Digitized by the Internet Archive in 2010 with funding from University of Toronto

MEMOIRS

OF THE

IIUSEUII OF COMPARATIVE Z00L0GY

HARVARD COLLEGE.

VOL. ILI.

$$
\begin{aligned}
& 148130 \\
& 28 / 1 / 14
\end{aligned}
$$

CAMBRIDGE, U.SA.
PRINTED FOR THE IUSEUM.
1910.

The Cosmos Press
Edward W. Wheeler, (cambridge, Mass, C. is is

$H 35$
V. 41

CONTENTS.

REPORTS ON THE SCIENTIFIC RESULTS OF THE EXPEDITION TO THE Eastera trolical Pacific, in charge of Alexavoer Agassiz, by the U. S. Fish Commission Steamer "Albatross," from October, 1904, to March, 1905, Lieut. Commander L. M. Garrett, U. S. N.., Commanding, and of other expeditions of the "Albatrois," 1sss-1904. XXI. The Sponges. By Robert von Lexdenfeld.

1. The Geodidae. 260 pp ., 48 Plates. August, 1910.
2. The Erylidae. 63 pp., S Plates. September, 1910.

CONTENTS.

No. 1. REPORTS on the Scientific Results of the Expedition to the Eastern Tropical Pacific, in Charge of Alexander Aciasizz, by the U. S. Fish Commission Steamer "Albatross," from October, 1904, to March, 190.5, Lieut. Commander L. M. G.arrett, U. S. N.., Commanding, and of other Experditions of the "Albatross," 188s-1904. NXI. Tie Sponges. 1. The Geodidae. By Robert von Lendenfeld. 260 pp . 48 plates. August, 1910.

TABLE OF CONTENTS.

I. INTRODUCTION
Page 11
II. DESCRIPTION OF THE SPECIES COLLECTED BY TIE "ALB.ITROSS" 17
Geodidae 17
Sidonops 18
S. ealiforniea (Plate 5, figs. 1-37) 1.8
S. angulata 21
var. megana (Plate 12 , figs. $1-8,16,17,19,20$; Plate 13 , figs. $1-12,22-25$; Plate 14, figs. 1-6, $16-22$; Plate 15 , figs. $1-1,7-9,11$) 24
var. microana (Plate 12, figs. 11-15, 18, 21, 22; Plate 13, figs. 13-17, 21; Plate 14, figs. 7-9; Plate 15, fig. 10) 21
var. orthotriaena (Plate 12, figs. 9, 10; Plate 13, figs. 18-20; Plate 14, figs. 10-15, 23-30: Plate 15, figs. 5, 6, 12) 21
S. oxyastra (Plate 6, figs. 1-23; Plate 7, figs. 1-20; Plate 8, figs. 1-15) 40
S. bicolor (Plate 9, figs. 1-19; Plate 10, figs. 1-15; Plate 11, figs. 1-17) 46
Geodia 55
G. variospiculosa 5.5
var. intermedia (Plate 17 , figs. $23-26,3410,49$; Plate 18 , fiys. $\mathrm{S}, 10,13-20$, 22,27 ; Plate 19, figs. $9-11,19,20,22,24,31$) 55
var. micraster (Plate 17, figs. 27-33, 41-18, 50; Plate 18, figs. 1-7, 9, 11, 12, 21, 23-26; Plate 19, figs. $1-8,12-18,21,23,25-30,32$) 5.5
G. japonica (Plate 37, figs. 15-30; Plate 3s, figs. 1-29; Plate 39, figs. 1-11) 72
C. ataxastra 79
var. angustana (Plate 43 , figs. 9-25, 28-3s; Plate 44, figs. 1-12; 14-19) 79
var. latana (Plate 43 , figs. 26,27 ; Plate 14 , fig. 13) 79
G. mesotriaena 96
var. pachana (Plate 21, fig. 1; Plate 23, figs. 3, 5, 6, 5, 9; Plate 24, figs. 3, 5, 9) 96
var. microana (Plate 23, figs. 1-2; Plate 24, figs, 2, 6, 7, 10-13, 16, 19, 21) 96
var. megana (Plate 21, figs. 2-6; Plate 22, figs. 1-10) ; Plate 23, figs. 4, 7, 10-25; 96
Plate 24, figs. 1, $4,8,14,15,17,18,20,22-32 ;$ Plate 25, figs. 1-11) 96
G. agassizii (Plate 26, figs. 1-21; Plate 27, figs. 1-19; Plate 2s, figs. 1-28; Plate 29, figs. 1-17; Plate 30, figs. 1-17; Plate 31, figs. 1-10; Plate 32 , figs. 1-16; Plate 33, figs. 1-14: Plate 34, figs. 1-17) 113
C. mesotriaenella (Plate 34, figs. 18-26; Plate 35, figs. 25-35) 151
G. breviana (Plate 35, figs. 1-27; Plate 36, figs. 1-12) 155
(i. ovis (Plate 40 , figs. 1-30; Plate 11. figs. 1-20; Plate 12, figs. $1-40$; Plate 13, figs. 1-S) 16 I
G. micropora (Plate 36, figs. 13-36; Plate 37, figs. 1-1 1) 170
(i. amphistrongyla (Plate 20, figs. 1-41) 17.
Ci. lophotriana (Plate 47, figs. $9-36$; Plate 48, figs. 1-34) 181
G. acanthtylastra (1'late 45, figs. 1-39; Plate 46, figs. 1-21; Plate 47, figs. 1-8) 185
G. media (Plate 16, figs. 1-21; Plate 17, figs. 1-22) 194
Geodinella 205
G. robusta 205
var. megasterra (Plate 1, figs. 1-4, 16, 18-24; Plate 2, figs. 1, 3; Plate 3, figs. 3, $4,7,9$; Plate 4 , figs. $1,4-7,13,21,22$) 205
var. carolae (Plate 1, figs. $5-12,17$; Plate 2, figs. $4-7,9-11$; Plate 3 , fig. 1 ; Plate 4, figs. 2, 3, S-12, 14-20) 205
var. megaclada (Plate 1, figs. 13-15; Plate 2, figs. 2-8; Plate 3, figs. 2, 5, 6, 8 ; Plate 4, figs. 23-25) 205
111. GENLERAL SNTEMATIC At(OUNT OF THE GENERA, SPRCIES, AND VARIE-
Page220
(ifoudibat 220
Caminflla 220
C. nigral 220
Caminés 221
C. chinensis 221
Isops 221
I. coutorta 221

1. imperfectal 222
2. olsenura 222
3. sollasi 222
GIDON:TP. 22:
\therefore Sindgrení 223
\therefore pictect 223
\therefore californica 221
\therefore : ally 224
S. angulata 225
var. meganat 225
var. microana 225
var. orthotriacha 226
S. oxyastra 226
S. reticula(a 227
s. hicolor 227
s. nitidis 228
Geodia 228
Summary of the species foumd in the Pacific Ocean 228
(i. nux 230
G. eosaster 230
(i. Globostella 231
(i. distineta 232
fi. crinamems 232
(i. variospiculosa 233
var. typica 234
var. clavigera 234
viar. intermelia 234
var. micraster 234
(i. reniformis 234
(i. jajunica 235
C. cooksoni 236
(i. hilgemulorfi 236
var. typiea 237
var. granosa 237
(i, ataxastra 237
viar. angustana 238
var. latana 238
(i, Jirsita 239
G. mesotriaena 239
var. pachana 240
var. megana 240
Var. microana 240
f. :ggassizii 241
(3. mesot riaenella 212
(i. hreviana 243
G. ovis 244
(i. sphacroides 245
G. mierojora 245
G. Berryi 246
G. kükenthali 247
Page
G. amphist rongyla 247
G lophotriaena 248
G. acanthtylastra 248
G. nigra 249
G. media 259
G. magellani 251
G. exigua 251
G. inconspicua 252
Geodinelea 252
G. robusta 252
var. carolae 253
var. megaclada 253
var. megasterra 253
C. cylindrica 253
IV. DISTRIBUTION 254
V. LIST OF STATIONS 25 S
VI. EXPLANATION UF TIIE PLATES

GEODIDAE.

I. INTRODUCTION.

This monograph is the first part of a report on the Siliceous Sponges collected during the cruises of the "Albatross" in the Pacific Occan. It deals with the Geodidae and contains detailed descriptions of the species and varieties of this family represented in the collection, a systematic account of the known Pacific Geodidae, and a discussion on their distribution.

There are altogether eighty-nine specimens in the collection. Two of them are dry, all the others are preserved in spirit. To make the identification of these sponges positive and to be able to give fuller diagnoses of some species which were insufficiently described, I have in addition to those collected by the "Albatross" examined several type speeimens in the British Museum and in the collection of the Geological Survey of Canada.

In my report on the Tetraxonia of the Deutsche Tiefsec-Expedition I gave an account ${ }^{1}$ of my method of fractional sedimentation for obtaining spiculepreparations. This method has been employed also in preparing the material for the present report.

For the graphic representation of sponges and of their parts, photographs reproduced mechanically (phototypically) are, in my opinion, far superior to drawings reproduced lithographically. It is not only that drawings never can be so accurate as photographs, but in drawing such objects as sections or spicules of sponges the author who draws them or has them drawn under his supervision, and who sees that the points he considers important are correctly reproduced,
${ }^{1}$ R. v. Lendenfeld. Die Tetraxonia. Wissensch. ergebn. deutschen Tiefsee-Expedition, 189S-1899. 1907, 11, p. 82.
dhes not abways pay sufficient attention to those other points which seem unim－ portant．This will often lead to the omission or inadequate representation in drawings of such characters as secm unimportant，whereas，in the mechanically reproduced photographs，they will be just as fully and correctly shown as all other points．It is quite probable，that at some future time，when science is more advanced，one or more of the points considered umimportant now，and consequently not carefully represented in drawings，may become important．

These considerations induced me to represent the sponges and their parts in my reports on the Tetraxonia of the Deutsche Tiefsee－Expedition（Lendenfeld， loc．cit．），and the Deutsche Südpolar－Expedition ${ }^{1}$ so far as possible photo－ graphically．During the years I was engaged in preparing these reports I gained considerable experience in this photographic work．By the construction of a diaphragm，placed just above the objective，I overeame the difficulties which had formerly prevented a photographie reproduction of the megaseleres； and though I was hampered by the quality of my microphotographic outfit and the insufficieney of the light at my disposal I obtained quite satisfactory photographe of these spicules．My attempts similarly to delineate the micro－ scleres were not nearly so successful and I was frequently obliged to draw them．

When I began the study of the Sponges collected by the＂Albatross＂I ob－ tained in the first place a first－class microphotographic outfit，replaced the Welsbach burner，formerly used as a souree of light，by a Nernst lamp with crossed rods and was thus enabled to improve considerably the microphoto－ graphic reproductions of the sections and megaseleres．The difficulty of photo－ graphing the microseleres with high powers，however，still remained．Like the megascleres the microscleres consist of colourless，transparent silica and are rendered visible only by the difference in the refractive indices of the silica and the surrounding medium．When，as is the ease in the spines and other parts of most microseleres，such colourless structures are very thin，less than a light wave－length in diameter，no sharply defined image of them can be produced on the photographic plate，no matter how excellent the lenses of the micro－ scope may be．The only way to get well－defined images of them is to make use of light of shorter wave－length；the lower limit of the size（thickness）of minute structures of this kind，still clearly reproducible microphotographically， must，ceteris paribus，be in inverse proportion to the wave－length of the light employed．The shortest light－waves obtainable would accordingly be the best for work of this kind．Since，however，the employment of very short light－waves
for microphotography is connected with great technical difficulties, we must for the present content ourselves with light-waves $275-280 \mu \mu$ long, that is about half of the length of the waves of ordinary light. Even this light is not convenient to work with, because it is quite invisible to the human eye and does not pass through glass. All the optical parts of the apparatus used for its employment must be made of some material like quartz, and fluorescent substances like uranium-glass must be utilized for making the image obtained visible and focusable. An apparatus for microphotography with light of these wave-lengths has recently been made by Koehler (Zeiss) of Jena.

To overcome the difficulties previously experienced in photographing the microscleres I obtained this apparatus and succeeded, after a number of trials, in producing satisfactory photographs also of these spicules.

To work this apparatus 4.8-5 amperes of the ordinary three phase-current of $120-125$ volts supplied by the Prag Municipal Works were employed. This current is converted, in a transformer, to one of from 15,000 to 15,560 volts, which is made to pass, in sparks, between cadmium- or magnesium-electrodes. The sparks are strengthened by eight Leyden jars attached to the circuit, and are very brilliant. For photographing the microscleres of sponges I soon found magnesium-electrodes more suitable than cadmium-electrodes, and I have worked with the former ever since. The magnesium spark-light produced passes through a quartz-lens and two quartz-prisms. In the ultraviolet part of the magnesium-spectrum thus obtained there is an exceedingly intense line produced by light of a wave-length of $280 \mu \mu$. This light was used. It passes through another quartz-lens, is reflected upwards by a quartz-prism placed below the microscope, and concentrated and thrown on the preparation by a quartz-condenser.

After many trials I found the following the best way to make the micro-sclere-preparations to be photographed with this light: to make a sterrasterpreparation, a quartz-slide is covered by a thin layer of gum and, before the gum is dry, a number of these microscleres, previously obtained by sedimentation, are allowed to fall on the gummed quartz-slide. This is then placed in the thermostat oven. When it is quite dry, a small drop of a concentrated solution of chloral hydrate in glycerine, a liquid with sufficiently high refractive index and permeable to these ultraviolet rays, is put on and the whole covered with a quartz-cover. To make a preparation of the euasters the minute spicules obtained by centrifuging are spread out on an object glass and dried, whereupon they appear quite firmly attached to the glass. A portion of these
microseleres is then seraped off with a knife and immersed in a small drop of water placed on the quartz-slide. In this water they disperse and when they are scattered a little gum may be added and the whole allowed to dry. The spicules then appear attached to the quartz-slicle. A small drop of the chloral hydrate glyeerine is put on and this covered with a quartz-cover.

The slide thus prepared is placed on the stage of the mieroscope, and a spicule to be photographed sought with ordinary light and ordinary lenses. When a spicule of which a photograph is desired is found, the ordinary lenses are replaced by a quartz-objective and a quartz-eyepiece, the spicule brought (0) focus and centred, the ordinary light switched off and the magnesimm-u. r. light switched on. A dise of uramimm-glass with a lens attaehed at a slightly oblicue angle is then placed over the eyepiece and the tube of the microscope lowered until a sharp fluorescence-image of the spicule becomes visible on the uranium-glass. When the spicule is thus focused for the $280 \mu \mu$-light the uranium-glass arrangement is removed and the camera placed over the microserpe.

Is it is difficult to focus quite correctly with this fluorescent arrangement and as in many cases the shape of the mieroscleres can be clearly revealed only by a series of photographs obtained by focusing at different levels, I usually twok four differently focused photographs of each spicule. After having focused the spicule and put the camera on, I usually raised the tube of the microscope with the micrometer-screw 3μ. At this level I took the first photograph. I then lowered the tube 2μ and took a second photograph, and so on, the third 4μ and the fourth 6μ lower than the first. The intervals between these levels were sometimes more, sometimes less. Four such photographs 6 by 9 cm . can easily be taken rapidly in succession by means of a sliding-plate arrangement.

I found the most useful combination of lenses to be immersion-quartz monochromat 1.7 mm ., quartz-eyepiece 10 . This gives, with a suitable length of camera, a magnification of 1800 . Most of the u. v. photographs of the microscleres on the plates accompanying this report have been taken with this combination.

I have taken some u. v. photographs without an eyepicee. In these cases the focusing was done by means of a uranium-glass with attached lens, placed in a ruler-like frame, which was laid across the (open) top of the camera. In this way excellently defined photographs ean be procured but, the magnifieation even with the 1.7 mm . quartz monoehromat and the camera drawn out long, is insufficient.

The time of exposure, even with the aperture in the diaphragm of the condenser quite small, is very short, for magnifications of about 100 only about one second, for magnification of $1800,15-30$ sceonds.

I must record my obligations to the late Mr. Alexander Agassiz and to the Smithsonian Institution for placing this large and interesting eollection of sponges at my disposal; and to Mr. R. Kirkpatrick of the British Musemm and Mr. L. M. Lambe of the Geological Survey of Canada, for the types they sent me for examination and comparison.

With all this material and with all my energy and experience, however, this report could not have been produced had not Mr. Agassiz supplied the costly apparatus necessary and in every way furthered the work with so generous a liberality.

The method of microphotography with ultraviolet light, employed in this monograph for the delineation of the microseleres, will, I do not doubt, when utilized more generally for the representation of minute structures of this kingl, increase the exactitude, and thus raise the standard of descriptive zoölogy; and am most grateful to Mr. Agassiz for enabling me to introduce the method into this branch of science and thus to assist in its advancement.

II. DESCRIPTION OF THE SPECIES COLLECTED BY THE " ALBATROSS."

Geodidae.

Tetraxonia with rhabd, teloclade, and usually also mesoclade, megascleres, and a superficial armour composed of massive, spheroidal or ellipsoidal sterrasters. Euasters are always, ataxasters or microrhabds sometimes, present. Without desme megascleres and without thin, dise-shaped stertasters.

This family was established by Gray ${ }^{1}$ under the name of Geodiadae. It has been retained by all later authors under the same or a similar name. Sollas ${ }^{2}$ included in the family the genera Erylus Gray; Caminus O. Schmidt, Pachymatisma Johnston, Cydonium Fleming, Geodia Lamarck, Synops Vosmaer, and Isops Sollas. Later Sollas ${ }^{3}$ substituted the name Sidonops for Synops. I ${ }^{4}$ united Cydonium with Georlia and established the new genera Caminella ${ }^{5}$ and Geodinella. ${ }^{6}$ The examination of the sponges collected by the "Albatross" belonging to these genera shows that Erylus differs very considerably from Geodia, the type genus of the Geodidae, and should form a separate family, Erylidae.

In the extent I now give the Geodidae it comprises the genera Caminella Lendenfeld, Pachymatisma Johnston, Caminus O. Schmidt, Isops Sollas, Sidonops Sollas, Geodia Lamarck, and Geodinella Lendenfeld.

Three of these genera, Sidonops, Geodia, and Geodinella, are represented in the collection made by the "Albatross." There are eighteen different species, five of which are further subdivided into thirteen varieties.

[^0]Of the eighteen species, three have been previously deseribed, and fifteen are new. In one of the previously known species two new varieties are deseribed.

SIDONOPS sollas

Among the megascleres are regular triacnes. The tetraxon megascleres are confined to the superficial part of the sponge and are arranged radially. The dermal microseleres are asters. The afferents are cribriporal; the efferents uniporal.

There are twenty-three specimens of Sidonops in the collection made by the "Albatross." These belong to four species; all are new, and one is divided into three varictics.

