperfect, possessed it or would have possessed it in the complete and mature condition.

I am inclined to believe that this peculiarity of confguration is not so much a specific character as that it is either generic or else of no fixed value at all, but I feel that its significance is too little understood to warrant establishing a new genus on the evidence in hand.

It is with extreme rarity that shells of this group are found in a complete conditioh, and all of those examined are pretty clearly imperfect at one or both ends. A few give evidence of having been broken before fossilization. The evidence referred to consists of the occurrence of small Rœmerellas apparently in their original position of attachment upon the septa, where, of course, they could not possibly have penetrated if the shell had not been a fragment during the life of the brachiopod.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Pseudorthoceras gen. nov.

Abstract

Shells small (?), stralght, gradually taperlng. Slphuncle nearly central, small, but considerably expanded between the septa, without, however, becoming nummuloldal. Septa slmple. Funnels apparently very short and thick. Chambers partly occupled by secondary deposits which accumulated, not about the funnels and slphuncle, but about the walls. In the type species, the deposits fill about half of each chamber, thinnest toward the aperture and thickest toward the aper, and diminishing Irregularly so that the outline is shaped IIke an Incomplete Ietter S. The deposit appears to be more or less vesicular, perbaps as the result of weatherlng. Shells whlch are not broken at the apex do not taper to a polat, but are obllquely truncated.

This type is rather clearly not a representative of true Orthoceras, nor taze I been able to find a genus with which it can be assembled. Indeed, it is not certain that it can be included among the Orthoceratidæ, though it is for the present referred to that family. The most diagnostic features are probably the enlarged siphuncle and more especially the secondary deposits accumulated not axially, but circumferentially. In this item lies the main difference from Orthoceras, for in that genus, and indeed in that family, the secondary deposits are rather sparingly developed and they are accumulated about the funnels, not about the outer wall.

Type species, Pseudorthoccras knoxense McChesney.
Pseudorthoceras seminolense sp. nov.
Three specimens in the collection appear to belong to Pseudorthoceras by reason of thelr central slphuncle and chambers partly filled by secondary deposits and at the same time to differ from P. linozense in being very much larger. These large specimens have about 3.5 chambers to a dlameter and so do not differ essentially from the smaller species. Ove of the specimens is
compressed and seems to show a structure down one side suggesting a marginal siphuncle.

Horizon and locality: Wemoka formation; Wewoka quadrangle, Okla.

Protocycloceras ? rushense var. crebricinctum var. nov.
Two specimens, though resembling P. Prushense, are distingulshed by having the annulations wore closely arrauged and somewhat alternating. The crosssection is elliptical as in that species, but there is an acceleration of expansion which produces a flaring shape toward the aperture. The recurrence of thls latter character, which is found to a marked degree in one of the species of Orthoceras, is noteworthy and seems to bring lts importance somewhat lato doubt. Its slgnificance is entirely unknown.

One of the specimens shows the surface to be marked by fine, subequal, somewhat wary, thread-like, transverse Hrx.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Coloceras liratum sp. nov.

Shell small, the largest specimen seen measuring 34 mm . in the plane of revolution. Shape subglobose. Cross-section sublunate, somewhat glubous at the sides. Surface rather regularly curved over the venter and sides, abruptly rounded inward at the umbillcus, forming two not very well-defined umbilical zones, the direction of which is nearly horizontal. At maturlty, the section is about twice as wide as high In mature-specimens, the median line of the venter is broadly and faintly impressed. The rate of increase is rapid and the depressed zone narrow considerably less than one half the width of the preceding whorl. The umbilicus is rather small and deep.

The surface is marked at the sides by fine revolving lire, separated by wide, fint interspaces. These extend froun the umbilical zode over the subangular shoulder onto the extreme sides of the venter. The revolving lirce are crossed In some cases by much more closely arranged transverse ones which make fine crenulations as they surmount them. The entire surface of the lmmature stages seems to be thus cancellated, but only a band on the sldes of the mature shell, whlle on the oldest specinens and some others, the transperse markiugs cannot be seen. The ventral surface is crossed by fine, incremental strix, which indicate a deep, subangular V-shaped sluus, whose sides are nearly stralght orer the median portion but curve gracefulls outward with locreasing rapldity toward the sides. In one specimen, the strime are so arranged that erery seventh or eighth is stronger than the otbers, which cross the slightly elevated spaces between in crowded though regular order.

The septa are rather far apart, about 6 mm . along tbe medlan lne ln a mature specimen. They are nearly straight except for a slight sinuosits across the venter caused by the shallow ventral lobe and a pair of obscure saddles. The siphuncle annears to be situated below the center (dorsad) but it is not well shown.

This species is related to C. glohulare. It appears to be a more slender form (though specimens vary somewhat in this), with more distant septa which show a slight lobe instead of a slight saddle on the ventral surface. The sculpture of C. globulare is not known, so that additional differences may be discovered when those data are determined for it.

Horizon and locality : Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Coloceras liratum var. obsoletum var. nov.
Assoclated in most cases with C. liratum are specimens which show certaln differences, the most constant of which is perbaps the absence of lirx on the umbilical zone. Correlated with this character the curvature at the sides is more regular, so that the umbilical zones themselves are less well defined. The Incremental marklngs are perhaps stronger, or at least more regularly preserved. Some of the spechnens are rather narrow but not all. At the same time, since the sculpture on typical liratum might easily be obscured, it is possible that some specimens of the latter mas be Included here. The slphuncleof this species seems to be ventrad or at least central, whlle that of liratum is or appears to be dorsad, but thls feature is rarely shown and in the case of lirat"m not well shown by my specimens.

There seems to be a varietal or even a specific difference here, but my material is not sufficiently good to show the degree of difference or the constancy of it from C. liratum, or whether possibly the shells subsumed under this title are in every case conspecific.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Metacoceras cornutum sp. nov.

This specles is founded on a fragment which must have bad a dlameter of 70 mm . exclusive of the clamber of habitation, no portion of which is retained. The whorl section is aubquadrate, distinctly wider tban high. The height is 23 mm . and the width 29 mm . The ventral surface is gently convex, more nearly flat on the shell liself than on the laternal mold. The sides, exclusive of the prominent tubercles, are nearly fat and parallel. The fower portion of the whorl is tripartite, consisting of an impressed zone about 12 mon. wide and two umbllical zones, each about 8 mm . Wide. The unblical shoulder is abrupt and angular, the angle belng somewbat greater than a right angle. The ventrolateral shoulder is also angular and furnished with large, prominent, compressed nodes. They project outward and slightly upward and are flattened on the upper surface, more conver on the lower. Those on one slde alternate with those on the other and in the same row they occur on about every other chamber.

The septa are about 6.5 mm . apart, measured along the medlan line of the renter, and the sutures are ratber strongly bent. There is a broad, deep
ventral lobe alnost angular at the middle in some sutures, a broad, moderately deep lateral lobe, the point of greatest convexity being below or interlor to the middle, and a gently curred internal or dorsal lobe across the impressed zone. Abruptly rounded saddles occupy the ventrolateral angles and a broad saddle flattened across the middle, each of the umbilical zones. Each of the latter, horever, may be regarded as composed of two obscure saddles, oue on the umbillcal shoulder and one on the angle of the impressed zone with a scarcely perceptible lobe between.

The sculpture is not well shown. On the rentrolateral angles and tubercles It conslsts of regular, strong, sharp, transverse IIrex, which are deeply curved. suggestling a broad, deep hyponomic slaus.

The test appears to be considerably thlckened at the rentrolateral angles so that the internal mold differs appreclably from the perfect shell, the shell belug fatter across the ventral surface, with the sides more convergent toward the umblicus, and with the tubercles rers much more produced. Indeed, on the internal mold, the tubercles are not at all promlnent.

Horizon and locality: Wewoka formation; Coalgate quadrangle, Wewoka quadrangle, Okla.

Metacoceras cornutum var. sinuosum var. nov.
A single fragmentary specimen which retains the shell is all that represents this variety. It is smaller than the original species and with a less transverse cross-section. The nodes are rounded instead of compressed and extend part why down the sides as low, broad, obscure pllcations whlele.fall far short of the umbllical-shoulder. The fafter is regulariv rounded and although strongly turned, not angulated. The ventral surface is marked by two obscure sulci with agentle convexity between. The tubercles appear to be nearly upposite.