Sidonops californica, sp, nov.
Plate 5, figs. 1-37.
Shape and size. The two specimens in the eollection were obtained off Lower California, and to this loeality the speeific name refers. They are somewhat fragmentary. Both are elongate tuberous, somewhat finger shaped. The larger (Plate 5, fig. 6) is 24 mm . long and $6-10 \mathrm{~mm}$. broad, the other measures $18 \times 7-9 \mathrm{~mm}$. Both appear to be digitate processes, broken off from a larger mass; the smaller one was attached at one side. The surface is undulating, and no trace of a spicule-fur can be made out with the unassisted eye. The microscopic investigation of radial sections, however, shows that minute dermal styles protrute slightly beyond it. In several places circular efferent pores, $100-300 \mu$ wide, are observed. These pores are not numerous. They eongregate in groups, one of which is situated on the rounded tip of the larger specimen. Parts of the surface are covered with a thin desmacidonid sponge-crust.

The colour (in spirit) is yellowish white, slightly darker in the interior than on the surface.

The cortex is about 500μ thick and composed of a sterraster-armour.
Canal-system. Radial canals, $100-300 \mu$ wide, traverse the sterrasterarmour. Most of these are covered distally with sieve-membranes, the pores of which are oval, $30-100 \mu$ wide, and oceasionally so close together as to be separated only by slender threads. These threads exhibit, when observed with higher powers, a longitudinal striation. The radial cortical eanals not covered by such sieves, which I consider as efferents, form the groups above described. The remainder of the surface is occupied by the afferent, cribriporal, cortical
canals. The radial cortical canals, both the afferent and the efferent, are cylindrical and restricted below by chonal sphincters, which usually protrude slightly into the choanosome. Below these chones subcortical cavities (Plate 5, fig. 27b) are mat with.

The skeleton of the inner parts of the choanosome consists of rather irregularly seattcred amphioxes (Plate 5, fig. 27e), a few styles, and numerous large oxyasters and sterrasters (Plate 5, fig. 27d). Orthoplagiotriaenes, similar to the subcortical ones, are also occasionally found in the depth of the choanosome. It seems doubtful however whether these are here in their natural postion; they may very likely have been carried into the interior in cutting the sections. The remarkable abundance of sterrasters in the choanosome on the other hand (Plate 5, fig. 27) is without doubt natural. Towards the surface the megascleres join to form radial strands which abut more or less vertically on the cortex. These strands (Plate 5, fig. 27c) are composed chiefly of amphioxes and orthoplagiotriaenes. Anatriaenes, anatriaenederivates, and mesoplagioclades often with reduced cladomes also occur in them, but in much smaller numbers. The cladomes of the orthoplagiotriaenes lie at the limit between the cortex and the choanosome. The cortex is occupied by dense masses of sterrasters. Small dermal styles are implanted more or less obliquely into its superficial (distal) part. The rounded ends of the styles are situated proximally; their distal, pointed ends protrude freely beyond the surface. These spicules are not very numerous and form tuft-like groups. Those near the afferent pore-sieves and the efferent pores incline towards these apertures and thus form protecting fringes. Groups of such spicules, and single ones, are also met with in the distal part of the choanosome. Numerous minute strongylosphaerasters, forming a dense single layer just below the outer surface, are imbedded in the dermal membrane. A few small oxysphaerasters also occur. Besides these numerous other forms of spicules are observed in the spiculepreparations. Host of these probably belong to the incrusting desmacidonid; there is one, however, an exceedingly minute and slender microamphiox, about which I have my doubts. This may be proper to the sponge and possibly forms dragmes within it. I have, however, not succeeded in finding any of these spicules, either singly or in dragmes, in situ in the sections.

The large choanosomal amphioxes (Plate 5, figs. 11, 12, 27e) are straight or slightly curved, fairly isoactine, and rather abruptly and quite sharply pointed. They are $1.2-2$, usually $1.6-1.8 \mathrm{~mm}$. long, and $30-48$, usually $38-42 \mu$ thick.

The rare large styles are shorter and thicker than the amphioxes; some attain a transverse diameter of 55μ at the rounded end.

The minute, dermal styles are usually slightly curved, 175-290 μ long and in the central parts $3-7, \mu$ thick. They taper slightly towards the proximal rounded end. The distal end is sharp pointed.

The minute microamphioxes which may be foreign to the sponge, and possibly form dragmes, are quite straight, about 50μ long and 1μ thick.

The orthoplagiotriaenes (Plate 5 , figs. 13-19) have a rather small clade-angle and might therefore perhaps also be termed orthotriaenes. The rhabdome is straight, conic, and usually sharp pointed, rarely blunt. It is $0.9-1.45 \mathrm{~mm}$. long and at the cladomal end $20-75$, usually $35-55 \mu$ thick. I do not think that the great differences in the thickness of the rhabdome, which are clearly noticeable in comparing the spieules represented in figures 13 and 18 on Plate 5, can be altogether ascribed to differences in their age. The clades are $160-400 \mu \mathrm{long}$, conic, often rather blunt, and uniformly curved, concave to the rhabdome. Their chords cuclose angles of $104-120^{\circ}$ with the axis of the rhabdome. The three clades of the same cladome often differ in size and sometimes exhibit a sagittal character.

The anatriaenes (Plate 5, figs. 1-4) have long and more or less eurved rhabdomes, which are $10-17 \mu$ thick at the cladomal end. The clades are relatively stout and $2.2-45 \mu$ long. Their proximal part is quite strongly curved, their distal part straight. Their chords enclose angles of $45-66^{\circ}$ with the axis of the rhabdome. A slight apical knob is usually diseernible on the summit of the cladome.

Anatriaene-derivates of similar dimensions with two clades (anadiaenes) (Plate 5, fig. 5) and one clade (anamonaenes) also oceur, but they are rare. The branched end of a very peculiar spicule, which may be an anatriaenederivate, is represented in fig. 10 on Plate 5 . This spicule is a rhabd with two small, recurved, elade-like branches, arising a little below one of the pointed ends, and a rery large straight branch-ray, also pointing downwards and en(lusing an exerecdingly small angle (about 4°) with the rhabdome, arising some distance below the small branch-rays.

The mesoplogiocludes (Plate 5, fig. 7-9) have a long rhabdome which is, just below the clades, 6-15 μ thick. The epirhabd is conic and $45-125 \mu$ long. The mumber of clades is one (Plate 5, fig. 7), two (Plate 5, fig. 9) or three (Plate 5, fig. S). The elades are nearly straight, pointed or rounded at the end, and $20-42 \mu$ long. They are directed obliquely upwards and their axes enclose angles of $102-118^{\circ}$ with the axis of the rhabdome. These plagioclade spicules replace the mesoprotriaenes of other geodine sponges, and I am inclined to
consider them as derivates of ordinary mesoproclades produced by a change in the position of the clades.

The large choanosomal oxyasters (Plate 5, figs. 21-26c, 31c, 28, 29) have from six to fourteen, rarely as many as twenty straight, conic, and quite uniformly distributed rays. There is no central thickening. The rays vary from sharp pointed (Plate 5, fig. 2S) to blunt (Plate 5, fig. 29). Apart from the very short, smooth, basal parts, the rays are entirely covered with spines, which appear to be directed backwards, towards the centre of the spicule. On the apex of the blunt rays a terminal spine is usually observed (Plate 5, fig. 29). The rays are at the base $1.7-3 \mu$ thick. The whole aster is $22-48 \mu$ in diameter. An inverse proportion between size and number of rays is clearly pronounced. The oxyasters with six to eleven rays are $27-48 \mu$, those with twelve or more rays $22-26 \mu$ in diameter.

The rare, small oxysphacrasters (Plate 5, fig. 30b) have stout, pointed, conical, spined rays and measure $7-9 \mu$ in total diameter.

The small strongylosphaerasters (Plate b, figs. 24a, 26a, 30a, 31a, 32-35) have a centrum $2-3.5 \mu$ in diameter, from which six to seventeen rays arise. These are usually regularly, more rarely irregularly distributed and $1.6-2.8 \mu$ long. They are cylindrical, $0.5-1.5 \mu$ thick, and rounded at the ends. They always bear spines, which are either quite uniformly distributed or massed at the ends, where a verticil of larger spines sometimes appears to be present. A conspicuous terminal spine, arising from the end of the rays, is often observed. The whole aster measures $4.5-9 \mu$ in diameter. A eorrelation between number of the rays and size is not discernible.

The sterrasters (Plate 5, figs. 20, 36, 37) are flattened ellipsoids, 116-130 μ long, $97-105 \mu$ broad, and $70-90 \mu$ thick. The proportion of length to breadth to thiekness is usually about $100: \$ 1: 69$. In the centre a nearly spherical cluster, 4μ in diameter, composed of numerous small but conspicuous granules, is met with. In the youngest sterrasters observed, which appear as spheres of slender rays, 18μ in diameter, this central cluster of granules has the same size and structure as in those fully developed. The umbilicus lies in the centre of one of the flat faces of the ellipsoid. It is about 12μ deep and 12 to 15μ broad. In the great majority of sterrasters the free distal ends of the rays are uniformly distributed, $2-3 \mu$ thick and $1.5-2 \mu$ apart. In a small minority, perhaps 2% of all the sterrasters, these free ray-ends are irregularly distributed and in some places mueh farther apart, more or less extensive parts of the surface of such sterrasters being free from them. These altogether rayless parts of
the sterraster surface are coverel with spines. In the normal sterrasters each ray bears a terminal wertieil of from three to seven conie not very stout spines about 1.5μ long (Plate 5, figs. 36, 37).

The two specimens of this species were eaught with the tangles at Station $2 x^{2} 29$ on May 1. 18s8, off Lower California, in $22^{\circ} 52^{\prime} \mathrm{N} ., 109^{\circ} 55^{\prime} \mathrm{W}$., depth $26 \mathrm{~m} .\left(31 \mathrm{f}\right.$.) ; they grew on a rocky bottom: the bottom temperature was 23.4° ($\mathrm{i}+1^{\circ} \mathrm{F}$.).

Should the umiporality of the efferent cortical canals observed be due merely to a local rubbing off of the superficial parts after capture, and should sievemembrames cover them in the living state, this sponge would of course have to be placed in Ceodia. Since however no indication of the former presence of sieve-membranes can be discovered at the mouths of the now uniporal efferent cortical canals, I think that these efferents must by nature be uniporal and the sponge accordingly placed in Sidonops.

Among the species of Geodia and Sidonops hitherto described there are only three which at all resemble these sponges: Geodia ramodigitata Carter 18S0; the sponge described by Dendy ${ }^{1}$ as Geodia ramodigitata Carter, which differs however so considerably from Carter's type that I do not think it specifically identical with it ; and Synops alba Kieschnick $1896=$ Sydonops (recte Sidonops) alba Thiele 1900. From Geodia ramodigitata Carter and also from the species deseribed under this name by Dendy the above mentioned Californian specimens differ by possessing plagiomesoclades often with more or less reduced clades instead of the normally developed protriaenes or promesotriaenes, a difference which is in itself, apart from the difference in the superficial part of the canal system, quite sufficient for specific distinction. Sidonops alba (Kiesehnick) Thiele ${ }^{2}$ is obviously much more closely allied to them. Most of the spienles are identical in shape and not very different in size. The differences between them most important systematically appear to be that Sidonops alba (Kiesehnick) Thiele possesses small anaclades, which Thiele terms exotyles, whilst the Cahiformian specimens are destitute of such spicules; that the latter contain minute microamphioxes which are absent in the former; and that the reduction of the mesoclade-chadomes is earried considerably further in the former than in the latter. As regards the minute microamphioxes I do not attach very much systematic importance to their presence or absence because it is quite possible

[^1]that these spicules are foreign to the sponge. The presence of minute anaclades (exotyles) and the far greater reduction of the mesoclade-cladomes in Sidonops alba (Kieschnick) Thicle seem, together with the differences in the dimensions of the other spicules, sufficient for specific separation; and the more so as Sidonops alba (Kieschnick) Thiele occurs near Ternate while the specimens deseribed above have been found on the opposite side of the Pacific Ocean, off the coast of Lower California. The differences between these closely allied species are given in the following table.

	Sidonops Alba	Sidonops californica
Large choanosomal amphioxes.	2.5 nmm . and more long; 30μ thick.	$1.2-2 \mathrm{~mm}$. long; 30 + 8μ thick.
Large choanosomal styles.	similar to the amphioxes, but shorter (?)	shorter than the amphioxes; up to 55μ thick.
Small dermal styles.	250μ long; 5μ thick.	175-290 μ long ; 3-7 μ thick.
Minute microamphioxes.	absent.	50μ long; 1μ thick; perhaps foreign.
Plagiotriaenes.	rhabdome 2 mm . long; about 50 m thick; clades 450 k long; cladeangles a little over 90°.	rhabdome 0.9-1.45 mm, long; 20$78 \mu$ thick; clades $160-400 \mu$ long, clade-angles $104-120^{\circ}$.
Ordinary anatriaenes.	rhabtome 2.5 mm . long; 11μ thick; clades about 20μ long; elade-angles $+11^{\circ}$.	rhabdome long; 10-17 / thick; clarles $22-45 \mu$ long; elade-angles $45-66^{\circ}$.
Mesoclades.	rhabrlome 3 mm . long; 14π thick; epirhabd 80μ long; 1-2 clades 18 21μ long; clate-angles $81-102^{\circ}$.	rhabdome long; 6-15 μ thick; epirhalnd 45-125 μ long; 1-3 clades $20-12 \mu$ long; clade-angles $102-118^{\circ}$.
Minute anaclades (exotyles).	170μ long and over; with 1-3 clades.	absent.
Large oxyasters.	length of each ray $15-30 \mu$; without centrum.	6 -20 rays; 22μ in total diameter; without centrum.
Small sphaerasters.	total diameter 8μ.	total diameter 4.5-9 r .
Sterrasters.	110μ long ; 90μ broad.	116-130 / long; 97-105 μ broad; 70-90 μ thick.

Sidonops angulata, sp. nor.
megana, var. nov.
Plate 12, firs. $1-8,16,17,19,20$; Plate 13 , figs. 1-12, 22-25; Plate 14 , figs. $1-6,16-22$; Plate 15 , figs. 1-1, 7-9, 11.
microana, var. nov.
Plate 12, figs. 11-15, 18, 21, 22; Plate 13, figs. 13-17, 21; Plate 14, figs. 7-9; Plate 15, fig. 10.
orthotriaena, var. nov.
Plate 12, figs. 9. 10; Plate 13, figs. 18-20; Plate 14, figs, 10-15, 23-30; Plate 15, figs. 5, 6, 12.
I establish this species for four specimens obtained at three different stations off the coast of southern California, in the vieinity of Santa Barbara Island. some of the amphioxes and also a few of the rhabdomes and clades of the teloclades are angularly bent, and to this character the specifie name refers. Two specimens from Station 2975 are identical. The other two differ from these and from cach other so much that it is necessary to recognize three varieties. In the specimen from Station 2945 , var. orthotrinena, the subcortical triaenes are orthoclade, in the three others plagioelade. In the two specinens from Station 2975 , var. megana, some of the anaclade-cladomes are large, while in the specimen from Station 4417, var. microana, all the anaclade-eladomes are small.
shape and size. One of the specimens of val. megana is more lobose, the other more massive. The lobose specimen (Plate 12, fig. 19) has the shape of a stout fan, 86 mm . broad, 75 mm . high, and 28-38 mm. thick. Rounded protuberances rise from its surface and give to the margin of the fan a somewhat serrated appearance. On one side these protuberances attain a greater height than on the other, and here the depressions between them in one place join, leaving a part of the sponge, 11 mm . thick, suspented like a bridge between them. The surface is rough, shagreened. The greater part of this roughness is due to the presence of slight pit-like depressions which are about 1 mm . wide and are close together. Apart from a few holes, about 1 mm . wide, which do not seem to be oscules, no apertures visible to the unassisted eye oceur. In a few sheltered places remnants of a spicule-fur are observed. The massive specimen of this variety (Plate 12, fig. 20) has the shape of an inverted cone with a strongly rounded margin. It is 77 mm . high. The largest and smallest transverse horizontal diameters are 112 and 107 mm . respectively. There are a few broad and low protuberances, chicfly on the margin of the upper, somewhat concave face. From the base a digitate process, 25 mm . long and up to 14 mm . thick, arises. The most exposed parts of the surface are smooth; the rest of it
is rough and shagreened. On the sides, this roughness is due to the presence of shallow pits, separated by a network of ridges somewhat raised at their junctions; on the upper face it is due to numerous wart-like protuberances varying in size and about 1 mm . apart. There are no larger oscules. On some of the more protected parts of the surface a spicule-fur, up to 5 mm . high, is observed. The specimen of var. microana (Plate 12, fig. 18) is irregularly spherical, 49 mm . broad and 40 mm . high. The lower part of the body is somewhat drawn out to form a peduncle, 30 mm . broad and 15 mm . thick, which is attached to a coral. The upper side is flattened. The greater part of the surface is covered by a dense spiculc-fur which is in places 5.5 mm . high (Plate 13, fig. 21b). The specimen of var. orthotriacna is a fragment of an irregular lobose mass. It measures 33 mm . in length, 23 mm . in breadth, and 14 mm . in thickness. The surface is quite smooth and without larger oscules. In places there are remnants of a spicule-fur. A few insignificant symbionts, chiefly small crusts of calcareous and monoaxonid silicious sponges, are attached to the surface of all the specimens. The specimen of var. microana bears a dense growth of diatoms on its surface.

The colour, in spirit, is yellowish in the interior and white to reddish or purplish brown on the surface. The lobose specimen of var. magana is quite white on one side and has a reddish brown tinge on the other. The massive specimen of this variety is partly yellowish, partly reddish white on the sides (below) and reddish brown on the upper face (above). This colour is not uniform, some parts of the upper face being considerably darker than others. Variety microana is dirty white below and purplish brown above, var. orthotriaena brownish white.

The superficial part of the body is differentiated to form a cortex composed of a thin outer dermal layer (Plate 14, fig. 20a), a central sterraster-armour layer (Plate 13, fig. 21a, 25a) 0.7-1 mm. thick, and an inner fibrous layer (Plate 14, fig. 22a) excavated by subcortical cavities.

Numerous granular cells, extended paratangentially and measuring 12-18 μ by about 7μ, lie in the dermal membrane just below the surface (Plate 14, fig. 20b). Below these, between them and the most distal sterrasters of the armour, slender fibres extend paratangentially. Those adjacent to the pores are circularly bent and surround the pores sphincter-fashion. These fibres are strongly stained with haematoxylin but only slightly with azure. In the choanosome of the massive specimen of var. megana numerous irregularly polyedric spaces, $40-70 \mu$ in diameter, occupied by dense masses of small cells (Plate 15,
fig. tal, were observed. Each of these cells contains a small, strongly staining nucleus. l'erhaps these cetls are young spermatozoa.