The surface is almost smooth, the incremental lines being obscure except on the tubercles, where they develop into regular, fine, thongh sbarp liras. Tbey make a deep sinus on the rentral surface, are vearly stralght and gently sloped backward at the sides, with a gradual change of the direction at the umbillcal shoulder, begond which on the umbilical zone thes are gently concave.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.
Metacoceras cornutum var. carinatum var. nov.
This variety is represented by two fragments which apparently show the chamber of habltation, but do not retain the septa. They are partly testiferous nad partly exfollated.

The varlety carinatum is distlogulsbed from etther of the preceding by its more rapld expansion and more transverse shape, in which it exceeds even the original spectes itself. The sides are in consequence relatively very narrow. The tubercles are rounded as in the varlety sinuosum, but owing to the shortness of the sides they make more prominent plications. The ventral surface is rather strongly rounded and witbout sulcl. The umbllical sboulder is very angular and extended into a crest or carlna,-In which a marked diffeience is
sbown from the variets sinuosum, though possibly not from M. cornutum itself. The growth Ines indicate the presence of a deep byponomlc sinus.

It may be that these ahells represent a young stage of cornutum (though hardly of the rariety sinuosum), but they present too important differences (the rapid expansion, greater breadth and differently shaped tubercles) to make it safe to assume this relationship without more evidence.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Metacoceras cornutum var. multituberculatum var. nov.
This varlety is founded on a crushed specimen which presents the difference from all the otbers that the tubercles are smaller and more closely arranged. They appear to be somewhat compressed rather than rounded. The umbllical shoulder is subangular without the crest or carinatum, but more rounded than sinuosum. The height between the ventrolateral and umbllical angles is about 10 mm . ; the wildth across the venter (tubercles included), about 15 mm .

Horizon and locality: Wewoka formation; Coalgate quadrangle, Okla.

Metacoceras perelegans sp. nov.

Sbell rather small, so far as known not exceeding 31 mm . in djameter. Cross-section of mature whorls heagonal, transverse; width about 20 mm .; helght about 12 mm . width of lateral zone 7 mm . ; of umblical zone 6 mm .; of tmpressed zone 8 mm ; of ventral zone, including tubercles, 17 mm . Ventral surface gently convex, flattened or slightly depressed along the center; gently upturned at the edges, owing to the tubercles. Lateral zone nearly flat except for the tubercles, the profection of which gives it a gentls concare shape. Umbllical zone nearly flat. The lateral zone slopes gently outward from above and the umbilical zone strongly Inward. In the youthful stages, the dimensions are locreasingly transverse and the shape more nearly elliptical, with an angular perlphery a little above the middle and with the usual recurved dorsal zone. This change in shape is effected (when considered In reverse order) by an increased inward slope of the umbilical zone and a corresponding loss of the umbllical shoulder. Both the vertrolateral and the umbilical shoulders, however, are more or less distingulsbed by an angulation.
The sculpture of the southful stages is Incompletely known, but the sides of the youngest example seen are marked by fine, even, transverse, zounded strix, separated by narrow, sbarp lirce. Later, the flattened sides are marked by strong, regular plleations, the folds belng angular and the furrows between relatively broad and rounded. On these are superposed strong, incremental strix, much less distinct in the furrows than on the crests between them. The plle thus gradually formed tend to become more prominent at the pads. developing little nodes in whlch they terminate, the nodes appearlag at an eariy stage and more strongly at the outer than the inner ends. At maturity the connecting ridges gradually fall of development, leaving the two rows of
nodes, the larger and more prominent along the ventrolateral shoulder, the smaller and less prominent on the umblifral shoulder. Both these locl are well defined and more or less strongly angular durlag the periods of adolescence and maturlty.
The sculpture at maturity consists of vers obscure jacremental llnes which tend to become sharp lirm on the tubercles, and they sbow a deep sinus over the ventral surface.
The septa are not well exhlbited by my spectmens, though this is a falrly common fossll in the Wewoka fauna. In a mature example, they are 3.5 mm . apart along the middle of the venter, and the suture is very nearly stralght, depressed, however, into a shallow ventral lobe and with very obscure saddles on the ventrolateral shoulders. In this region, the suture is llable to be more or less deflected by the pilæ, wbleb are not developed exactly with regard to the septa. In some cases the uodes occur on the septn; in others between them, and there are about three uodes to four septa. In a young specimen which probably belongs to this species, there is a suggestion of a very small, puinted dorsal lobe, somewhat as in the genus Endolobus. The slphuncle appears to be central or somewhat below the center.

I know of no American nautiloid which this species so much resembles as that which Hyatt described as Temnocheilus crassum. The whorl section of perelegans is more transverse and somewhat differently shaped, witi distinct umbilical shoulders. The pilæ have nodes at both ends instead of near the ventral surface only, and at maturity they disappear, leaving only the two rows of nodes.

Horizon and locality: Wewoka formation;-Wewoka quadrangle, Coalgate quadrangle, Okla.

Metacoceras sculptile sp. nov.

Shell rather large, attaining a diameter of 67 mon ., discoidnl, with large umbillel, 31 mm . across at the diameter named.

Whorl section modifled bexagonal, consisting of a relatively narrow rentraj surface, two broad lateral surfaces, two umblical zones and an impressed zone, all narrow. The rentrolateral and umbilical angles are distlyct and only slightiy rounded. The rentral surface is marked by two shallow sulci sltuated close to the margins, on either side of whlen the stell rises slightly Into a gently convex median portion aud gently elevated ventrolateral angles. The sides are flattened and slope distinctly outward from above to the umbillical shoulder. There, with an abrupt subangular cbange of direction, they are witbdrawn inward and somewbat downward to 'a rather deeply concave impressed zone. Greatest height of the flral volution 31 mm ; greatest width (at the umbilical shoulder) 25 mm .; width of ventral surfsce 15 mm ; width of lateral surface 24 mm . ; width of ambllical zone 8.5 mm .; width of Impressed zone 9.5 mm .
The sculpture seems to consist of fine, even strix, which follow the llnes of growth, leaving between them sharp, strong, angular lirce. Thls sculpture, bowever, is more or less concealed in our specimens by a thin, even, super.
ficial deposit, whether intrinsic or extrinsic I am unable to determine. This makes the surface look elther smooth or, as the sculpture shows through, marked by obscure lines of Increase. The lire, which seem to strengthen and coarsen as they cross the rentrolateral shoulders, form a deep slaus on the venter. On the sides the direction is sigmoidal, conrex abore and concare below ; similarly on the umbilical zone, save that the concave portion, which is below, is very silghtly developed. When mature, the ventrolateral shoulders are marked by small, rather indistlnet nodes.

Suture not known.
This species is of the type of M. walcotti and M. hayi. From both species it seems to differ in having the height proportionately less in comparison with the width; in having the sides contract toward the venter; in having the umbilical zones more nearly horizontal and the umbilical shoulders perhaps a little more angular. The nodes along the ventrolateral angles appear to be smaller and less distinct than in M. Kayn. while the sculptured surface of M. sculptile is not recorded for either species.

Horizon and locality: Wewoka formation; Werroka quadrangle, Okla.

Cyrtoceras peculiare sp. nov.

Shell ratber small, expanding with extreme rapidity. Apical angle about 60°. Axis uearly, if not quite, straight. The rate of expansion is so great that unless the shell grew to a-very-large-size, the curfature of the π xis would bardly be preceptible. The sides, therefore, appear to be nearly straight, but that on which the expansion is least rapid may probably be regardet as the dorsal and the other as the ventral side. The siphuncle then is strongly dorsad. The cross-section would be brondly oral, contracting taward the dorsal side, which is somewhat flattened. Only five chambers are preserved, the oldest belag about three times as high as the others. The prolougation of the chambers is so rapid on the rentral side that in the Interaal mold they make steplike projections. The sutures are nearly direct, but are more or less distinctly slnuated, with geatle lobes on the dorsal, ventral and lateval surfaces, and equally faint saddles between.