Canal-system. The sides of the massive specimen of var. megana are covered with afferent pore-sieves (Plate 13, figs. 23, 24), which coalesce to form extensive, nearly eontimous poral tracts. The pores are oval or, more rarely, circular, and generally measure $25-300 \mu$ in diameter. The strands of dermal tissue separating them are as broad or broader than the pores themselves. These pores lead into elongate subdermal cavities, from five to seven of which join to form stellate groups $0.4-1 \mathrm{~mm}$. in diameter. These groups of radiating sublermal cavities are sumk in the sterraster-armour layer and the spaces between them in great part orempied by sterrasters. In consequence of this the stellate cavity groups are very eonspicuous in superfieial paratangential sections of appropriate thickness (Plate 13, fig. 23). The cavities of each group converge to a common ecutre and here they join to form a radial cortieal canal which penctrates the eortex and leads down into the interior. These radial eortical canals are $1-1.4 \mathrm{~mm}$. apart, and in the sections examined are strongly contracted, usually quite elosed. They are surrounded by mantles of eircular fibres. These mantles increase in thickness proximally and form chones (Plate 13, fig. 2.5), which protrude into the subcortical cavities. Around these chones I have often noticed extensive dome-shaped excavations of the proximal (inner) surface of the sterraster-armour. When such excavations are present the chones hang down as it were from the apiees of the domes and are thus situated some distance above the general lower limit of the sterraster-armour layer. Below this layer, in the inner zone of the cortex, a system of subcortical cavities (Plate 13, fig. 25x', Plate 14, fig. 22b) extends. From these cavities the afferent choanosomal canals take their rise. These camals, and also the choanosomal cfferents, are narrow, the choanosome appearing very solid in consequence. The flagedlate chambers (Plate 14, fig. 21a) are spherical or oval and small. The efferent choanosomal (eanals lead up to and open out into extensive systems of subcortical eavities which underlic the parts of the cortex bearing the uniporal efferent apertures. From these eavities radial cortical canals with chones, similar to the afferent ones described above, arise. On the walls of some of the efferent cortical canals of the lobose specimen of var. megana I observed a few large, broad, and blunt conic spines (Plate 15, fig. 7a) which protrude into the canal-lumen. As these structures are rare and as I failed to find them in thin sections, where they could have been studied with higher powers, I was unable to ascertain their nature. Each efferent cortical canal leads up to a single
circular pore up to 100μ wide (Plate 13, fig. 22). In the massive specimen of var. megana and also in var. microana the efferent pores occupy the upper depressed or flattened side of the sponge. In the other two specimens they appear to be distributed less regularly. As stated above the upper face of the massive specimen of var. megana is covered with wart-like protuberances, unequal in size and on the average about 1 mm . apart. Many of these warts bear on their summit an efferent pore, many however are without an apical aperture. I presume that all these warts are pore-bearing elevations and that on those on which no pore was seen, the pore had been quite closed by excessive contraction of the sphincter surrounding it. In the sperimen of var. microana, on the other hand, nearly all the efferent pores seem to be open. In this sponge many of them lie on the level of the surface and are not raised above it.

Skeleton. Spicule-bundles, extending radially and abutting vertically on the surface, traverse the choanosome. In the interior these bundles are chiefly composed of quite stout amphioxes, to which a few thick styles or branched style-derivates may be added. Towards the surface also plagiotriaenes (in var. megana and var. microana) or orthotriaenes (in var. orthotriaena), anaclades, and long and slender amphioxes (much more numerous in var. microana than in the other varieties) are added to the stout amphioxes (and styles and stylederivates). In var. microana and var. orthotriaena the cladomes of the plagio- or ortho-triaenes lie on the level of the lower limit of the sterraster-armour layer. In the two specimens of var. megana they are situated a little higher up, within this layer, and entirely enveloped in sterrasters. The anaclades are not numerous. Most of them are anatriaenes. In var. microana also anadiaenes are met with. The cladomes of some of the anaclades lie in the inner zone of the cortex; by far the greater number, however, protrude freely beyond the surface. Some long and slender amphioxes lic altogether within the sponge; numerous spicules of this kind protrude beyond it. Together with the anaclades they form the spicule-fur. In it the slender amphioxes are much more numerous than the anaclades. Some of both the stout choanosomal and the slender chiefly dermal amphioxes, and a few of the teloclade-rhabdomes and clades are angularly bent.

In the spicule-preparations of var. microana two or three dichotriaenes and some mesoprotriaenes were observed. Since however I failed to find such spicules in situ in the sections, I do not believe that they belong to the sponge.

The microscleres are smooth oxyasters and oxysphaerasters, spined strongylosphaerasters and sterrasters. The oxyasters are confined to the choanosome
and are not mumerous. The oxysphaerasters are very abundant, partieularly in the inner layer of the cortex, where they line the walls of the subcortical cavities in large numbers (Plate 14, fig. 22c). These asters also occur in the walls of the chonal canals and they extend distally along the walls of the dermal eavities, right up to within a short distance of the outer surface. The strongylosphaerasters oceupy the dermal membrane (Plate 13, figs. 22-24; Plate 14, fig. 20a) in a single or in several layers and are met with also in the walls of the cortical canals and subeortical cavities. On the whole the strongylosphaerasters situated superficially appear to be larger than those in the interior of the cortex. The sterrasters form dense masses in the middle armour layer of the cortex and oceur seattered also in the choanosome, where they are particularly abundant in the lobose specimen of var. megana and in var. microana.

Besides these microseleres, I found, in the centrifugal spicule-preparations of var. microana, two oxyasters with more slender, spined rays, and in those of the lobose specimen of var. megana numerous minute rhabds. Both these kinds of spicules 1 consider as foreign.

The stout choanosomal amphioxes (Plate 12, fig. 17c; Plate 13, figs. 1, 2, 17a, b, 20b) are fairly isoactine and quite sharply pointed. They are usually straight (Plate 13, fig. 2, 17b) or slightly curved (Plate 13, fig. 1), more rarcly angularly bent (Plate 13, fig. 17a) near the middle. The angular bend amounts to $S-12^{\circ}$, so that the two actines of these angular amphioxes enclose angles of $168-172^{\circ}$. These angularly bent choanosomal amphioxes are more frequent in the lobose specimen of var. megana and in var. microana than in the other two specimens.

The stout choanosomal amphioxes are $1.6-3.7 \mathrm{~mm}$. long and $20-72 \mu$ thick. Their thickness is on the whole proportional to their length. They are considerably longer in var. megana than in the other two varieties.

DIMENSIONS OF STOUT CHOANOEOMAL AMPHIONES OF SIDONOPS ANGULATA.

Var. megana, lolone specimen	Length, mm,	Maximum thickness, μ
Var. megana, massive specimen	$2-3.7$	$40-60$
Var. microana	$2.1-3.5$	$53-72$
Var. orthotriaena	$1.8-2.8$	$20-52$

The slender dermal amphioxes (Plate 12, figs. 16a, b, 17a; Plate 13, fig. 21b) are usually simply curved (Plate 12, figs. 16a, 17a), rarely angularly bent (Plate

12, fig. 16b). In the angularly bent spicules the angular bend amounts to 7 12°, and is usually, as in the spicule represented in Plate 12, fig. 16b, not in the middle, but considerably nearer one end than the other, the two straight parts of the spicule thus enclosing an angle of $168-173^{\circ}$ and being unequal in length. The slender dermal amphioxes are fairly isoactine, thickest in the middle, gradually attenuated towards the ends, and terminally abruptly and sharply pointed. They are 2.9-9.5 mm. long and $5-34 \mu$ thick. Those of var. orthotriaena are much smaller than those of the others.

DIMENSIONS OF SLENDER DERMAL AMPHIONES OF SIDONOPS ANGULATA.

	Length, mm.	Maximum thickness, μ
Var. megana, lobose specimen	$4.9-7.1$	$18-34$
Var. megana, massive specimen	$4.2-9.5$	$25-32$
Var. microana	$5.5-7$	$10-22$
Var. orthotriaena	$2.9-4.5$	$5-17$

Styles and style-derivates (Plate 13, fig. 20a) were not found in the massive specimen of var. megana at all and in the three other specimens they are very rare. The regular styles are straight, conic, sharp pointed at one end, and considerably thickened and club shaped at the other. They are $2.1-2.5 \mathrm{~mm}$. long and $60-100 \mu$ thick at the rounded end. In var. microana I found a style-derivate 2.3 mm . long and 110μ thick at the rounded end, which bore, 400μ below the rounded end, a terminally rounded branch-ray, 120μ long, directed obliquely towards the rounded end of the main shaft.

The plagio- and ortho-triaenes (Plate 12, figs. $16 \mathrm{~d}, 17 \mathrm{~d}, 21,22 ;$ Plate 13, figs. $3-16,18,19$) have a straight or slightly curved rhabdome, which is usually on the whole conical, and attenuated towards the pointed acladomal end, more rapidly in the acladomal terminal part than in the cladomal and central parts. These normal plagio- and ortho-triaene-rhabdomes are 1.5-2.8 mm. long and $47-82 \mu$ thick at the cladomal end. In var. orthotriaena I found two abnormal orthotriaenes, one with a cylindrical, terminally rounded, and considerably shortened and thickened rhabdome only 550μ long but 105μ thick, and another with an angularly bent rhabdome (Plate 13, fig. 19). The angle enclosed between the cladomal and acladomal parts of the latter is 109°. The clades are conic and usually pointed, rarely (Plate 13, fig. 8) rounded at the end. They are $330-700 \mu$ long, those of the plagiotriaenes of var. megana being a
gond deal longer than those of the plagio- and ortho-triaenes of the other two varicties. The clades of the same cladome are equal (Plate 13, figs. 9, 11, 15, 18), or slighty (Plate 13 , figs. $5,6,8,10,13,14,19$) or considerably (Plate 13, figs. $7,12,16$) unequat in tength. Generally the clades extend in a longitudinal plane passing through the axis of the rhabodome; sometimes, however, (Plate 13, fig. 4) an angular bend in a transverse plane is observed. Short clades are often (Ilate 13, fig. 7,12), long ones rarely (Plate 13, figs. 9, 12), nearly straight. (iencrally the clades are markedly curved, concave to the rhabdome. This curvature increases towarls the ends of the clades. In some (Plate 13, figs. 3, 1316,19) the degree of this increment of curvature is slight, in others (Plate 13, figs. $-s$) it is considerable. Sometimes the distal part of the clate is bent down abruptly" (angularly) (Plate 13, figs. 5, 10). The angles enclosed between the dade-chords and the axis of the rhabdome are in the two specimens of var. megunt on an arerage 101.3 and 103°, in var. microana $10 \overline{5} .6^{\circ}$, and in var. orthotriana 93.7°. These spicules are accordingly in the first two plagiotriacnes, in the last orthotriames. The clade-angles of the three clades of the same rhabdome are usually about equal, rarely (Plate 13, fig. 6) considerably different.

Very rarely one of the elades becomes quite rudimentary. Such diaene spicules were found only in var. orthotriacna.

DMENSIONS OF NORMAL PLAGIO-AND ORTHOTRIAENES OF SDDONOPS ANGULATA.

	Length of rhabdome min.	Thickness of rhabdome at the cladone μ	Lengeth of clade-chords μ	Angle between clade-chords and axis of rhabdome -	
				limits	average
Viar. megana, lobose specimen	1.82.8	50-82	350-700	$92-104$	101.3
Viar, megana, massive specimen	1.6-2.6	$50-80$	330-650	$89-111$	103
Vir. microana	1.52 .6	$50-77$	$3 \times 0-580$	$91-112$	105.6
Var. orthotriaena	2-2.35	47-78	380-500	91-9S	93.7

The rhabelomes of the anaclades (Plate 12, figs. 1-15; Plate 13, fig. 17c) are for a great part of their length nearly cylindrical. Of the long ones none were found intact in the spicule-preparations, all being broken. The longest fragment measured was 9 mm ., the Jongest rhablome observed intact was 6 mm . in length. The rhabdomes of the anadlades of var. microana appear to be
considerably shorter than those of the anaclades of the other two varieties. The acladomal end of the rhabdome is attenuated and pointed, or cylimdrical and terminally rounded (Plate $\mathbf{1 2}$, fig. 15). At the cladomal end the rhabdomes are in var. megana $7-39 \mu$, in the two other varieties $10-18 \mu$ thick. There is always on the summit of the cladome an apical protuberance which, however, does not contain a prolongation of the axial thread of the rhabdome, the latter terminating at the point where the axial threads of the clades arise from it. The axial threads of the clades are direeted obliquely downwards in their basal portion (Plate 12, figs. 1, 5, 13, 14). After extending a short distance in this direction they bend outward angularly and then follow the axes of the clades. This peculiarity of the axial threads of the clades is doubtlessly the cause of the formation of the apical protuberance of the cladome. Most of the anaclades have three fairly equal clades (Plate 12, figs. 1-6, 8, 9, 12-14). In some there are two longer and one short clade (Plate 12, fig. 7). In not a few of the anaclades of var. microana one clade has disappeared entirely, so that these spicules are diaenes (Plate 12, figs. 10, 11). The clades are conical, pointed, and when long, distinctly curved, concave towards the rhabdome (Plate 12, figs. 1, $3,5-10$). In short clades (Plate 12, figs. 2, 4, 11-14) this eurvature is usually slighter, often hardly perceptible. The distal part of the clade is usually curved less than the basal. Sometimes (Plate 12, figs. 3, 5, 6) an abrupt angular bend is olserved where the curved proximal part passes into the more straight distal part. The chords of the clades are in the anaclades of var. megana $45-210 \mu$, in those of var. orthotriaena $33-80 \mu$, and in those of var. microana only $30-50 \mu$ long. The angles between the elade-chords and the axis of the rhabdome are $27-66^{\circ}$, on an average 47°.

DIMENSIONS OF CLADES OF SIDONOPS ANGULATA. ${ }^{1}$

	Thickness of rhabdone at the cladome	Length of clade-chords	A ngle between clade-chords and axis of rhabdome o	
Var. megana, lobose specimen	$11-39$	μ	limits	average
Var. megana, massive specimen	$7-38$	$48-210$	$35-65$	47
Var. microana	$10-18$	$30-50$	272	$27-66$
Var. orthotriaena	$14-18$	$33-50$	$43-54$	45

[^2]The various oxyasters and oxysphaerasters (Plate 14, figs. 1-15a, b, e, 16, $23,24)$ form a continuous series. They have from one to twenty-three rays. Forms with more than thirteen rays are much more frequent than forms with fewer, and among the latter those with from one to three rays much seareer than those with four or more. These asters form a fairly continuous series ranging from large oxyasters without centrum and few rays (Plate 14, fig. 24) to small oxyphaerasters with large centrum and numerous rays (Plate 14, figs. 16, 23). The rays are straight, usually on the whole conieal, attenuated towards the sharppeinted end in the basal and middle parts more gradually than in the terminal part, and perfectly smooth (Plate 14, figs. 16, 23, 24). Their shape varies in correlation to their size, the longest rays being the most slender and the shortest the stoutest. Sometimes, chiefly in the two- to four-rayed oxyasters (Plate 14, figs. 3b, 13b), short, rounded or truneate rudiments of reduced rays occur in addition to the properly developed conical and pointed ones. These rayrudiments are generally smooth, rounded knobs not longer than broad (Plate 14, fig. 3b), more rarely longer and in this case sometimes crowned with a few terminal spines. The rays are always concentric. Their arrangement is in the few-rayed oxyasters often irregular, in the many-rayed ones nearly always regular. In none of the two-rayed forms observed were the two rays regularly arranged, that is, situated exactly opposite each other in a straight line, the angle enclosed loy them being always considerably less than 180°. In several of these asters this angle was under 120° and in one even under 90°. These diactine asters consequently look like more or less opened compasses. Also in the three-rayed oxyasters (Plate 14, figs. 3b, 13b, 24) irregular rayarrangement is the rule. In the oxyasters with four (Plate 14, fig. 1b) or more (Pl ate 14 , figs. 4 $), 16,23$) properly developed pointed rays, on the other hand, the rays are usually regularly arranged.

The oxyasters and oxysphacrasters are 11-64 μ in total diameter, the centrum attaining it maximum diameter of 12μ. The normal conically pointed rays are $2.5-40 \mu$ long, and at the base $1.6-5 \mu$ thick. Roughly speaking, the size of the rays and of the whole aster is in inverse proportion to the number of rays. Only the monactine oxyasters appear as an exception to this rule. Nince however these spicules are rare and I was able to measure but few, I do not attach much importance to this fact. The one- to five-rayed oxyasters are 2564μ in diameter, their normal conical rays measuring $13-40$ by $1.7-5 \mu$. The six- to ten-rayed oxyasters are 23-44 μ in diameter, their rays measuring S. $5-2.5$ by $1.6-4.5 \mu$. The eleven- to twenty-three-rayed oxyasters are $11-25 \mu$ in diameter, their rays measuring $2.5-13$ by $1.7-3.3 \mu$.

The development (size) of the centrum is, roughly speaking, in true proportion to the number of rays and in inverse proportion to the size of the aster. In some of the large two- to five-rayed oxyasters the knob-like ray-rudiments clustering round the centre form an irregular thickened mass, but none of these asters have a true centrum. The largest oxyaster with such a centrum observed was 38μ in diameter. Nost of the six- and seven-rayed oxyasters are also without centrum, but among the oxyasters with eight to ten rays a great many are provided with one, and in the oxyasters with eleven or more rays a spherical central thickening is invariably present. In the larger oxyasters with centrum the diameter of the latter is always much less than the ray-length, while in the smaliest oxyasters (oxysphaerasters), which also possess the greatest number of rays, the diameter of the centrum considerably exceeds the ray-length.

The oxyasters and oxysphacrasters of the four specimens are very similar. The differences observed, which are recorded in the appended table (page 34), are well within the limits of the accidental inaccuracies due to the smallness of the number (only about one hundred) of oxyasters measured.