The extremely rapid expansion of this species distinguishes it from the few Carboniferous representatives of the genus known in North America. It is, however, very doubtful whether this is a true representative of Cyrtoceras, a question which can be raised with equal propriety regarding the other American Carboniferous species referred to the genus.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Gastrioceras venatum sp. nov.

Shell small, attaining a dlameter of 18 mm., compressed globose. Umbllicl rather large and open. Whorl sectlon lunate, somewhat tumid at the sides with an Ill-defined umbilical shoulder.

Scuipture consisting of angular plle or plications at the sldes with relatively broad, rounded interspaces. The pllæ are short and divide Irregularly into three or four branches of inferfor size and prominence. Similar small plicatlons are developed simultaneously In the sulcl between the pllx, all of whicb become crowded and finer, so that the venter is crossed by regularly arranged, moderately coarse and strong strise which form a rather broã, deep sinus as they cross to the other side.

The suture is rather simple. The siolonal saddie is small and Indented on top. The remaining lobes and saddles wire rounded. The frit lateral saddle Is rather broad and symmetrical; the second, still broader and very unsymmetrical, the outer side being stralghter and nore extended than the Inner. The two lobes are symmetrical. Tie frst is very small, varrower than the siphonal saddle. The second is fully twice as large as the frst and somewhat more spreading.

This species resembles the few Gastriocerata described from the Carboniferous of America which have plicated sides, but the plications in this case are finer and branching in a rather unusual manner. The suture is also distinctive in that the lobes are rounded instead of angular. In some respects the characters shown by this species suggest that it is an immature stage, but some fifteen syecimens have been examined, all of which are of small and more or less uniform size.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Gastrioceras hyattianum sp. nov.

Sbell subspherical with relatively wide umbllici when joung; compressed globose with relatively narrow umbilici when mature; attaining a rather large size, the largest example baving a diameter in the plane of revolution of 65 mm . and being about 37 mm . thick at the widest part of the final volution. Umbilleal shoulder angular and more or less carinated at all stages, except perhaps when very immature. Cross-section broadly lunate in the young and narrowly lunate in the mature condition. In the latter, the curve of the venter and sides (which are not differentlated) is parabolic, gradually expanding toward the umbilicus and much more strongly curved above than at the sides. In this condition the whorls are deeply embracing. Specimens of nearly the same size seem to vary considerably in thickness, some being more discoldal, others more globose. The chamber of habltation is long. one volution or posulbls more.

The surface when very soung is probably cancellated with fine transserse lirex and fine revolsing ones. In an early mature condition, the strength of the liration seems to bare diminished considerably. The transverse lire are finer but persistent, while the revolving lire become restricted to the umbilical surface and the sides of the ventrolateral surface, the major portion of the renter showing only transverse markings. These have a more or less sinuous course with a gentle saddle in the center and obscure lohes toward the sides.

When mature, the shell seems to have been perfectly smootb, without lirxe of elther sort, except possibly a few revolving ones on the umbilical shoulder. My specimens do not show this sculpture, except bere and there, and the foregoing statements are based on scattered observations and not on any one specimen, stlll less on a serles of specimens showing consecutlve changes. f

The suture (observed on a shell In an early mature stage) shows a high, narrow ventral saddle, Indented on top, and two rounded lateral saddles, the first of which is relatively narrow and symmetrical and the other broad and unsymmetrical. Both are considerably bigher tban the ventral saddle. The two lobes are tongueshaped, the inner one being narrow and the outer broad and ansymmetrical. A third, broad, tongue-shaped lobe, smaller than the others, is found on the umbllical zone.

This species closely resembles Gastrioceras occidentale, the only positive difference of any moment suggested by the description and figures being that the umbilical shoulder of the latter is obscurely crenulated or subnodose. As neither the suture nor the sculpture are known, however, adequate grounds for comparison are wanting.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Gastrioceras angulatum sp. nov.