The strongylosphaerasters (Plate 14, figs. 1d, 2d, 5d, 7d, 9d, 10d, 17-19, $25-30$) usually have a spherical centrum and about ten to twenty radial rays. In most of the strongylosphacrasters all the rays are about equal in size (Plate 14, figs. $17,25-28$). In not a few strongylosphaerasters of var. megana and var. orthotriaena however, some of the rays are reduced to insignificant protuberances of the surface of the centrum and are much shorter than the others. On Plate 14 two strongylosphaerasters of this kind are represented, one (Figs. 18, 19) with all but three, the other (Figs. 29, 30) with all but one ray thus reduced. The properly developed rays are cylindrical or cylindroconical and truncate, very rarely conical and pointed. In var. microana they are on the whole more slender, longer, and distally more attenuated than in the other two varieties, and the strongylosphaerasters with pointed, conical rays have been observed only in this variety. The rays are $1-12 \mu$ long and at the base $2-6 \mu$ thick, the dimensions of the fully developed ones being in inverse proportion to their number. Strongylosphaerasters with only one fully developed ray are rare and have been found only in var. orthotriaena. In these the single ray is $12 \mu \mathrm{long}$ and 6μ thick. In the strongylosphacrasters with two or three fully developed rays, which are quite frequently met with in both specimens of var. megana and in the specimen of var. orthotriaena, these rays are 8μ long and $4-4.5 \mu$ thick. In the strongylosphaerasters with from four to nine fully developed rays which are still more abundant in var. megana and var. orthotriaena, these rays are
1）MENSIONS OF OXYASTERS AND OXYMPHAERASTERS OF SHONOPS ANGULATA．

		管	d 9		号	$\stackrel{+}{-}$	${ }^{1} \times$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
号	 	형	$\stackrel{1}{9}$		成永	dこ	$\cdots \stackrel{m}{\sim}$	家
		＋180			\％	$\stackrel{\sum_{0}^{\circ} \mathrm{O}}{1}$	¢ 9	6 역
		穴凩	ف ${ }_{\text {d }}^{0}$	会品	占	\％${ }_{\text {¢ }}^{\text {c }}$	$\stackrel{\text { d，}}{\substack{\text { ci }}}$	\pm ¢
			$\stackrel{1}{1} \mathrm{C}$	$\stackrel{y}{\square}$	$\stackrel{1}{\infty}$	$\stackrel{+}{\underset{-}{+}}$		\cdots am
			¢ ${ }_{6}^{6}$	\therefore	¢ ${ }_{\text {on }}^{\text {¢ }}$	のに		$\stackrel{1}{6} 0_{0}^{0}$
			\％	$\stackrel{\square}{8}$	$\stackrel{\square}{3}$	$\stackrel{y}{\square}$		$\therefore 0$
			¢98	倣 15	站号	$\stackrel{\rightharpoonup}{*}$		$\stackrel{1}{\sim}$
		10	$\mathrm{Si}_{\text {ci }}$	cic	\square	$\overbrace{\text { ¢ }}^{\text {en }}$	$\therefore \stackrel{1}{2}$	\bigcirc
	ноч（！n）sies jo yızuə	！	交ल	¢ $\stackrel{1}{8}$	9	d．	$6 \geqslant$	$\therefore \infty$
		$\stackrel{?}{7}$	\％	\％	号	\％	$\therefore \bigcirc$	$b r$
		$\stackrel{8}{8}$	感	守管	\％	大 ¢	± 9	ำ
		4	小～		$\therefore \stackrel{3}{\square}$		＊ism	¢m
		81	$\stackrel{\text { ¢ }}{\substack{\text { an } \\ 0}}$	動品	\％\％	－	$\omega \stackrel{1}{9}$	$\overbrace{\text { Sic }}$
		®	号次	\％	咎	边	安9	b은
		5		令为	¢ 7	合	¢ ¢ ¢	$\pm \cong$
			¢0	$\therefore 10$	$\therefore+$	$\therefore \stackrel{0}{\circ}$	\therefore 숭	$\stackrel{1}{\square}$
	if（1uasald nays＇ums）way 		\％	को ${ }_{6}{ }^{\text {ci }}$	？	$\pm \pm$	\cdots	$\infty 0$
			$\stackrel{\square}{\circ}$	\％	$\stackrel{\text { ¢ }}{0}$	号	∞	$\cdots \infty$
	．＇apauep ixiol		\pm	± 8	¢i ${ }_{\text {co }}$	${ }_{8}^{\circ}$	¢ิ	が
		－	O	if	to	c	$\stackrel{\cong}{ \pm}$	\％ \％

5.5-6 μ long and 4μ thick. In the ordinary strongylosphacrasters with from ten to twenty equal rays, which occur in great numbers in all the specimens, the rays are $2-4 \mu$ thick, in var. microana $3-9 \mu$, and in the other two varieties $1-7 \mu$ long.

The size of the centrum and of the whole aster is, like the size of the rays, in inverse proportion to the number of the number of the latter. In the strongylosphaerasters of var. megana and var. orthotriaena with from one to nine fully developed rays, the centrum is $11-13 \mu$ and the whole aster $21-26 \mu$ in diameter. In the strongylosphaerasters with from ten to twenty equal rays these dimensions are $7-14 \mu$ and $14-24.5 \mu$ respectively in all the three varietics.

The distal parts of the fully developed rays bear numerons spines while their basal part and the centrum are smooth: The spines are conic, usually $0.5-1 \mu$ long, rarely smaller, and not recurved. Those situated on the teminal face of the ray appear to radiate from a common centre within the tip of the ray and diverge accordingly; those on the sides of the ray are slightly oblique, inclined towards the end of the ray. When the ray is reduced in length the spines on its terminal face retain their full size. Consequently the low protuberances representing greatly reduced, rudimentary rays of this kind, are covered with tufts of spines (Plate 14, figs. 18, 19, 29, 30).

In the rays of some of the strongylosphaerasters of var. orthotriaena I observed thick axial threads. These were joined in a regularly concentric manner in the centre of the spicule and extended in straight lines along the axes of the rays to within a short distance of their ends, where they appeared to terminate with slight irregular thickenings. Occasionally it seemed that exceedingly fine branches extending towards the spines arose from the distal parts of these axial threads. These being near the limit of microscopic visibility, it is doubtful whether such structures really exist, or whether the impression of them was merely an optical illusion.

Besides the strongylosphacrasters deseribed above I found in the centrifugal spicule-preparations of the massive specimen of var. megana some small ones, $7.5-14 \mu$ in total cliameter with a centrum measuring only $1.5-2.5 \mu$, and seventeen to nincteen minutely spined rays $0.5-1 \mu$ thick. These asters appear to be young stages of the ordinary strongylosphacrasters.

The sterrasters (Plate 13, figs. 22-25; Plate 15, figs. 1-3, 5-12) are more or less regular flattened ellipsoids. When seen from above, with the umbilicus in the centre of the upper side, their contour generally appears as a regular ellipse, sometimes nearly approaching a circle (Plate 15, figs. 9-11). In var.

DIMENSIONS OF STRONGYLOSPHAERASTERS OF SIDONOPS ANGULATA.

Number of fully developed rays		1-3	4-9	10-20
Tolal diameter of aslers:	var. megana, lobose specimen var. megama, massive specimen var. microana var. orthor rinena	$\begin{aligned} & 21 \\ & 26 \\ & 21 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 21 \end{aligned}$	$\begin{aligned} & 14-22.5 \\ & 16-24.5 \\ & 19-24 \\ & 17-22 \end{aligned}$
Diameter of centrum k	var. magana, lobose specimen var. megana, missive specimen var. mierona var. orthotriaena	$\begin{aligned} & 12 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 8-14 \\ & 7-13.7 \\ & 7-13.5 \\ & 8.5-12 \end{aligned}$
Length of rays (withont the centrum) /"	```var.mogana, lobose speeimun Var. megana, massive specimen var. microana var. orthotriaena```	$\begin{aligned} & s \\ & s \\ & 12 \end{aligned}$	$\begin{aligned} & 6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2-7 \\ & 1-6.5 \\ & 3-9 \\ & 3.5-5.5 \end{aligned}$
Basal thickness of rays \%	Var. megana, lobose specimen Var megana, massive specimen var. mieroana var. orthotriaena	$\begin{aligned} & 1 \\ & 4.5 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 2-4 \\ & 24 \\ & 2-4 \\ & 2-4 \end{aligned}$

orthotriuena, however, a good many sterrasters have, when seen in this position, a somewhat rhomboidically distorted outline (Plate 15, fig. 12). The sterrasters are 85122μ long, $75-113 \mu$ broad, and $57-86 \mu$ thick. They are largest in var. megana, smatler in var. orthotriuena, and still smaller in var. microama.

DIMENSIONS OF STERRASTERS OF SIDONOPS ANGULATA.

	Length $\stackrel{\mu}{ }$	$\underset{\mu}{\text { Breadth }}$	$\begin{gathered} \text { Thickness } \\ \mu \end{gathered}$
Var. megana, lobose specimen	$10.5-122$	90-105	73-86
Var. megana, massive specimen	110-120	100-111	70-53
Var. microana	$85-97$	75-90	$57-6.5$
Var. orthotrizena	$90-111$	SO-91	65-79

The average proportion of length to brealth to thickness is in the sterrasters of the lohose specimen of var. megence $100: 87: 68$, in those of the massive specimen of rar. meguna $100: 92: 63$, in those of var. microana $100: 59: 66$, and in those of var. orthotriuena $100: 58: 73$.

In a thin radial splinter of a very young sterraster of the massive specimen of var. megana with long, slender, and pointed ray-ends, which lay opportunely
for examination with high powers in a centrifugal spicule-preparation, I clearly saw that a radial axial thread, extending right up to its end, is contained in each ray. In the centre of a young sterraster of var. orthotriuena a little cluster of a few very small granules, lying close together, was observed. In the centre of a slightly heated, adult sterraster of the massive specimen of var. megana I observed an apparently solid black sphere, 15μ in diameter, from which black rays radiated to some distance. Such a blackening has been observed several times. It seems to show that the central part of the spicule contains more organic substance than the superficial part, and that the axial threads of the rays are distally silicified to a greater extent than proximally.

The distal, freely protruding parts of the rays are in normal sterrasters everywhere, except in the vicinity of the umbilicus, $4-5 \mu$ thick and provided with a terminal verticil of usually four to six stout, blunt, and often somewhat curved, lateral spines (Plate 15, figs. 5, 6). The distal ends of the rays surrounding the umbilicus have a transverse section, elongated in a direction radial to the umbilicus, usually $4-5 \mu$ broad and $6-7 \mu$ long. They are generally provided with from seven to nine lateral spines and also bear several spines on their terminal face (Plate 15, figs. 1-3). The spines of these rays, which are directed towards the centre of the umbilicus, are a little larger than the others and often curved.

Besides these normal sterrasters some abnormal ones, for which I propose the term sterroids, were observed, chiefly in var. orthotriaena and the massive specimen of var. megana. The most frequent kinds of abnormities met with are sterrasters in which the distal ray-ends are thicker, as much as $6-9 \mu$ in transverse diameter, farther apart, and provided with a greater number of spines than in the normal sterrasters. In some of these sterrasters single scattered spines, similar to those forming the verticils on the rays, arise here and there between the protruding distal ray-ends directly from the surface of the solid centrum of the spicule. Much more rarely strongylosphaeraster-like sterrasters with relatively long, terminally rounded, protruding rays were observed. In some of these the protruding ray-ends were smooth, in others densely covered with small spines.

The two specimens of var. megana were trawled at Station 2975 on February 12,1889 , in $34^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{N} ., 119^{\circ} 29^{\prime} \mathrm{W}$., depth 66 m . (36 f .); they grew on a bottom of gravel and broken shells; the bottom temperature was $73.9^{\circ}\left(57^{\circ} \mathrm{F}\right.$.). The specimen of var. microana was caught with the tangles at Station 4417 on April 12, 1904, near Santa Barbara Islands, S. W. rock Santa Barbara Island, N. So W.,
11.7 km．（ 6.3 miles），drift s． $73^{\circ} \mathrm{W}$ ．：depth 53 m ．（ 29 f. ）；it grew on a bottom of fine yellow sand and coralline rock．The specimen of var．orthotriaena was trawled at Station 294.5 on February 6,1889 ，in $34^{\circ} \mathrm{N} .119^{\circ} 29^{\prime} 30^{\prime \prime}$ W．，depth 55 ml ．（30 f．）：it grew on a pebbly hottom．

The similarity of the rather peculiar smooth oxyasters and oxysphaerasters and the smallness of the differences of most of the other skeletal elements and the soft parts of these sponges show that they are nearly related to one another， a conclusion which is corroboratel by the fact that they all come from the same region．The differenees between the two specimens from Station 2975 are so slight that I do not hesitate to place them in the same systematic unit．Several of the differences between these and the other two and between the latter are， on the other hand，considerable．Some of these differences，as for instance the much smaller size of both kinds of amphioxes in the smaller specimen from Sta－ tion 2945，may be due merely to differenees of age or growth and are therefore systematically unimportant；other differenees appear to be of greater signifi－ cance，and of these the following may be noted：the subeortical triaenes of the specimen from station 2915 are orthotriacnes，while those of the others are plagiotriacnes；the strongylosphaerasters of the specimen from Station 4417 have more slender and conical rays，those of the other specimens stouter and more eylindrical ones．Many of the sterrasters of the specimen from Station 2945 are rhomboidically distorted，while all or nearly all the sterrasters of the others have regularly elliptical contours．The sterrasters of the specimen from station 2945 are slightly，those of the specimen from Station 4417 very con－ siderably，smaller than those of the specimens from Station 2975 ．The anaclades of the specimen from Station 4417 are all small；in the specimen from Station 2945 medium sized，and in the specimens from Station 2975 large anaclades occur besides the small ones．In the specimen from Station 4417 the anaclades are partly triaene and partly diaene，in the two latter all the anaclades observed were triaene．There can，I think，be no doubt about these differences being due to congenital particularities and not to mere individual（somatic）adaptations or differences of chromatin－separation or mixture before and during fertiliza－ tion．For this qualitative reason，and also for the quantitative reason that these differences are by no means ineonsiderable in extent，I think that they must find systematie expression．As these rariations are due mostly to peeu－ liarities of parts lying either，like the strongylasters and sterrasters，close to the surface，or，like the anaclades，even protruding beyond it；as struetures thus directly exposed to the influence of external forees are，a priori，liable to be
somewhat different even in most closely related individuals; and finally as the difference in the subcortieal triaenes, which is the only valid difference of the less exposed internal parts, is, as a comparison of the cladomes of these triaenes (Plate 26) shows, not very great; it appears advisable to place these four sponges in one and the same species, with three varieties within this species.

DIFFERENCES BETWEEN THE VARIETIES OF SIDONOPS ANGULATA.

	Var. megana	Var, microana	Var. orthotriaena
Colour	white, yellowish, reddish brown.	dirty white, purple-brown.	brownish white.
Stout, choanosomal amphioxes	2-3.7 mm. long, 40-72 μ thick.	$1.8-2.5 \mathrm{~mm}$. long, 20-52 2 thick.	1.6-2.5 mm. long, 20-70 μ thick.
Slender, dermal amphioxes	not numerous; 4.2-9.5 mm. long, 18-34 $/ \mathrm{k}$ thick.	very abundant; $5.5-7 \mathrm{~mm}$. long, $10-22 \mu$ thick.	not numerous; 2.9-1.5 mm . long, 5-17 $/ \mathrm{t}$ thick.
Styles (style-derivates)	$2.1-2.5 \mathrm{~mm}$. long, $60-100$ μ thick (not found in the massive specimen).	as in the lobose specimen of var. megana.	as in the lobose specimen of var. megana.
Plagio- or orthotriaenes	plagiotriaenes. rhabdome $1.6-2.8 \mathrm{~mm}$. long, $50-82 \mu$ thick; clades 330-700 μ long; clade-angle $92-104^{\circ}$, average 102.15°.	plagiotriaenes. rhabdomes $1.5-2.6 \mathrm{~mm}$. long, $50-77 \mu$ thick; clates $3 \mathrm{~s} 0-5 \mathrm{~s} 0 \mathrm{H}$ long; clade-angle $91-112^{\circ}$, average 105.6°.	orthotriaenes. rhabdome $\quad 2-2.35 \mathrm{~mm}$. long, $4 \overrightarrow{7}-75 \mu$ thiek; clarles 380-500 μ long; cladeangle $91-98^{\circ}$, average 93.7°.
Anaclades	anatriaenes. rhabdome long, 7-39 μ thick; clades $45-210$ / long; clade-angle $27-66^{\circ}$, average 46°.	anatriaenes and anadiaenes. rhaldome shorter, $10-$ 18μ thick; clades $30-50 \mu$ long; clade-angle $50-62^{\circ}$, average 47°.	anatriaenes. rhabdome long, 14-15 /2 thick; clades 33-80 , " long; clade-angle $13-54^{\circ}$, a verage 48°.
Oxyasters and oxysphacrasters	1-23 rays; 11-64 $/ 1$ in total diameter.	1-18 rays; $15-54 \mu$ in total diameter.	2-20 rays; $13-60 \mu$ in total diameter.
Strongylosplacrasters	3-20 more cylindrical rays; $11-26 \mu$ in total diameter.	10-17 more conic rays; $19-24 \mu$ in total diameter.	1-17 more cylindrical rays; $17-21 \quad n$ in total diameter.
Sterrasters	all regularly ellipsoidal; 105-122 μ long; $90-114 \mu$ broad, $70-86 \mu$ thick.	all regularly ellipsoidal; 85-97 μ long, $75-90$ u broad, $57-65 \mu$ thick.	besides the regular ellipsoidal also rhomboidically distorted ones, 97 -111 μ long, so-94 μ broad, $65-$ 79μ thick.

The structure of the skeleton and the canal-system with its cribriporal afferents and its uniporal efferents clearly show that this species belongs to Sidonops. None of the previously deseribed species either of Sidonops or

Georlia, which latter I have, for the reasons given in the description of Geodia ugussizii, also compared, at all resemble these sponges in their spiculation. The only speceies similar to s. angulata is S. bicolor deseribed in this Memoir, and from this it is distinguished by the possession of anaclades and angularly bent amphowes, the smoothness of the oxyasters and oxysphaerasters, and the smaller size of the sterrasters.

Sidonops oxyastra, sp. nov.

Prate 6. figs. 1-23; Plate 7. figs. 1-20; Plate \& figs. 1-15.
I estahlish this species for two speeimens from Dunean Island, Galapagos. The asters of this species are all oxyasters (oxysphacrasters) and to this the specific name refers.

The larger of the two specimens (Plate 6, fig. 5) forms a mass 94 mm . in maximum diameter, attached to a flat, water-worn pebble, half of which it has ofergrown. Deep incisions partly divide this mass into lobes; the central undivided part is 76 mm . broad; the lobes (Plate 6, fig. 4) taper distally and are rounded. The surface appears undulating, smooth, and, to the unaided eye, destitute of a spicule-fur. Large parts of the strongly convex and most exposed portions of the surface are altogether without pores. In other exposed parts a few minute pores are observed. The flat and the concave, more sheltered parts of the surface are perforated by very numerous pores, two kinds of which can be distinguished. The whole of the extensive flat surface of the central mass and considerable parts of the surface of the lobes are oceupied by sieves containing small afferent pores. In some places, where the dermal membrane forming these pore-sieves has been rubbed off the entranees to the radial afferent cortical camals are exposed to view. There is a tract $4-14 \mathrm{~mm}$. in extent occupied by a group of large and conspicuous efferent pores (Plate 6, fig. 4) on nearly every lobe.

The smaller specimen, which measures 56 mm . in maximum diameter, resembles the larger one, described above, in every respect. It also grew, as the impression in the detached base shows, on a flat pebble perhaps another part of the one to which the larger specimen is attached.

A monaxonid sponge (Plate 6, figs. 19a, 20a; Plate 7, figs. 1b, 2b, 6b) and composite aseiclians incrust parts of the afferent areas of both specimens.

The colour of the surface of the large undivided central mass is in both specimens (in spirit) purplish brown, that of the other parts much lighter, brownish white. The interior is light brown.

A cortex (Plate 7, figs. 1a, 2a, 6a), composed of a thin outer dermal layer, a thick middle sterraster-armour layer, and a thin inner fibrous layer, is developed superficially. The whole cortex is, under most parts of the surface, $700-750 \mu$, in some parts of the efferent areas up to 1.6 mm . thick. As such thicknesses of the cortex have been observed only between widely open efferent cortical canals they may be produced by the dilatation of the latter. The dermal layer is in the afferent areas on an average about 40μ thick and excavated by systems of subdermal canals. In the efferent areas it is on an average about 60μ thick, solid, and occupied by numerous paratangentially disposed spindle-cells. The sterraster-armour layer is in the afferent areas about 600μ thick and everywhere, except in the walls of the cortical canals, occupied by dense masses of sterrasters. In parts of them the portions of the middle layer free from sterrasters around the cortical canals are rather extensive and considerably widened distally (Plate 7, fig. 6). The inner fibrous layer is $35-70 \mu$ thick and occupied by paratangential, somewhat undulating fibres, staining strongly with anilineblue.

The choanosome is traversed by strands composed of large and conspicuous elongated cells (Plate 6, figs. 1, 2). These strands are $60-90 \mu$ broad. The cells composing them are arranged rather irregularly, but on the whole distinctly longitudinally. They are mostly spindle shaped, $20-30 \mu$ long and $4-7 \mu$ thick. Here and there (Plate 6, fig. 1, to the left below) thicker, more oval elements, measuring $20 \times 11 \mu$, are observed in the strands. The plasma of these cells is occupied by large granules, staining strongly with haematoxylin.

Canal-system. The afferent areas of the surface are occupied by sieve-like pore-groups $0.5-1 \mathrm{~mm}$. in diameter (Plate 8, fig. 13). These pore-sieves lie close together, being separated only by narrow poreless tracts. The afferent pores themselves (Plate 8, fig. 15) are in the preparations, probably in consequence of post mortem shrinkage, somewhat irregular in shape, $40-120 \mu$ wide, and separated by dermal bands of varying breadth. The broader bands, which form a sort of primary network, are thick, reach down to the middle layer of the cortex, and contain asters and dermal rhabds. The narrower bands which connect these primaries, are quite thin and contain only a few small asters or no spicules at all (Plate 8, fig. 15). The pores of each group (pore-sieve) lead into a system of subdermal cavities, which converge and unite to form a radial canal. These radial afferent cortical canals, which penetrate the sterrasterarmour layer, are circular in transverse section and about 45μ wide. They are distributed somewhat regularly over the afferent areas, their centres being $0.7-1$ mm. apart.

Below the cortex of the afferent areas numerous eavities, which appear comered with each other by paratangential canals are met with (Plate 7, figs. 1, 2, 6). lnto this system of subcortical cavities the radial afferent cortical canals open out, and from it numerous narrow afferent canals, which extend downwards into the choanosome, take their rise.

The intermediate tissue is poorly developed, the final ramifications of the canals and the flagellate chambers being separated only by thin membranes (Plate 6, fig. 3). The flagellate chambers are, so far as I could make out, spheri(al and measure $17-25$) μ in diameter.

The efferent canals join to very wide (up to 1.5 mm .) efferent canal-stems (Plate 7, figs. 1d, 2d) which extend towards the efferent areas of the cortex, below which they join to form a more or less continuous efferent subcortical eavity. From this the radial efferent cortical canals take their rise. These canals are $0.1-1 \mathrm{~mm}$. wide, have a circular transverse section, and open out freely on the surface. They are destitute of dermal pore-sieves (umiporal). Their openings, the efferent pores (Plate 6, fig. 4; Plate 7, figs. 1e, 2e; Plate 8, fig. 14), which occupy the efferent areas above described, are circular and, like the canals which terminate in them, $0.1-1 \mathrm{~mm}$. wide. The great difference in size between the smallest and the largest of these pores is remarkable. The small ones are few in number and scattered irregularly among the much more numerots large ones. The centres of the efferent pores are, irrespective of the width of the pores, quite uniformly 1.2 mm . apart, and the distance between the margins of adjacent pores is consequently in inverse proportion to their size. This and the fact that the cortex is thicker between large pores than between small ones, seem to indieate that the great differences of width observed in the efferent pores (cortical canals) are due to differences in degree of contraction.

Skeleton. In the interior of the choanosome numerous, rather irregularly seattered amphioxes, some amphistrongyles, a few styles, large oxyasters, and some sterrasters, mostly young forms, are met with. Towards the surface rhabds, similar to those mentioned above, together with the rhabdomes of numerous subcortical plagiotriaenes and a few small subeortical anaclades, form radial bundles which abut vertically or somewhat obliquely on the cortex (Plate 7, figs. 1, 2, 6). In this subeortical region of the choanosome and in the inner layer of the cortex also minute dermal rhabds occur; the (young) sterrasters are bere much less abundant than in the interior, and the large oxyasters of the latter for the most part replaced by large oxysphaerasters. In the middle layer of the cortex the sterrasters form a dense mass. The dermal layer contains
numerous small oxyasters and oxysphaerasters, numerous minute dermal rhabds, and a few small anaelades. The small oxyasters and oxysphaerasters fom a dense coating at the surface. The minute dermal rhabds and anaclades traverse the dermal layer more or less radially. Their proximal ends are implanted in the distal part of the sterraster-armour layer, and their distal ends protrude freely beyond the surface. The dermal rhabds are styles with attenuated, proximally situated, rounded ends. In the efferent areas of the surface (Plate 6, fig. 21) these spicules form dense masses. In the afferent areas they are not nearly so numerous. The freely protruding ends of these spicules are in the efferent areas very close together and nearly parallel, like grass on a good lawn. In the afferent areas they form tuft-like groups of diverging spicules like grass on arid ground. The anaclades are confined to the afferent areas. In one place (Plate 6, fig. 23) I found them in great numbers. Generally they are scarce. Where the monaxonid sponge-erusts, above mentioned, extend, these spieules penetrate it, their eladomes lying within the attached sponge-crust (Plate 6, figs. 191, 20b), anehoring it to the Sidonops. These anaclades are mostly anatriaenes, but anadiaenes, anamonaenes, and mesanaclades, chiefly mesanatriaenes, also occur.

The large choanosomal amphioxes (Plate 6, fig. 14; Plate 8, figs. 4a, 5) are straight or slightly curved, $1.1-1.55 \mathrm{~mm}$. long and 1032μ thick.

The rare large amphistrongyles are straight, isoactine, and $0.8-1 \mathrm{~mm}$. long. They are in the middle $18-23 \mu$ thick and taper towards the two equal, rounded ends. The degree of attenuation is variable, as the following three measurements show.

Thickness in the middle
23μ
20μ
18μ

Thickness at the ends
21μ
17μ
12μ

The very rare large styles are straight and shorter and, at the rounded end, thicker than the amphioxes and amphistrongyles. One that I measured was 850μ long and, at the rounded end, 38μ thick.

The minute dermal styles (Plate 6, figs. 21, 22) are more or less, sometimes rather abruptly, curved, 130230μ, usually about 200μ long, and, at the thickest point, which lies between the middle and the rounded end, $3-5.5 \mu$ thick. They taper towards both ends; the distal end is sharp pointed; the proximal end rounded and $1.5-3 \mu$ thick, usually a little less than half as thick as the spieule at its thickest point.

The plagiotriacnes (Plate 6, figs. 6-13; Plate 8, fig. 4b, c) have a conical sharp-pointed rhabdome, which is straight or slightly curved in its acladomal part. The rhablome is $1-1.65 \mathrm{~mm}$. long and, at the cladome $21-40 \mu$ thick. The clades are usually conical and pointed; rarely one (Plate 6, fig. 7), two, or all three (Plate 6, fig. 6) are reduced in length and rounded off terminally. The nomal pointed clades of the same cladome are usually about equal in length, more rarely distinetly mequal (Plate 6, figs. S, 10). The basal part of the clades is directed olliquely upward and always curved, concave to the rhabdome, their distal part is direeted outward and straight or slightly curved in the opposite direction. The development of this upward bend of the distai part of the clade is usually proportional to its length. The chords of the normal (pointed) clades are $250-255 \mu$ long and enelose angles of $100-118^{\circ}$, on an average 108.5°, with the axis of the rhabdome.

In a spicule-preparation 1 found a triacne with a clade-chord 350 mlong , enclosing an angle of 90° with the rhablome. Perhaps this orthotriaene is a foreign spicule.

The rhabdomes of the small dermal anaclades (Plate 6, figs. 15-18, 191, 20b, 23) appear - 1 found none intact in the spicule-preparations - to be over 1 mm . long. They are, at the cladome, $5-12 \mu$ thick. Their cladomes are very variable. The most frequent forms are anatriaenes (Plate 6, figs. 17, 18, 19b, 20 b) with a protuberance on the apex of the cladome. Their clades are pointed, very rarely hlunt, more or less angularly bent, concave to the rhabdome and often rather unequal. This inequality is sometimes carred to the extent of a complete suppression of one or two clades, whereby diaene and monaene forms are produced. Not infrequently the apical protuberance is replaced by a long, blunt (Plate 6, fig. 15, 16) or, more frequently, pointed epirhabd. Most of these mesinatlades are quite regular mesanatriaenes (Plate 6, fig. 15). Some of them are, howerer, rendered irregular by one of the clades extending upwards, proclade-fashion (Ilate 6, fig. 16). These mesanatriaenes were found only at the place where the anaclades are abundant. The chords of the clades of the more regular triaene and mesotriaene anaclades are $15-24 \mu$ long and enclose angles of $40-65^{\circ}$, on an average 57°, with the axis of the rhabdome. The clades of the diaene and monaene anaclades are longer, some of them attaining a length of 30μ. The epirbabd is, when fully developed, straight, conic, sharp pointed, and 65-75 μ long.

Although the different kinds of euasters are, to some extent, connected by transitional forms, three categories can readily be distinguished: large
choanosomal few-rayed forms, without large centrum (large oxyasters); large subcortical many-rayed forms, with large centrum (large oxysphaerasters); and small, dermal, mostly many-rayed forms, with or without large centrum (small oxyasters and oxysphaerasters).

The large choanosomal oxyasters (Plate 7, figs. 3-5a, 7, 8, 13-15) have a slight central thickening $2.5-4.5 \mu$, that is two to three times the basal thickness of the rays, in diameter, and from four to ten, most frequently seven, straight, conical and pointed or blunt, concentric, and quite regularly distributed rays. With the exception of its proximal end, the whole of the ray is covered with rather large and uniformly distributed spines (Plate 7, figs. 13-15). The rays are $11-25 \mu$ long and at the base usually $1.2-2 \mu$ thick, the total diameter of the aster being $18-45 \mu$. A few asters of this kind, with much thinner rays also occur. These asters, which are less than 20μ in total diameter, have rays, at the base, only $0.5-0.7 \mu$ thick. They are probably young forms.

The large subcortical-oxysphaerasters (Plate 7, figs. 3e, 19, 20) have a spherical centrum $4.2-6.5 \mu$, that is from a quarter to a third of the whole aster, in diameter, and from sixteen to twenty-three concentric and regularly distributed rays. The rays are straight, conical, sharp pointed, covered with rather large spines, $6-7 \mu$ long and at the base $1.1-1.4 \mu$ thick. The whole aster is $16-22 \mu$ in diameter.

The small dermal oxyasters and oxysphaerasters (Plate 7, figs. 3-5b, 9-12, 16-18) form a continuous series. One end of this series is represented by forms which have hardly any central thickening at all and appear as true oxyasters (Plate 7, figs. 9 and 10 right above, 18). The other end of the series is represented by forms with a centrum more than a third of the whole aster in diameter. The small dermal oxyasters and oxysphaerasters have from nine to eighteen straight, conical, and regularly distributed rays. The rays always appear to bear numerous small spines. Often however these spines are so minute that they cannot be made out as such, a roughness of the ray then being the only indication of their presence. The rays are (without the centrum) $2-4.5 \mu$ long and at the base $0.7-1.5 \mu$ thick, the total diameter of the aster being $6-13.5 \mu$.

The sterrasters (Plate 6, fig. 21; Plate 8, figs. 1-3, 6-12) are flattened ellipsoids, $76-85 \mu$ long, $66-73 \mu$ broad, and $50-64 \mu$ thick, the average proportion of length to breadth to thickness being 100:90:76.

Very young sterrasters, some hardly 10μ in diameter, were observed. These appear as spheres composed of equal and regularly distributed, immeasurably thin, straight, radial rays. In a spicule-preparation I found a
chip of an adult sterraster, which I was able with a high power to photograph (Plate 8, fig. 12). This photograph shows that the centre of this spicule is oecupied by a cluster of granules (a), from which the radial lines, traversing the body of the sterraster, arise. The central granule-cluster is about 4μ in diameter.

The rays protruding over the surface of the solid centrum are in most of the adult sterrasters (Plate 8 , figs. 10, 11) $2-3 \mu$ thick and provided with terminal verticils of usually five or six lateral spines. In some of the sterrasters (Plate 8, figs. 6 S) these rays are $3.5-4.5 \mu$ thick and usually provided with seven or eight lateral and one or more obliquely arising terminal spines.

Buth specimens were collected on April 13, 1888, at Dunean Island, Galapagos. They were labeled F. C. 1354 and 539 Tetractinellida.

The structure of the skeleton, the eribriporal afferents, and the uniporal efferents slow that this speeies belongs to Sidonops. It is not at all closely allied to any other species of Sidonops or to any species of Geodia. The species approaching it most closely appears to be Geodia media Bowerbank from which however it differs by the small euasters for the most part being thick- and short-rayed strongylosplacrasters and by the presence of mesomonaenes.

Sidonops bicolor, sp. nov.
Plate 9, figs. 1-19; Plate 10, figs. 1-15; Plate 11, figs. 1-17.
I establish this species for fifteen speeimens obtained off California. All the specimens agree closely and most of them are very much lighter in colour on one side than on the other. The specific name, bicolor, refers to this conspicuous character.

Shape and size. These sponges are irregularly tuberous, and generally considerably elongated (Plate 11, figs. 15, 16) or flattened (Plate 11, fig. 17). The largest elongated one, which was obtained at Station 2958, is 101 mm . long and 40 mm . thick. The largest flattened one, collected at Station 2981, is 62 mm . long, 59 mm . broad, and 28 mm . thick. The others are $39-73 \mathrm{~mm}$. in maximum diameter. Most of the efferent pores are situated on the less extensive concave parts of the surface, while the afferents are chicfly on the more extensive convex parts. The areas bearing chiefly the efferent pores are either quite smooth or slightly raised around these pores, some of which are situated on the summits of low elevations. The areas bearing chiefly the afferent pores are more uneren and appear to have been entirely covered with a spicule-fur. Although rubbed off in many places, remnants of this spicule-fur can easily be
found on the more sheltered parts. Inerusting symbionts, desmacidonid sponges, two species of Bryozoa, etc., grow on the afferent portions of the surface of most of the specimens, while the efferent areas are free from symbionts.

The colour of the surface varies in these spirit speeimens from whitish to reddish or purple-brown; some parts of it are, as mentioned above, usually mueh lighter in colour then others, the under side appearing to be less pigmented than the upper side. Occasionally, particularly in the specimens from Station 4420, I have noticed that the margins of the efferent pores are somewhat lighter in colour than the adjacent parts of the surface. The interior is dirty brownish or greenish white.

The superfieial parts form a cortex (Plate 9, figs. 15-17) which contains a sterraster-armour $0.9-1.8 \mathrm{~mm}$. thick. The sterrasters do not always extend down to the ehoanosome, a thin fibrous layer often intervening between them and the latter. This layer, which is eomposed of paratangential fibres similar to those connecting the sterrasters, is more clearly made out in one of the specimens from Station 4420 than in the others. In the darker parts of the cortex pigment eells are observed. These contain large spherical granules, brown in eolour, which stain deeply in azure. The number of these granules in each cell is not great. On or just below the outer surface the pigment cells are very numerous and often form a continuous layer which has the appearance of an epithelium. This I observed chiefly in a specimen from Station 4420 . These cells are here massive, or somewhat elongated, irregular in outline, about 10μ broad and $12-25 \mu$ long. Pigment cells also oeeur in the lower parts of the cortex, within the sterraster layer, but here they are long and slender, and arranged radially around the sterrasters. This shape and position of the deeplying pigment cells are apparently due to the position of the connective-tissue fibres whieh radiate from the sterrasters and between which they lie.

In the choanosome of a speeimen from Station 3168 I found numerous oval bodies $20-35 \mu$ long and $10-20 \mu$ broad which consist of a nearly hyaline substance uniformly staining with haematoxylin and azure. In these bodies neither an enveloping membrane nor a nueleus could be detceted. Most of them are densely crowded in band-like zones, some isolated and scattered. Similar bodies, seattered singly throughout the choanosome, have also been observed in a specimen from Station 4420 .

Canal-system. In many of the specimens I have been able to make out the afferent pores. These are, as stated above, chiefly distributed over the convex parts of the surface and arranged in more or less circular groups (Plate 10, fig. 15)
$0.5-1.5 \mathrm{~mm}$. in diameter. The centres of these pore-groups are $1.5-2.5 \mathrm{~mm}$. apart. When the groups are large and their centres close together, as is the case on parts of the surface of one of the specimens from Station 4531 , the poregroups come in contact with each other and form a fairly continuous sieve. When however, as is more frequently the case, the pore-groups are smaller and farther apart, they appear divided by a network of belts free from pores. The pores themselves are oval, measure $100-300 \mu$ in diameter, and perforate the thin dermal membranes eovering the distal widened parts of the afferent eanals (Plate 9, fig. 16), which traverse the cortex in a radial direction. These canals are eylindrical in the centre, and up to 400μ wide. They widen above in a funnelshaped manner, and are contracted below by a stout chonal sphincter, which lies at the level of the limit between cortex and choanosome. They lead into subcortical cavities of no great size which lie just below the cortex and from which the afferent choanosomal canals take their origin. The flagellate chambers (Plate 9, fig. 18) are spherical and $20-32 \mu$ in diameter. The efferent canals are provided with sphineter-membranes at frequent intervals and join to form tubes, often as much as $1-1.6 \mathrm{~mm}$. in diameter, which lead up to the efferent areas of the cortex (Plate 9, fig. 17). Some appear to end at the limit between cortex and choanosome, while others bend round and continue their course paratangentially for some distance just below this level, thus forming efferent subcortical cavities. From the ends of the former and the roofs of the latter the efferent cortical canals arise. These are constricted at their origin by chonal sphincters lying at the level of the limit between cortex and choanosome. Beyond the sphincter the canal widens to a cylindrical tube $250 \mu-1 \mathrm{~nm}$. in diameter, which traverses the cortex radially (Plate 9 , fig. 15) and opens out freely on the surface (Plate 10, fig. 14). The efferent pores, in which these canals terminate, either have nearly the same width as the canals themselves or they are slightly smaller. The centres of these efferent pores are $1-2.5 \mathrm{~mm}$. apart, their distance being on the whole proportional to their size, small ones lying much closer together than large ones. These efferents, though usually restricted to concave parts of the surface which are generally free from afferent pores, are also found on other parts of the surface, irregularly distributed between the groups of afferents. On large parts of the surface no pores of any kind ean be made out.