Shell of medium size, subglobose. The largest specimen bas a diarneter of 32 mm . Cross-section trapezoldal, much wider than high. Umbllical shoulders very angular. Umbilicus wide and deep. Ventral surface broadly rounded, more or less parallel to the impressed zone. Constrictions about five to a volution, gently curved across the venter with the convex side forward. A typlcal specimen has a diameter of 30 mm . with an umbllicus 16 mm . Wide. The thickness at the widest part of the final volution Is 25 mm . The beight of the final volution is 7 mm ., the width of the impressed zone 17.5 mm . A small specimen having a diameter of 15 mm . is composed of seven volutions.

The surface over the venter appears to be smooth when the shell is mature. The region of the umbilical shoulder, however, ls marked by moderately coarse, revolplng lire, crossed by about equally cosise transverse lirx. This cancellated area appears to be narrow and to extend to or just beyond the umbilical shoulder, learlog the umbilical zone smootl. Doubtless in the younger stages, the whole surface was canceliated, though thls fact is not shown by my specimens. In the later stages also, the transverse cancellating liræ appear to be absent, leaving only a few revolving ones on the umbilical shoulder.

The suture is not well shown by my specimens There is a narrow, blfd siphonal saddle with sigmoidal sldes. The first lobe is extraordinarily narrow, not so wide as the siphonal saddle and less than half as wide as the second lobe. Botk the lobes are tongue shaped. The saddles are rounded, the first a Iltile broader than the second, and they are considerably higher than the siphonal saddle. The umbilical shoulder passes through the outer slde of the second saddle and doubtless a third tongueshaped lobe is situated on the
umbiltcal yone. The intermal sutures conslst of three tongue-shaped lobes or very nearly equal size and sbape, two rounded saddles, also nearly equal, and half of two others, one at elther margin, each being Interrupted by the llwit of the depressed zone.

Horizon and locality:. Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Dimorphoceras lenticulare sp. nov.

This species is kuown only from one or tiro fragments but the characters shown are sufficient for a falrly complete description.
The shape is discoidal, much thicker at the umblicus than at the venter. The size indicated is noout 40 mm . In diameter and about 13 mm . in thlecness. As only the sentate fortion is know. complete specimens must have beell considerably larger. The umblicus was small and the shell bighly incolute. The shape of the whorl section is sowewhat triangular, slightly higber than broad. The sides are gently conrex, strongly and ragularly contrncting to the ventral surface, which is narrow and sherply rounded. Probably, there was a more or less distinct umbillcal sboulder and a narron umbilical zone.

There is a broad, rounded ventral saddle with a median notch. The lateral sutures consist of two parts. that toward the unbllicus having large turns and that toward the venter biring small ones. The small folds, which comprise two lobes and a saddle, can be thought of as a large lobe coiirdinate with those toward the umbllicus, which has been divided by a median saddle. The three plications thus formed are nearly equal, but the first lobe and the saddle are rounded, whlle the second-lobe is-tongueshaped. The saddle is a little anrrower than the two lobes, and the second lobe projects a little farther backward than the first. The remainder of the suture conslats of high angular plleations, a saddle and a lobe, together with the major part of another saddle, all of which probably comes within the limits of the visible suture when fully exposed. These lobes and saddles are neymmetrical and bare more or less slgmoldal sides. Ther are so arranged that the point of the lateral love is almost in contact with the outer side of the preceding lobe somewhat less than half-way up. The final saddle is broad, rounded and asymmetrical.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Dimorphoceras oklahome sp. nov.

Shell leutlcular in shaple, thick tu the middle, thin at the edges. Diameter 50 mm ., thlckness 20 mm . Fighly Involute with small umbllici (about 5 mm .). The whorl section is more or less trinugular, with gently conrex, converging sides, and narrow, strongly rounded venter. Unblical sboulder distinct; umblical zone narrow.

Ventral sudde rather narron, indented on top. The two small ventral lobes are pointed and tongue shaped, the first one short, the second long and narrow. The saddle between them is rounded. There is not much difference between
these four lohes aud snddies In the watter of widtb. If austhing. the rentral saddie and the fmall lateral sudde are a litte wider than the two lobes. The larke lateral saddle and lobe are about equal, moderately narrow, with somewhat sigmoidal sldes. The suture sems to form part of anotber large, roumded asymuetrical sadile. Only part of the outer limh of thls is retabed on the ouly spectaren found, but probably the remainder appeared on the confides of the visible suture uot exposed in the type.