Skeleton. Spicule-bundles which widen out distally traverse the choanosome (Plate 9, fig. 17) radially and abut vertically or somewhat obliquely on the surface. These bundles consist chiefly of amphioxes, of which two kinds,
stout and slender ones, can be distinguished. The former occur chiefly in the axial parts of the bundles, while the latter predominate in their superficial parts. In the distal portions of the spicule-bundles plagiotriaenes also occur. The cladomes of most of these plagiotriaenes lie at or just above the limit between choanosome and cortex, the clades being often quite enveloped by sterrasters; their rhabdomes extend radially inward. The radial spicule-bundles abutting on the afferent areas do not terminate at the cortex, but penetrate it (Plate 9, fig. 16) and protrude beyond it, thus forming the fur. The fur consists chiefly of amphioxes but plagiotriaenes also take part in its formation. In the spiculefur of a specimen from Station 2958 I found a good many plagiotriaenes, with rhabdomes implanted in the cortex, and free cladomes lying a considerable distance above the surface of the sponge. Where these spicules arise from it, the surlace is often raised conulus-fashion. In a specimen from Station 4551 I have found a few styles and in the spicule-preparations of specimens from Stations 2958 and 3168 two small protriaenes. The latter are probably foreign spicules. Very small and slender rhabds are often found imbedded in the superficial part of the cortex. I think it highly probable that these belong to the symbiotic monaxonid sponges which incrust parts of the surface.

The microseleres are strongylosphaerasters, smaller oxysphaerasters with numerous rays, larger oxyasters with fewer rays, and sterrasters. The strongylosphaerasters form a dense layer on the outer surface (Plate 10, fig. 15) and are absent in the interior. The oxysphaerasters occur chiefly in the walls of the cortical canals and are also met with in the region of the subcortical cavitics. The oxyasters are restricted to the choanosome, in the walls of the canals of which they are very numerous. The sterrasters occupy the whole or nearly the whole of the thickness of the cortex (Plate 9, figs. 15-16) in dense masses. In most of the specimens the choanosome is free from sterrasters. In some however, particularly in the specimens from Stations 3168 and 4420 , considerable numbers of sterrasters, chiefly young ones, were found in it.

The stout amphioxes (Plate 9, figs. 9-11) are curved, isoactine, or slightly anisoactine, attenuated towards the rather blunt ends, gradually in the central parts and rather abruptly in the distal parts. They are $2.3-5.6 \mathrm{~mm}$. long and $35-105 \mu$ thick. An inverse proportion between length and thickness is indicated. Those of the specimens from Station 4551 attain a greater maximum thickness than those from the other stations.
D)MENSIONS OF NTOUT AMPIHOXES.

The slender amphioxes (Plate 9, figs. 7, 8) are eurved in a simple (Fig. 7) . or wavy (Fig. S) manner, cylindrical in the central parts, and attenuated to fine points at the ends. They are $3.5-9 \mathrm{~mm}$. long and $15-40 \mu$ thick. The longest measured were from specimens from Stations 4531 and 4551 , but as the long ones are usually broken in the spicule-preparations it is probable that slender amphioxes, considerably longer than those observed and measured, oceur also in the specimens from the other stations.

HMENSIONS OF SLENDER AMPIIIONES.

Stations	2958	2981	3168	4420	4531	4551
Length mm	5.2-5.9	5.2-6.7		4.7-5.8	$3.5-9$	69
Thickness μ	25	$15-25$	$23-33$	18-10	$21-40$	$2-38$

The exceedingly rare styles, which I observed only in the specimens from Station 4551 , are a little over 4 mm . long and at the somewhat thickened rounded end $100-120 \mu$ thick.

The plagiotriaenes (Plate 9, figs. 1-6, 12-14) generally have a straight conical thabdome, rather abruptly attenuated at the acladomal end and pointed (Plate 9 , figs. 13, 14). The rhabdome, when thus normally dereloped, is $2.1-4 \mathrm{~mm}$. long and at the cladomal end $62-110 \mu$ thick. Just below the cladomal end it is markedly thickened and here attains a transverse diameter of $73-120 \mu$. This thickest part of the rhabdome is $5-20$, most frequently about 11% thicker than the cladomal end, which consequently appears constricted in a neek-shaped manner. In some plagiotriaenes the rhabdome is reduced in length, more cylindrical in shape, and simply rounded off at the acladomal end (Plate 9, fig. 12). Occasionally this reduction goes so far that the rhabdome measures only 290μ in length. Such very short rhabdomes are cylindrical and not constrieted at the cladomal end. They have been observed only in a specimen from Station 4220 and here also they are rare. The elades are conical, quite blunt, and fairly straight (Plate 9 , figs. $1,3-6,12$) or
slightly curved, either simply, coneave towards the rhabdome (Plate 9, fig. 2), or in the shape of an S , in such a manner that the proximal part is concave, the distal part convex towards the rhabdome (Plate 9, fig. 13). The clades are 280700μ long; their chords enclose angles of $103-122^{\circ}$ witl the rhabdome.

DIMENSIONS OF THE NORMAL PLAGIOTRIAENES.

Stations			2958	2981	3168	4420	4531	4551
Rhabrlome	length mm.		2.5-3.5	2. 1-3.5	2. $7-3$	$2.3-3.15$	$31-3.9$	3.41
	thickness	at the cladomal end $/$ "	70-93	$62-110$	65-80	6s-83	$73-100$	s0-100
		of the thickest part a little below the cladomal end /t	73-98	$78-120$	78-90	80-100	$86-107$	9×-120
Clades, length μ.			$320-620$	$3.50-590$	$250-530$	400-5.50	$400-700$	360-650
Angle between clade-chords and rhabdome.			100-115	108-122	103-112	10S-116	104-122	111-120

The large choanosomal oxyasters (Plate 10, figs. 6-13a; Plate 11, figs. 6b, Sb, 9) have from one to twelve rays. Forms with one ray are exceedingly rare and were observed only in a specimen from Station 4420 . Forms with two rays were not found. Three-rayed forms are met with in small numbers in the specimens from Stations 3168 and 4551 , four-rayed ones also in the specimens from Station 4531. By far the most frequent forms are those with from five to nine rays which oceur in large numbers in all the specimens. The manyrayed oxyasters pass into the oxysphaerasters. The rays are $1-2.8 \mu$ thick at the base, conical and straight. In the many-rayed oxyasters they are always, in the few-rayed ones usually, sharp pointed. In the few-rayed oxyasters the rays are irregularly distributed and apparently not always quite concentric, many of these spicules appearing somewhat metastrose. In the oxyasters with five or more rays, the rays are quite regularly distributed and coneentric, but these asters are also occasionally rendered somewhat irregular by one of their rays being bifid. The distal parts of the rays are always spiny. In most cases the spines are confined to the distal third of the rays, in some they cover as much as the distal two thirds. The spines are either numerous and small, or sparse and large. The sparse, large spines are slender and rise vertically from the ray. A central thickening $2.8-6 \mu$ in diameter is nearly always developed. The whole oxyaster measures $20-34 \mu$ in diameter. The length and
thickness of the rays and, apart from the one-rayed forms, also the total diameter of the aster are roughly in inverse proportion to the ray-number. In the rare one-rayed form the centrum is 5μ in diameter, and the ray 18μ long and 5μ thick at the base. The oxyasters with from three to five rays measure $28-34 \mu$, the oxyasters with.six or more rays $19-29 \mu$ in total diameter. The oxyasters of the specimens from station 4531 are slightly smaller than those of the others.

MMEXSFONA AND NUMBER OF RAIS OF OXYASTERS.

Stations	2958	2981	3168	4420	4531	4551
Total diameter μ.	21-33	22-34	23-34	20-32	19-29	22-33
Diameter of centrum n.	3.3-4 2	3-6	3.5-4	2.8-5	3-1.5	3-5
Basal thickness of rays ${ }^{\prime \prime}$	1.323	15-2.5	$\because-3$	1.5-5	1-2.5	1.62.5
Number of rays	7-4	6-10	3-9	1.5-10	1-12	3-12

The oxysphaerasters (Plate 11, fig. 7b) have a spherical centrum 4.5-10 " in diameter, from which from twelve to twenty-five rays arise radially. The rays are concentric, distributed regularly, $0.7-2.5 \mu$ thick at the base, conical, straight, and pointed at the end. The distal part of each ray, usually about the distal half of it, is covered with spines. Not infrequently a group of somewhat larger spines, arranged in a more or less verticillate manner is situated a short distance below the end of the ray. In the centrifugal spicule-preparations of the specimen from station 2958 I found several oxysphaerasters with rays entirely clestitute of spines, otherwise similar to the ordinary ones. These may possibly be foreign to the sponge. In total diameter the oxysphaerasters measure $10-23$ μ. The largest ones pass into the oxyasters described above. The oxysphaerasters of the specimens from Stations 4531 and 4551 have on the whole more rays than those from other stations, and specimens with more than twenty rays have been olsserved only in the specimens from these stations.

DHMENSHONA AND NLMBER OF RAY゙S OF OXYSPHAERANTERS.

Nitations	2958	2981	3168	4420	4531	4551
Total diameter n	$14.5-21.5$	17-21	19-23	14-15.5	11-16.5	10-19
Diameter of centrum n	4.5-10	$6-7.5$	$6-7$	$5.5-7$	6.6 .5	47.5
Basal thichness of rays μ	1-2.5	1.5-2	1-2.5	1.5-2.5	1.5-2	$0.7-1.8$
Number of rays.	12-16	14-15	14-17	14-17	$19-23$	19-25

The strongylosphaerasters (Plate 10, figs. 6b, 11-13b; Plate 11, figs. 1-5, $6-8 a, 10$) have a spherical centrum $4-14 \mu$ in diameter, from which generally from nine to thirty rays arise radially. Exceptionally there is only one ray. The rays are concentric, regularly distributed, straight, and at the base $0.7-$ 3.5μ thick. They are cylindrical or eylindroconical, truncate, and $1.5-6 \mu$ long. Their terminal face and the distal parts of their sides are covered with numerous small spines; the proximal parts of the rays and the central thickening are usually quite smooth. The only exception to this is the one-rayed strongylosphaeraster found in a specimen from Station 4531 , in which the whole of the ray and also the central thickening are covered with spines. The centrum of this spicule is 9μ in diameter and the single ray 2.5μ thick at the base and 5μ long. Twoto eight-rayed strongylosphaerasters were not observed, and the nine- to elevenrayed forms were found only occasionally in specimens from Stations 2981 and 4420. The strongylosphacrasters of the specimens from Stations 4531 and 45.51 have on the whole more rays than those of the others. The total diameter of the strongylosphaerasters is 922μ.

DMENSIONS AND NUMBER OF RAYS OF STRONGYLOSPAAERASTER

Stations		2958	2981	3168	4420	4531	4551
Total diameter μ.		11.5-21	9-22	11.5-16	9-22	11-15	9-16
Diameter of centrum μ		6.5-12	4-10	5.5-9.5	6-14	7-10	4.5-9
Rays	length ${ }^{\prime \prime}$	2.5-1.5	2.5-6	2-3.5	2-4.5	1. $7-5$	1.5-1
	basal thickness μ	1.5-2.8	1.5-3.5	1.5-2.5	1.5-3.5	1.2-2.5	0. $7-3$
Number of rays μ.		12-21	925	$1+22$	10-19	1.17-27	15-3)

The sterrasters (Plate 10, figs. 1-5; Plate 11, figs. 11-14) are usually flattened ellipsoids, $130-170 \mu$ long, $100-133 \mu$ broad, and $77-97 \mu$ thick. A few are somewhat rounded, triangular (Plate 10, fig. 1), not oval, in outline. In the ellipsoidal sterrasters the ratio between the length and breadth is on an average $100: 76$. The specimens from Stations 2958 and 4531 have on the whole somewhat broader (ratio $100: 78$ and $100: 82$ respectively), those from station 4551 somewhat narrower (ratio $100: 70$) sterrasters. The specimens from Station 2981 have slightly larger sterrasters than those from the others. The umbilical pit is usually about $12-15 \mu$ deep and situated in the centre of one of the broad faces of the flattened sterraster. The distal free parts of the rays composing the sterraster are 2.5-4 μ thick and about 2μ apart. Those surrounding the
umbilicus usually have an clongated (Plate 11, fig. 12), those remote from the umbilicus, a circular or polygonal (Plate 11, figs. 13, 14) transverse section. Each ray hears a terminal verticil of from two to cight stout, conical, Jateral spines arising vertically from the ray.

The young sterrasters observed in great numbers in the choanosome of the specimens from Stations 3168 and 4420 were surrounded by stratified (ap)sules readily stainable with azure and apparently composed of flat endothelial cells. The smallest of these young sterrasters was a sphere, 20μ in diameter, composed of exceedingly fine radial rays.

HMAENSIUNS OF STERRASTERS.

Stations	2958	2981	3168	4420	4531	4551
Lengtls:	130-115	$145-170$	$140-165$	135-155	135-155	$140-145$
13rcaulth $/ 2$	100-120	105-133	105-120	105-118	115-120	100-120
Thickness	$80-92$	90-97	8.590	$85-87$	88-90	77-85

LOCALITY AND NATURE OF ENVIRONMENT.

B	Locality	Date	Depth	$\begin{aligned} & \text { Bottom } \\ & \text { tempera- } \\ & \text { ture } \end{aligned}$	Bottom	
2954	Off southern California, $34^{\circ} 04^{\prime}$ N., $\left.1200^{\circ} 13\right)^{\prime} 36^{\prime \prime} W$.	9 Febr, 18s9	$\begin{aligned} & 47 \mathrm{~m} . \\ & (26 \mathrm{f} .) \end{aligned}$	$\left(\begin{array}{c} 12.7^{\circ} \\ \left(54.9^{\circ} \mathrm{F} .\right) \end{array}\right.$	Gray sand	1
2991	Off southern California, $33^{\circ} 1 \mathrm{~h}^{\prime}$ ふ. $119^{\circ} 21^{\prime}$ W.	13 Feb., 1589	$\begin{aligned} & \mathrm{s} 2 \mathrm{~m} . \\ & (45 \mathrm{f} .) \end{aligned}$	-	Coarse gray sand and broken shells	2
3168	$\begin{aligned} & \text { Off central California, } 34^{\circ} 01^{\prime} \\ & 25^{\prime \prime} \mathrm{N}, 123^{\circ} 26^{\prime} 55^{\prime \prime} \mathrm{W} \text {. } \end{aligned}$	$\begin{gathered} 24 \text { March, } \\ 1 \times 90 \end{gathered}$	$\begin{gathered} 61 \mathrm{~m} . \\ (34 \mathrm{f} .) \end{gathered}$	-	Roeks and corals	4
4-20	Off southern C'alifornia, E. of Point san Nicolas 1sland, s. $77^{\circ} 11.10 .5 \mathrm{~km}$. (5.7 miles), drift s. $600^{\circ} \mathrm{W}$.	$\begin{aligned} & 12 \text { April, } \\ & 1904 \end{aligned}$	$58-60 \mathrm{~m}$. $(32-33 \mathrm{f} .)$	-	Fine gray sand	4
15.31	Monterey Bay, Cal., Point Pinos Light IIouse. N. 64° E., 3.s km. (2.1 miles).	$\begin{gathered} \text { 2s May, } \\ 1904 \end{gathered}$	-	-	Fine gray sand, pebbles, and rock	3
4.551	Monterey Bay, Cal., Point l'inos Light Flouse, s. 9° E.. 8.4 km . (1.5 miles), drift \&. 37° E.	7 June, 1904	$\begin{aligned} & 102 \mathrm{~m} . \\ & (56 \mathrm{f} .) \end{aligned}$	-	Coarse sand, shells, and rock	1

The agreement between the speeimens described above as Sidonops bicolor is so great that there eannot be any doubt as to their identity; in fact not even varieties or forms ean be established.

Sinee the spieulation is geodine in eharaeter, the afferent cortieal canals eribriporal, and the efferents uniporal, this sponge must be placed in Sidonops. For the reasons given in the description of Geodia agassizii, I have compared it not only with the known species of Sidonops but also with those of Ceodia. The species of these genera which seems to be most closely allied to it is the one deseribed in this report as Sidonops angulata. This differs from S. bicolor by the possession of anatriaenes and angularly bent amphioxes, by the smaller size of the sterrasters, and by the oxyasters and oxysphaerasters always having perfectly smooth rays. These differences are certainly suffieient for specific distinction.

GEODIA LAMARCK.
Among the megaseleres are regular triaenes. The tetraxon megaseleres are confined to the superfieial part and arranged radially. The dermal microscleres are asters. The afferents and efferents are both cribriporal.

There are sixty-two speeimens of Geodia in the collection made by the "Albatross." These belong to thirteen species, ten of whieh are new. Two species, one previously known and one now described for the first time, are further divided into seven varieties, five of whieh are new.

Geodia variospiculosa Thiele.
Zoologiea, 1898, 24, p. 10, taf. 6, figs. 6-7. Lendenfeld, Tierreich, 1903, 19, p. 107.
intermedia, var. nov.
Plate 17 , figs. 23-26, 34-40, 49; Plate 18 , figs. $8,10,13-20,22,27$; Plate 19 , figs. $9-11,19.20,22,24,31$.
micraster, var. nov.
Plate 17, figs. 27-33, $41-48$, 50; Plate 18, figs. $1-7,9,11,12,21,23-26$; Plate 19, figs. 1-8, 12-18, 21, $23,25-30,32$.

Two speeimens eolleeted by the "Albatross" off Honshu Island, Japan, differ from the typieal G. variospiculosa Thiele, from the var. clavigera Thiele, and from each other, suffieiently to rank as new varieties. In both these new varieties the ehoanosomal oxyasters are considerably smaller than in the type, and in one of them they are not so large as in the other. The variety in whieh they are smallest I name micraster, the one in whieh they are not so small intermedia.

Shape and size. The specimen of var. micraster (Plate 17, fig. 41) is tuberous and measures 42 mm . in length, 34 mm . in breadth, and 24 mm . in height. The surface is somewhat undulating. Here and there slight, abrupt, step-like changes of level of about 0.3 mm . are observed in it. In one place there is a round hole, a little over 1 mm . wide. This appears to be the entrance to a tubular cavity oceupied by an annelid, and not an oseulum. Apart from this no apertures are visible. Large parts of the surface are oceupied by shallow pits, the centres of which are less than 1 mm . apart. A dense fur of minute spicules, about 100200μ high (Plate 18, fig. 266), visible only with the mieroscope in sections, covers the whole of the surface. Besides this, remnants of a sparse fur of large spicules, $2-3 \mathrm{~mm}$. high, are observed in unexposed places.

The specmen of var. intermedia (Plate 17, figs. 39, 40) is thick oval, slightly constricted near one eud, 22 mm . long and 15 mm . broad. It was attached at one side. The surface is continuous, without undulations or step-like changes of level, free from apertures visible to the eye, and for the greater part covered with shallow pits, more conspicuous on one side than on the other. Where these pits are more conspicuous their centres are $1-1.2 \mathrm{~mm}$., where they are less conspicuous 0.6-0.9 mm., apart. A low dense spicule-fur is also present in this variety; but there are hardly any traces of a sparse, high spicule-fur.

The colour (in sirit) of var. micraster is nearly white, that of var. intermedia light coffec-brown.

The superficial part of the body forms a cortex composed of three layers: an outer dermal layer free from sterrasters, a central sterraster-armour layer, and an inner fibrous layer containing but few sterrasters or none at all. In the pits the dermal layer is considerably thickened, on other parts of the surface it is very thin. The sterraster-armour layer is chiefly composed of sterrasters. The connective-tissue fibres radiating from the sterrasters and connecting them with each other are very conspicuous. Around the proximal parts of the radial canals which penetrate the sterraster-armour rather extensive zones of chonal, fibrous tissue, free from sterrasters, oceur (Plate 18, fig. 21). The sterrasterarmour layer and the dermat membrane are together $0.5-1 \mathrm{~mm}$. thick. Sections show that the above mentioned step-like changes of level in the surface of var. micraster are caused by abrupt changes of thickness of the sterraster-armour layer, the lower limiting surface of this layer passing smoothly and unchanged beneath the steps. The fibrous layer of the cortex (Plate 18, figs. 21, 26) is for the most part over 1 mm . thick and in many places excavated by cavities. The walls separating these are chiefly composed of fibres arranged obliquely
or radially. Strands of such fibres extend from this layer far down into the choanosome.

Canal-system. The pits on the surface are covered by pore-sieves. These are so numerous and so close together that they join to form extensive continuous pore-areas. The pores are generally broad-oval, 20-75 $\mu \mathrm{long}$ and 15$55 \mu$ broad. They seem to be larger in var. intermedia than in var. micraster. The strands of tissue separating them vary very much in width. Some are so narrow as to appear as slender threads, while others are as broad as or even broader than the pores. On examining pore-sieves, removed by a paratangential section in transmitted light, one clearly sees that these sieves are composed of stout, primary, non transparent bars, the interstices between which are oceupied by secondary nets of thin, transparent strands (Plate 18, fig. 9). The stout bars of the primary network usually exhibit a somewhat radial arrangement round the centre of the pore-sieve (pit). Below these sieves rather extensive cavities occur into which the pores lead. These cavities join under the centre of each pore-sieve, that is, in the centre of each pit, to form a radial canal which penetrates the cortex and either opens out below into a subcortical cavity (Plate 18, fig. 21) or is continued as a narrow, usually tortuous canal leading down into the choanosome (Plate 18, fig. 26). The proximal third or half of each radial cortieal canal is surrounded by a stout chonal sphineter, which does not extend proximally beyond the lower limit of the sterraster-armour layer. In the sections examined the radial cortical canals are constricted and their proximal portions, which pass through the chonal sphincter, are often quite closed. In the interior some large eanals, in var. intermedia up to 0.8 , in var. micraster up to 2 mm . wide, are observed. In the latter a cavity, about 1 mm . wide, surrounded by sterrasters, was observed 2 mm . below the surface.

Skeleton. Rather loose strands of amphioxes and a few tylostyles and styles traverse the inner part of the choanosome. These internal spicule-strands are not arranged in a regularly radial manner. Many are very oblique, and once I saw one extending paratangentially about 6 mm . below the surface. Distally the megaseleres form bundles which penetrate the inner layer of the cortex and terminate at, or a little above, the lower limit of the sterraster-armour. These distal spicule-bundles (Plate 18, fig. Sb) are vertical or oblique to the surface and contain, besides the large amphioxes and oceasional monactines found in the interior, numerous thabdomes of orthoplagiotriaenes and some rhabdomes of diehotriaenes, large anatriaenes, and mesoelades, ehiefly mesoprotriaenes. The cladomes of most of the orthoplagiotriaenes and dichotriaenes
lie at, or just above, the lower limit of the sterraster-armour layer; the cladomes of the anatriacnes and mesoproclades lie at different levels. The sparse high spicule-fur is composed of the distal, freely protruding parts of mesoproclades, chiefly mesoprotriaenes, and large anatriaenes. On small parts of the surface of the specimen of var. micraster freely protruding orthoplagiotriaenes occur. I do not believe, however, that these spicules normally take part in the formation of the fur, but consider that the sponge must, at a previous time, have reecived some injury in the places where these spieukes are found.

In the inner layer of the cortex numerous small styles and minute anaclades (l'late 18 , figs. Se, 26e) are observed. These are situated radially or obliquely, rarely paratangentially. Some of them form groups, others are seattered singly. Some lie between the bundles of large spicules (Plate 18, fig. 26c), others form (lusters around them (Plate 18, fig. Sc). In the thin walls of tissue separating the subcortical cavities strand-like rows of these small spicules oecur. They are atso mot with in small mombers in the sterraster-armour layer. The low dense fur, referred to above, is entirely composed of these spicules. In the spiculefur of var. intermediu and also in that covering the parts of the surface with thick cortex in var: microster the styles predominate greatly, only a few mimute anaclades being here scattered between the dense masses of small styles. In the low spicule-fur covering the parts of the surface of vir. micraster which lie at a lower level and below which the sterraster-armour is thin, the minute anaclades are bery aloundant, more numerous than the small styles (Plate 18, fig. 24a). The spicules forming this low dense fur protrude for the greater part of their length beyond the surface of the sponge; the pointed ends of the small styles and the cladomes of the minute anaclates being situated distally and free, the rounded ends of the styles and the arladomal ends of the minute anaclades being situated proximally and implanted in the sponge. The manner in which these minute dermal styles and anadades are distributed shows that they are formed in the distal layer of the choanosome or the proximal layer of the cortex, that they travel up from this, their place of birth, to the surface, first, up to the sterraster-armour layer, slowly, then, through the sterraster-armour layer, rapidly, and that their movement in this distal direction is retarded to a great extent or quite discontinued on their reaching their final position in the low spicule-fur, where they remain for a considerable time.

Four kinds of microscleres oceur; large oxyasters, smaller oxy;phaerasters, small strongylosphaerasters, and sterrasters. The large oxyasters are confined to the choanosome. They are not uniformly distributed; in the distal zone of
the ehoanosome these asters are very numerous; in parts of the interior they are scarce. The oxysphaerasters are very numerous in the walls of the cortical canals, zones exceedingly rich in them indicating the position of these canals (Plate 18, figs. 21b, 23a, 26b). In the walls of the dermal canals these oxysphaerasters extend right up to within a short distance of the surface, and they are also met with in the walls, chiefly the roofs, of the subcortical eavities. A few are scattered between the sterrasters. The small strongylosphaerasters form a dense layer on the outer surface which increases in thickness in the pits where the dermal membrane itself is thickened, and are also seattered throughout the cortex. The sterrasters occur in the sterraster-armour, and are also scattered in the choanosome. In all parts of the sterraster-armour layer, with the exception of the thin portions of it in var. micraster, the sterrasters are rather densely packed, in the thin parts of the cortex of the var. micraster they are farther apart. The sterrasters in the choanosome are mostly young forms.

The large choanosomal amphioxes (Plate 17, fig. 42) are usually curved, often in an irregular wavy manner, gradually attenuated to the rather sharpprinted ends, and isoactine or - as the one represented in the figure - slightly anisoactine. In var. micraster they are $2.3-3.9 \mathrm{~mm}$. long and $25-4 \cdot \mu$, usually 32-37 μ thick; in var. intermedia considerably stouter, 2.5-3.1 mmm. long and $42-50 \mu$, usually $42-44 \mu$ thick.

The large choanosomal tylostyles and styles (Plate 17, figs. 33, 43) are usually eurved. One of var. micraster which was intact measured 1.35 mm . in length. These spicules gradually increase in thickness towards the rounded or tyle end. Just below this they are in var. micraster $40-50 \mu$, in var. intermedia $25-3.5 \mu$ thick. Only a few of these spicules are true styles, in most the rounded end is thickened more or less, sometimes so much so that the tyle is twice the diameter of the shaft. But however great this thickening may be, it is never sharply defined and passes gradually into the shaft, so that these spicules appear more or less club shaped. The thickened end (tyle) measures in var. micraster $46-62 \mu$ and in var. intermedia $30-70 \mu$ in tiameter.

The small dermal styles (Plate 19, figs. 4, 5) are fairly straight or slightly curved, nearly cylindrical in the central part, and gradually attenuated towards both ends. Distally these spicules nearly always terminate in a sharp point. Very rarely the distal end is rounded and blunt. The thickness of the proximal end, which is always rounded off, is from $25-67 \%$ of the maximum thichness. The small styles with a particularly thin proximal, rounded end are amphioxlike. Many of these spicules are slightly thickened locally at a point nearer
the roundel than the pointed end. I presume that this thickening is situated at the peint where the spicule penetrates the surface and that it is formed after the epicule las taken up its definite position in the low spieule-fur. In var. micruster these small dermal styles are $210-320 \mu$ long, $3-7 \mu$ thick in the centre, and $1-3.5 \mu$ thick at the proximal, rounded end. In var. intermedia they are somewhat shorter, $200-310 \mu$ long, $3.5-7 \mu$ thick in the centre, and $1-2.5 \mu$ thick at the proximal, roumded end.

I concreseent form of these spieutes, comsisting of three or four straight rays, some peinted, others rounded at the end, is very rarely met with.

The large orthoplagiotriaenes (Plate 17, figs. $34-37,38 i 1,44-47,49$) have guncrally a straight, or slightly curved, conical rhabdome, pointed at the arlatomal end, more or less thickened at a distance of about 1.50μ below the dadomal end, and considerably constricted above this thickest point, just below the cladome. In the neek-like subcladomal constriction the thickness of the thablome is from 6585% of the thickness of its thickest part. At this point, weakened as it is by the constriction, the rhabdome readily breaks, and parts of these spicules (cladomes and rhabdomes) broken at that point are frequently found in the spicule-preparations. The chords of the clades form angles of $99^{\circ}-111^{\circ}$ with the axis of the rhabdome. These spicules are consequently intermediate between orthotriaenes and plagiotriaenes, and are named orthoplagiotriaenes accordingly. The elades are conical, not sharply pointed, frequently quite blunt. They always arise in an ascending direction. Their proximal part is concave to the rhabdome, their distal part straight (Plate 17, figs. $34-37,47$) or slightly undulating (Plate 17, figs. 44, 45). A slight, abrupt, angular bend is frequently observed at the point where the proximal part, concave to the thabdome, passes into the distal straight or undulating part. This and as slight thickening of the axial thread of the clade often observed at this point seem to indicate that these orthoplagiotriaenes are dichotriaenederivates. The three clades of the same cladome usually arise at similar angles from the rhabdome; forms like the one represented, Plate 17, fig. 38a, in which the rhabdome angles of the three clades differ to a greater extent, being rare. In lengtls the clades of the same cladome may be equal or unequal. The forms with unequal clades are as numerous as the ones with equal clades, if not more so. Nost of the cladomes composed of unequal clades are sagittal, two clades being fairly equal, while the third is very much shorter, only one half or a third as long, as the other two. The angles between the elades are independent of the elade-length and nearly always about 120°. Rather frequently a
neck-like constriction, similar to the one at the cladomal end of the rhabdome, is observed at the proximal end of the clades. In var. micraster the rhabdomes of the orthoplagiotriaenes are $2.6-3 \mathrm{~mm}$. long, and in the neck-like constriction at the cladome $30-50 \mu$ thick, their maximum thickness below this constriction being 43-64 μ. The chords of their clades are 240-760 μ long and enclose angles of $99-105^{\circ}$ with the axis of the rhabdome. In var. intermedia the thabdomes of these spicules are 2.4-3 mm. long, and in the neck-like constriction at the cladome $35-65 \mu$ thick, their maximum thickness below this constriction being $50-75 \mu$. The chords of the clades are $220-550 \mu$ long and enclose angles of $100-111^{\circ}$ with the axis of the rhabdome.

Besides these normal orthoplagiotriaenes, irregular forms are met with in small numbers. In some of these one or two clades are bifurcate: these spicules are transitional to the dichotriaenes. In others one or two of the clades are cylindrical and not attenuated distally, or angularly recurved at the end. An irregular triaene with one cylindrical and one terminally angularly recurved clade is shown in Plate 17, fig. 46. In examining the rounded end of these abnormal cylindrical clades with the highest powers, I found the distal part of the axial thread irregularly thickened at frequent intervals. At the end itself the axial thread appeared split up into a bunch of very slender, thread-like, divergent branches, which seemed to extend right up to the rounded, terminal face of the clade. It seems that this terminal face is clothed with numerous exceedingly small spines, and that one of the terminal branches of the axial thread leads up to each of these spines. But as these structures are, in consequence of their exceedingly small size, on the verge of visibility, even with the ultraviolet light ($\lambda=280 \mu$) employed, I could not make them out with any degree of certainty.

The dichotriaenes (Plate 17, figs. 38b, 48, 50), apart from the bifurcation of the clades and the smaller size of the clade-rhabdome angles, are similar to the orthoplagiotriaenes described above. In var. micraster their rhabdomes are $1.7-2.6 \mathrm{~mm}$. long and in the neck-like constriction at the cladome $30-40 \mu$ thick; their maximum thickness is $45-58 \mu$. Their clade-rhabdome angles are little over 90°. The clade-stems are $160-340 \mu$, the clade-branches $140-400 \mu$ long. In the preparations of var. intermedia no intact dichotriaene-rhabdomes were found, so that their length is unknown. Their thickness is $45-48 \mu$ at the neck-like constriction at the cladome, and $55-60 \mu$ at the thickest point. The clade-rhabdome angles are a little over 90°. The clade-stems are $150-160 \mu$, the clade-branches $170-280 \mu$ long.

The mesoproelades observed were nearly all mesoprotriaenes. I found only a single mesopromonaene.

In the mesorprotriaenes (Plate 17, fig. 32) the epirhabd is straight, conical, and nsually shorter than the cłades. The latter are conie, pointed, and curved, concave to the epirhabl. Their curvature increases distally. This distal increase of eurvature is most marked in the mesoprotriaenes with strongly diverging elades (large clade-epirhabd angles). In the preparations of var. micrester no intact mesoprotriaene-rhabdomes were found, so that I can not state their length. The thickness of the rhabdome at the eladome is $7-20 \mu$; the (pirhabed is $25-90 \mu$ long; the clade-chords are $40-140 \mu$ fong and enclose angles of $3(0)-633^{\circ}$ with the axis of the epirhabd. In var. intermetio the rhabdomes of these spicules are 2.9 .3 .2 mm . long and at the clarlome $18.2 .3 / 4$ thick. The cpirhatbil is $60-5 \mu$ long; the clade-chords are $100-142 \mu$ long and enclose angles of $37-14^{\circ}$ with the axis of the epirhabd.

Besides these normal mesoprotriaenes a few with one or two stunted cylindrical clades, rounded off at the end, have been olsserved. One of these is represented in Plate 17, fig. 32.

In the preparations of var. micraster I found one mesopromonaene with a broken rhablome, 30μ thick at the cladome. Its epirhabed is $180 \mu \mathrm{long}$, its clade is recurval in a hook-like manner at the end and slightly conease to the epirhabd. The chade-chord is 175μ long and encloses an angle of 35° with the axis of the epirhabd.

The large amatriaenes (Plate 17, figs. 23-31; Plate 18, fig. Sd), when fully and normally developed, have a long rhabdome, thickened towards the cladome, and three fairly equal, conical and uniformly curved, pointed clades (Plate 17, figs. $2.5,26,29,30)$. Nometimes the clades are bent down abruptly at their ends (Plate 17, fig. 27). The apex of the dadome is simply rounded or, more rarely, crowned by a very slight protuberance. In var. micraster the rhabdome is 3.65 .2 mm . long and at the cladome $20-46 \mu$ thick. The clade-chords are (6.) 1330 p long and enclose angles of $37^{\circ}-70^{\circ}$ with the axis of the rhabdome. In var. intermedia I found only one intact rhabdome, 4.2 mm . in length. In this variety the rlabdomes are $20-10 \mu$ thick at the cladome and the cladechomls $50-13.5, \mu$ long. The elade-rhablome angle is considerably smaller than in the other variety, measuring only $35-48^{\circ}$.

Besides these normal large anatriaenes four other, abnormal or derivate forms are observed: 1, regular anatriaenes with pointed clades but of mueh smaller dimensions; 2, irregular anatriaenes of normal dimensions and clade-
position, in which one, two, or all three clades are stunted, short, and rounded at the end; 3 , anatriaenes of normal dimensions with two simple and one bifurcate clade; and 4, anatriaene-derivates of normal dimensions, in which one of the clades is directed upward, proclade-fashion. (1) is very, and (2) fairly abundant in both varieties; (3) and (4) are very rare and have been found only in var. intermedia. In the small anatriaenes with pointed clades (Plate 17, figs. 23,28) the rhabdome is only $12-20 \mu$ thick at the cladome, the clades being $30-50 \mu$ long in var. intermedia, and $30-65 \mu$ long in var. micraster. Of course these anatriaenes may be young forms of the normal ones. Their abundance on and close to the surface, however, renders this assumption somewhat doubtful. The anatriacnes with stunted clades (Plate 17, fig. 31) exhibit very different degrees of clade-reduction. In most of them only one or two clades are shortened and rounded; in some, however, one or two clades are reduced to low, rounded protuberances and the others (other) shortened to half or less than half of the normal length. These extreme forms have been met with chiefly in var. intermedia. In the few anatriaenes with one bifurcate clade the two other (simple) clades were more or less stunted. In the anatriaencderivates with one clade directed upwards the clades are pointed, but much shorter than in the normal anatriaenes.

The minute dermal anacludes (Plate 18, fig. 24a; Plate 19, figs. 3, 6-10, 14) are mostly anatriaenes with well-developed clades. A few of them have, however, by a more or less complete clade-reduction become anadiaenes, anamonaenes (Plate 19, fig. 6), or even tylostyles. These latter are, however, very rare. The rhabdome is more or less curved, simply or in an S-shaped manner, and thickest at a point from a fifth to a third of its length above its acladomal end. From this thickest point it is gradually attenuated towards both ends. The acladomal end is rounded. The thickness of the two ends of the rhabrdome is from $25-60 \%$ of its maximum thickness. In many of these spicules a slight local thickening of the thabdome, situated nearer the acladomal than the cladomal end, similar and probably analogous to the local thickening of the small dermal styles, has been observed. The apex of the cladome is simply rounded off or crowned by a protuberance (Plate 19, fig. 9). In var. micraster the minute anaclades without apical protuberance greatly predominate, in var. intermedia a much greater proportion of them possess such a protuherance. The clades are conic, sharp pointed, strongly recurved in their basal part, and nearly straight in their terminal part (Plate 19, figs. 3, 14). In var. micraster the rhabdomes of the anaclades are 275-410 μ long, 1.5-4 μ thick at the
cladomal end, 4-6 μ thick at the thickest point, and $1.5-2 \mu$ thick at the rombled actadumal end. The chords of the clades are $5-12 \mu$ long and enclose angles of $38^{\circ}-54^{\circ}$ with the axis of the rhabdome. In var. intermedia the rhabdomes of these spicules are $205-560 \mu \mathrm{long}, 1-3.5 \mu$ thick at the cladomal end, $3-7.5 \mu$ thick at the thickest point, and $1-4.5 \mu$ thick at the rounded, acladomal end. The clade-chords are $3-13 \mu$ long and enclose angles of 40° 52° with the axis of the rhabdome.