This species is most closely related to D. lenticulare, from which it has been discriminated because of the suture. The differences manifested in this feature can hardly be arcribed to difference in age, becanse the two type specimens must have been nearly of a size and presumably at a correspouding stage of develonment. The differences noted are the narrower ventral saddle, the pointed instead of rounded shape of the first small lobe, and the much elongatel shape of the second. The outer sides of the first large lobe are also more approximate. D. ohlahome differs from D. teranum in about the same characters as those pointed out for D. lenticulare', but is rather more closely related. This is shown, for instance, in the first small lobe, which is pointed in oklahomer and texanum, but rounded in lenticulare.

Morizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

Gonioloboceras wellen var. gracile var. nov.

This species aftains in diameter of 53 man. Iu a fragment patirels septite. The tyje speriwen, howerer, has a dinneter of 43 mo., with a tbickness throunh the center of 14 mom. The umbllici are small, only 3 wm. wide, and the whorls highly involute. The sldes are geutly convex. coneracting to a rers marron renter marked by a revolvigg chnnnel murtled hy two thla, angular ridges. In the early stages the shell is less compressed and the reater less dispiuctls channeled. When nill sounger; the venter wis probnbly rounded, but the two carinm with their Inclosed groore are largely a developinent of the test and do not show clearly on the internal mold. The surface appears to be marked bs obscure, lucremental llif, ithe direction of which Indientes " deep. brond, usponomic slnus.

The suture consiats of two lobes and two saddles on each side, together with a high, broad, siphonal saddle. This is rounded, but with a notch (7) on the median llue. The lafter feature is not clear. The suture liues bend sharply bnckwurd near the inlddle, but in most spectmens they appenr to be disconuected. In one, bowever, they sprear to connert into n small V-sbnped reeutrant nogle. The secoud saddle is brond and unsymmetricni. The Arst siddle nad the two adjacent lobes are vers nearls equal, the second lobe belag sllfilly broader. They are subangular, but not acutely polnted. The sutures are rlosely armaged, the inver sldes of the frst suddles being nlmost in contact.

This form is closely related to G. welleri, but differs in some particulars. J. P. Smith figures two mature examples of G. welleri, and it is perhaps desirable to distinguish between the type and the auxiliary specimen. The type specimen of the variety gracile is a little more compressed than the specimens of G. welleri, but I am not sure that the difference would be constant. The venter also seems to be narrower and to show the channeled condition at a stage when the type of G. welleri was rounded. The sutures are more closely arranged than in Smith's second specimen, but not more so than in his type. This feature is better shown in the former, from which the detail was drawn, than in the latter. The sides of the lobes and saddles are more sigmoidal as given by Smith. They are very nearly a constant distance apart, whereas in the Wewoka form, they are almost in contact at one point as described above, and the first lobe is much narrower. These differences are not so marked in the case of the type specimen, but there the point of the second lobe is nearly in contact with the inner side of the lobe immediately preceding, an arrangment quite different from the variety gracile. Furthermore, Smith definitely states that the ventral saddle in his form is not notched, but has a tongueshaped forward extension, whereas the extension in my shell is as certainly backward.

These differences appear to be rather constant for the material examined, and it seems unwarranted to consider the Wewoka form as quite identical with-the other.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Coalgate quadrangle, Okla.

Crustacea

Griffithides parvulus sp. nov.

Carapace small, elliptical, length about 2.5 times the width, nearly equally divided between cephalon, thorax ad pygldium. The bead, however, even without the genal angles, Is longe han the pygldlum.

Cephalon semi-elliptical ln sb e, conslderably wider than long (if the width Is measured from the antr or extremlty to the edge of the neck ring), rather tumid. Genal angles p ionged Into splnes of undetermined length. A broad, striated border pass around the arc of the cephalic soleld, termlaating posterjorly in the genal splnes. The border is strongly arched or subangular transversely, so that the outer surface is directed obltquely downward and outward, and the Inner surface obliquely downward and inward, thus causing it to be defned from the Inner parts of the cepialon by a deep sulcus. The sulcus dies down to a depressed line as it passes around the front of the glabella, and at the same time the direction of the border be-
comes so changed that lis surface is essentinlly vertical, and mothat the anterior outline of the glabelin is termiunl, when the bend is seen from above. Outllae of the facial suture very slanous. The sutures alwost come together at the end of the glabella, diverging strougly as itueir courae la tiaced backward. At the sulcus which defnes the border. they assume un opposite direr tlou, contractlag gently for au equal distance. They wake n stronk arch around the paipebral lobes and from the aecti furrow inse somewhat obliquely outward to the artlculation margin. Glabellit wuch wider toward the froit than beblad, occupylag nearly the whole of the cranldlum, so that there is little of the fixed check, except the rather small palpebral lobes. The neck iurrow Is strung aud brond, pussing almost directly across the coplikaton to the two sulcl defalag the border. The nexk ring is rery brond, oblique, prombent. much wider thnn the sort of bind with whleh it is coutinuous, which is piob duced on elther slde by the uerk furrow. The fosterlor gart of the glabellit Is subdivided Into three kuob-like lobes by twn obllque furrows cutting of the corners, so to speak, aud itrons fusrow connecting these parallel to, nat a Iltte in front of, the neck furrow. These loves are rounded, and the furrows between coalesce around thew into an undefued depreysed area. A pirtial and Indisinct transrerse furrow, a little lu frovt. Indicates a aecond anaulation of the glabeiln. The glabelln is tumlit, the pilpebral lobes inti neck rlag very nromlaent. The lnge, elliptlal, zunuy fanefed ese is strongly obllque and the free cheel just external to the eye also slopes strongly downward toward the border. A small sumangular ridge pasees around the outer marglu of the eye.

The somatlc segments are D in number, with a bighls arched nxial lobe Whlch_comprises about oue third-of-the-entire-width. The pleural-lobes are much depressed and defined frow the axinl portion by sharp sulcl. They are nearls planate over the median portlon, but bend strongly and abruptly downward about half way to the extremlty. The pleural portlon of ench segoient is subdivided by n furrow whlch renches almost to the axis.

The pygidlum is semleelliptical In outline, broadls rounded nosteriorly ant with a brond, sumoth, oblique and depressed border whlch narrows somewhnt anteriorly. The axis is strungly and abarply elerated and defined by wellmarked grooves. It Is fittened on top and nenriy quadrate in section. The lateral lobes are moderitely iufinted, the convexlty belag irreniar, so- as in produce an angulation down the center of each, nppentig on the segments un elther slde ns a row of prominences or nodes. The sespentation of the pygidjum is strong, produced by deep, sharp grooves whlch do not extend onto the border nor onto the sldes of the nrgidlum. They produre ibout 12 nxinl rlagn and aboup 7 lateral oues.

The surface is marked hy grmules or small nodes which appent on the more promineat parts of the surface, on the basal portlon of the glabella, ou the creat of the neck rlag, along the little rldge uader the eyes, and in rows ecross the segments of the axis of both tharis and pygiduni. The pleural segmeats are elther whthont thesp notes or have then fever, smaller nad lass consplcuous.

If we except Griffthides sangamonensis, which I believe to be a Phillipsia, only two species of Griffithides are known in our American Pennsylvanian, G. ornatus and "G. scitulus, and of these only G. ornatus appears to be marked with nodes like the present form. In many respects G. parvulus is very similar to G. ornatus, but aside from being very much smaller, it presents important and striking differences in the configuration of the basal portion of the glabella.

Horizon and locality: Wewoka formation; Wewoka quadrangle, Okla.

[^0]:

[^1]:

 - /ilem. p. 177. nt. 17. new. 2. 3. 5. ห. 12.14.
 - /Acm, p. 183, pl. 13. 日\& 14.20

[^2]: - Eniversity Geol. Surv. of Kadeas, Rept., vol. VI. p. 71.1900.

[^3]: If a slaus is really present, the orlaniation bere emploged should be reversed; the long side is posterior and the beake point forward, toward the short side.

[^4]: 'W. Waagen, Geol. Surv. India, Mem., Ser. 13, Sait Range Foss., vol. 1. p. 130. 1887.