The large choanosomal oxyasters (Plate 18, fig. 1, 2a, 3, 4, 5d, 6, 7b, 10a, b, 12, 1 tb, $15-20,22 \mathrm{a}, \mathrm{h}, 25 \mathrm{a}, \mathrm{b}, 2 \mathrm{a}$ a, b; Plate 19, figs. 25-30) have no central thickening and are composed of fairly concentric but often not quite regularly distributed rays. The rays are straight, conieal. usually very blunt, truncate, rarcly pointed, and everywhere, except at the proximal (central) end, covered with spines. The size of these spines is variable. Sometimes they are so small as to be hardly discernible, sometimes they are large, 1μ or more long. When large enough to be distinctly seen, they show an increase in size from the base to the tip of the ray. These spines rise vertically from the ray and appear to be bent back at the end towards the centre of the aster in a claw-shaped matuner. There are usually from one to eight rays. In the form where only one ray is deweloped, short, rounded, knob-like rucliments of two or three other, reduced rays are observed (Plate 18, figs. id, 6; Plate 19, fig. 28). Such rayrudiments absoccur in most of the diactine and in some of the triactine forms. The terminal rounded faces of these ray-rudiments are densely covered with large spines (Plate 19, fig. 2S). The monactine oxyasters appear as blunt tylustyles with irregularly lobate tyles. In the diactine forms the fully developed rays seem never to extend in a straight line, the angle enclosed by them being $60^{\circ}-140^{\circ}$, always much less than 180°. Thus these spicules appear as more or less widely opened compasses. The three rays of the triactine wxyasters may be situated in a plane and regularly arranged so as to enclose angles of 120° (Plate 18 , fig. 10a); or they may not be situated in a plane and form the elges of a low triangular pyramid which may be regular (Plate 18, fig. 2a) or irregular (Plate 18, fig. 16): or finally they may be so arranged that two lie in a straight line to which the third is vertical or oblique (Plate 18, fig. 4). Among the asters with from four to eight rays both regular forms with fairly equal angular intervals between the rays (Plate 18, figs. 1, 15, 19), and irregular forms with unequal angular ray-intervals (Plate 18, figs. 17, 18, 20) are met with. In these tetr- to oct-actine asters the rays are, in the same aster, usually of equal size. The tri- to hex-actine asters are far more numerous than those with one or two, or seven or more rays.

The number of rays is, as shown by the following table, roughly speaking, in inverse proportion to their size.

NUMBER AND SIZE OF RAYS OF OXYASTERS.

Variety	Number of rays	Total diameter of asters	Length of rays	Thickness of rays at base
micraster	1-4	40-132 /1	25-72 μ	1. 5-8 μ
intermedia	1-4	$27-180 \mu$	11-90 μ	1-8 μ
micraster	5-6	21-10.5 μ	11-5 ${ }^{\text {d }}$	1.5-7 /
intermedia	5-6	20-140/2	10-7S μ	1-7 μ
micraster	$7-8$	17-31 μ	$9-16 \mu$	1-3 μ
intermedia	7-8	$25-37 \mu$	13-21 μ	$1-3 \mu$

Oxyasters with from nine to eleven rays are very rare. The largest of them observed was 23μ in total diameter and had rays 12μ long and 2μ thick at the base.

The oxysphaerasters (Plate 18, fig. 23; Plate 19, figs. 12a, 13a) are composed of a spherical centrum and numerous regularly distributed, concentric, radial rays. The rays are in the same aster of equal size, conical, sharp pointed, and sparsely spined. Often a verticil of larger spines, situated some distance below the end of the ray is observed. The oxysphaerasters of var. micraster usually have from eighteen to twenty-two rays. Their total diameter is $14-19 \mu$, the diameter of the centrum $5-6 \mu$. The rays are $4-7 \mu$ long and $1-2 \mu$ thick at the base. The oxysphaerasters of var. intermedia usually have from fourteen to twenty-two rays. Their total diameter is $17-22 \mu$, the diameter of the centrum 5-6 μ. The rays are 58μ long and $1.5-2 \mu$ thick at the base. A correlation between ray-number and spiculc-size is not apparent.

The small dermal strongylosphaerasters (Plate 19, figs. 12b, 13b, 19-24) consist of a spherical or irregularly tuberous centrum and numerous short rays. The rays are usually stout, cylindroconical, or cylindrical, and truncate, rarely more slender, conical, and blunt pointed. Not infrequently the rays of the same aster are unequally distributed and unequal in size, one of the rays being sometimes fully twice as large as any of the others. The distal parts of the rays, chiefly their terminal faces, bear numerous small spines. In var. micraster the strongylosphaerasters usually have from ten to eighteen rays. Their total diameter is $5-8 \mu$, the diameter of the centrum $2-4 \mu$. The rays are $0.5-2.5 \mu$
long and $0.6 \because \mu$ thick at the base. In var. intermedia these asters usually have from twelve to bincteen rays. Their total diameter is $5-\overline{6} \mu$, the diameter of the centrum $2+\mu$. Their rays are $0.6 \simeq \mu$ long and $0.5-1.6 \mu$ thick at the base. I correlation between ray-number and spicule-size is not apparent. Oceasionally irregular tuberous structures with spiny surface, which I consider as derivates of these spicules with recluced rays, have been observed. One of these, which I found in rar. micraster had the shape of a stout, short, slightly curved sansage and was 9μ long and 4μ broad.

The sterrasters (Plate 19, figs. 1, 2, 11, 15-18, 31, 32) are flattened ellipsoids. The proportion of length to breadth to thickness is on an average $100: 82: 65$. In the normal sterrasters the distal parts of most of the rays have a cireular or rather regularly polygonal transverse section, are $2-3 \mu$ thick, and bear a terminal verticil of usually from four to six stout lateral spines (Plate 19, figs. 1, 2). The transverse sections of the distal parts of the rays which surround the umbilieus are elongated in a direction radial to the centre of the latter, $2-3 \mu$ broad, and about 5μ long. These umbilical rays bear from six to eight or more spines, one of which is often (Plate 19, fig. 1) considerably larger than the others. This larger spine is direeted towards the centre of the umbilicus. In the centre of young sterrasters, $22-26 \mu$ in diameter, of both varieties, a spherical cluster, 45μ in diameter, of numerous radially arranged, elongated, somewhat rodshaped granules, are ohserved. The sterrasters of var. micraster are $120-133 \mu$ long, $100-116 \mu$ broad, and $\$ 2-90 \mu$ thick. Those of var. intermedia are $109-$ 125μ long, $90-100 \mu$ broad, and $70-75 \mu$ thick.

Besides these normal sterrasters, a few abnormal ones, similar in regard to shape and size, but very different in regard to the structure of the surface, have been observed. Two kinds of such sterroids ean be distinguished. In one of these the rays are much thicker than in the normal sterrasters. In the other the rays are of the same thickness as in the normal sterrasters but destitute of spines. A sterroid of the first kind is represented in Plate 19, figs. 17, 18. In this sterraster the ends of the rays have more or less polygonal terminal faces, $10-20 \mu$ in diameter, densely covered with spines. A sterroid of the second kind is shown in Plate 19, fig. 15, 16.

The specimen of var. intermedia was caught with the tangles at Station 3746 on May 19, 1900, off Honshu Island, Japan, Suno Saki N. 87°, E. 15.8 km. (8.5 miles); depth 90 m . (49 f.); it grew on a bottom of gray sand and pebbles. The specimen of var. micraster was trawled at Station 3758 on May 22, 1900, off llonshu Island, Japan, Suno Saki S. 55°, E. 3.9 km . (2.1 miles); depth $95-133 \mathrm{~m} .(73 ; 52 \mathrm{f}$.$) ; it grew on a bottom of black clay and rock.$

As the description given above shows, these sponges are so similar to those described by Thiele as Geodia variospiculosa (Stuctien über pazifische spongien. Zoologica, 1898, 24, p. 10, taf. 6, fig. 6) and variospiculosa var. clavigera (Thiele, loc. cit., p. 11, taf. 6, fig. 7), which also came from Japan, that I do not hesitate to assign them to this species. Still, they differ from Thiele's description and also from each other in so many respects, that the question arises whether the peculiarities wherein they differ are germinal in nature and systematically important or merely due to differences of germ-separation or mixture before and during fertilization, age, or individual adaptation to different conditions, and systematically unimportant. Thiele describes the small dermal rhabds of G. variospiculosa and of G. v. var. clavigera as amphioxes, while the corresponding spicules of the "Albatross" sponges are styles. Since, however, these styles are attenuated towards both ends and consequently similar to amphioxes, Thiele might easily have designated the small dermal rhabds of Geodia variospiculosa as amphioxes even if they had exactly the same shape as the spicules here described as styles. The same applies to the large subcortical orthoplagiotriaenes, which Thiele terms orthotriaenes. According to one of Thiele's figures (loc. cit., taf. 6, fig. 6b) the "orthotriaenes" of his Geodia rariospiculosa are orthoplagiotriaenes in my sense. Apart from these apparent rather than real differences, there are, however, differences in the dimensions of the spicules, many of which are very considerable.

The specimen described by Thicle as var. clavigera is the smallest of the four. The typieal Geodia variospiculosa is larger, var. intermedia still larger, and var. micraster by far the largest. If we were to assume that these differences in size are due to differences of age, it would be only natural to suppose that corresponding spicule-dimensions should be smallest in var. clavigera, larger in the typieal Gcodia variospiculosa, still larger in var. intermedia, and largest in var. micraster. All dimensional differences which accord with this must therefore be set aside in studying the relative systematic position of these sponges. After eliminating these differences possibly due to differences of age, there remain the following: the large amphioxes and the rhabdomes of the orthoplagiotriaenes and the dichotriaenes of the smaller var. intermedia are thicker than those of the larger var. micraster. The dichotriaene-rhabdomes of the still smaller typical Geodia variospiculosa are thicker than those of both the larger varieties intermedia and micraster. The choanosomal tylostyles of var. intermedia have relatively larger tyles thian those of var. micraster. Long dermal tylostyles are present in var. clavigera but absent in the three others. The mesoprotriaene-clades are rela-
tively and, to a smaller degree, also absolutely longer in the smaller var. intermedia than in the larger var. micrester. The elades of the larger anatriaenes are longest and the claderhablome angles smallest in the small typieal Geodia rariospiculosa; the former are smaller and the latter larger in the larger var. intermedia, and the former still smaller and the latter still larger in the still larger var. micrester. On comparing the figures 23-26 and 28-31 on Plate 17, with each other and with Thiele's figure (loc. cit. Plate 6, fig. 6e) the differences in the appearance of the cladomes of the large anatriaenes caused by these differences in the clade-length and clade-rhabdome angle will be noticed. The minute dermal anaclates of the smaller var. intermedia are larger than those of the larger var. micraster. The size of the choanosomal oxyasters of the typical Geodia rariospieulosa and the two varieties intermediu and micraster is, like the length of the clades of the large anatriaenes, in inverse proportion to the size of the specimen in which they occur. Besides these differences there are others, in the structure of the surface, the size of the pores, the relative frequency of monactine asters and anatriaene-cladomes with stunted, rudimentary clades, etc.

Some of these differences, but hardly all of them, may be due to differences in the fores acting on the different individuals. In particular I should say that the differing peculiarities in the shape and size of the cladomes of the large anatriaenes and in the size of the oxyasters, should be considered as germinal and therefore systematically important. The reason why these differences of the anatriaenes and oxyasters should be considered as due to germinal peculiarities are: in the tetraxon sponges studied in this respect ${ }^{1}$ the anatriaenes of young (small) sperimens have not only shorter elades but also larger claderhabobome angles than those of older (larger) specimens, the elade-length increasing and the clade-rhabdome angle decreasing with the age of the sponge. In the sponges here under discussion, inversely, the clade-length decreases and the clade-rhabdome angle inereases with the size of the sponge. The size of the oxyasters is in these sponges in inverse, the size of the sterrasters in true proportion to the size of the specimens. The former lie in the interior of the sponge and must therefore be less influenced by external forces than the latter which lie near the surface. Differences of the internal oxyasters, not also seen in the extemal stemasters, cannot therefore, in my opinion, be ascribed to differences of the forces acting on the growing sponge. This view is further supported by

[^3]the fact that in var. intermedia and var. mieraster the size of the dermal strongylosphacrasters is also in true proportion to the size of the sponge.

Formerly (Tetraxonia. Tierreich, 1903, 19, p. 107) I united var. clarigera with the typical Geodia variospiculosa, but now, having been able to examine sponges belonging to this species I think it better to keep these two systematically apart. In view of the above discussion on the germinal nature and systematic importance of the differences between the two "Albatross" specimens here described and between them and Thiele's sponges referred to above, I establish varicties for them. Thus Geodia variospiculosa Thiele is divided into four varieties: the typical Geodia variospiculosa, for which I propose the name var. typica, var. clavigera Thicle, var. intermedia, and var. micraster.

DIMENSIONS OF TIIE SPICULES OF GEODIA VARIOSPICULOSA THIELE.

		Var. typica	$\begin{aligned} & \text { Var, } \\ & \text { clavigera } \end{aligned}$	$\begin{gathered} \text { Var. } \\ \text { intermedia } \end{gathered}$	$\begin{aligned} & \text { Var, } \\ & \text { micraster } \end{aligned}$
Large ehoanosomal amphioxes	length mm.	over 2	1-1.1	2.5-3.1	2.3-3.9
	maximum thickness μ	nearly 20	$26^{* 1}$	12-50	25-42
Large choanosomal tylostyles (styles)	length mm.				1.35
	diameter of tyle (rounded end) μ			30-70	46-62
	thickness of shaft μ			25-35	40-50
Large dermal tylostyles	length mm.	absent	1.6	absent	ahsent
	diameter of tyle μ		18*		
	thiekness of shaft μ		11*		
Minute dermal styles	length μ	200		200-310	210-320
	maximum thiekness μ	4		3.5-7	3-7
	thickness of rounded end μ			1.2-5	1-3.5

${ }^{1}$ The dimensions marked * are taken from Thiele's figures.

MMENEION゙S OF THE: APICHLES OF GEODIA VARIOSPICULOSA THIELE (continuch).

			Var. typica	$\begin{gathered} \text { Var. } \\ \text { chavigera } \end{gathered}$	Var. intermedia	Var. micraster
()rthoplagiotrimenes	rhabilome	dength mm.	2	1.25	2. $1-3$	2.6-3
		thickness at cladome p :			35-65	$30-50$
		maximum thickness p	70		$50-75$	43-64
	elates	length $/ 2$	$400-460$	250-300	$220-550$	$240-760$
	angle between elade-chords and rhabdome ${ }^{\circ}$		103*		100-111	$99-105$
Diehotriames	rhabdome	length mm.	2	1.25		1.7-2.6
		thickness at cladome μ	75*		45-18	30-40
		maximum thickness	90*		5560	15.58
	main clate	length 4	$200 *$		$150-160$	160-340
	cud clade	length μ	300^{*}		170-280	$140-400$
	angle between main cladechords and rhabdome ${ }^{\circ}$		90*		a little over 90	a little over 90
Nesoprotriaenes	rhabdome	length mm.	2.5		$2.9-3.2$	
		thiekness at cladom ${ }^{\circ} \mu$	12*		15-23	7-20
	epirhabd length μ		95	30-60	60-75	25-90
	clades length μ		220	6670	100-142	40-1 10
	angle bet and epirhal	clade-chords	10^{*}		$37-44$	30-63
Large anatriaenes	rasbiome	length mm.			4.2	$3.6-5.2$
		thickness at cladome μ	20*		12-10	12-46
	chades	length n	160-180	30-10	30-135	30-130.
	angle between clade-chords and riabrtome		$2 \mathrm{~S}-12 *$		35-18	37-70
Minute dermal antaclades	raabdome	length 11	286*		$205-560$	$275-110$
		thickness at cladome :"	1*		1-3.5	$1.5-4$
		maximum thickness μ	2*		3-7.5	4.6
	clades	length μ	5		$3-13$	5-12
	angle between elade-chor and thaladonse ${ }^{\circ}$		50^{*}		$10-52$	$3 \mathrm{~S}-54$

${ }^{1}$ The dimensions marked * are taken from Thiele's figures.

DIMENSIONS OF THE SPICILLES OF GEODIA VARIOSPICULOS. THIELE (continued).

				Var. typica	Var. clitvigera	Var. intermedia	Var. micraster
Choanosomal oxyasters	number of rays			3-6*		1-8	1-11
	dimensions of oxyasters with $1-4$ rays	total diameter μ		156-164*	-	27-180	10132
			length μ	$84^{*}-135$		$14-90$	$2.5-72$
		rays	basal thick- ness μ	8*		1-8	1.5-S
		total /	diameter	10-104*		20-140	21-105
	dimensions of		length μ	$52-56 *$		10-78	$11-58$
	- 0 -6 rays	rays	basal thick- ness ${ }^{t}$			1-7	1.5-7
		total μ	diameter			25-37	17-31
	dimensions of		length μ			13-21	9-16
	ys	rays	basal thick- ness μ			1-3	$1-3$
Oxysphaerasters	number of rays					$11-22$	$18-22$
	total diameter μ			16^{*-30}		17-22	1+19
	diameter of centrum μ					5-6	5-6
	μ					5-8	- 4-7
		thiek	1ess ft			1.5-2	1-2
Dermal stron-gylosphaeraster	number of rays					12-19	10-15
	total cliameter $/ 2$			6-S		$5-7$	5-8
	diameter of centrum μ					21	$2-1$
	rays	length μ				0.62	0.5-2.5
		thickness μ				0.5-1.6	0.6-2
Sterrasters		length μ		$80-115$	100	109-125	120-133
		breadth μ		65-95	S0	$90-100$	100-116
		thiekness μ				$70-75$	82-90

${ }^{1}$ The dimensions marked * are taken from Thiele's figures.

Geodia japonica (Sollas).
1'late 37, fins. 15-30; Ilate 38, figs. 1-29; Plate 39, figs. 1-41.
Thicke Zoblugica, 1s9s. 24 p. 7. taf. 2, fig. 1; taf. 6, fig. 3. Lendenfeld, Tierreich, 1903, 19, p. 111. ('ydonium japonicum ふiollas. Rept. voy. "Challenger," 18sis, 25, p. 256.

There is in the collection a fine, dry sponge from Japan, which appears to be identieal with the specees deseribed by Sollas as Cydonium japonicum and by Thicle as Geodia japonica. A part of the type of the former in the British Museum I have, through the kindness of Mr. Kirkpatrick, been able to recxamine.

The sponge (Plate 38 , fig. S) has the shape of a low and broad, thick-walled cup. It is 19 cm . high; its maximum and minimum transverse diameters are 24 and 22 cm . Near its margin the wall of the cup is about 3 cm . thick; the margin itself is bent inward; it is interrupted in two places by broad indentures. The (avity of the cup) is $S \frac{1}{2}$ (m . deep. The base of the sponge measures 11×13 cm . and exhibits a cup-shaped depression like the upper one, but much smaller, only $4 \frac{1}{2} \mathrm{~cm}$. deep. The inner surfaces of both the upper and the lower cup are rather irregular and undulating but destitute of higher protuberances. The outer surface of the sponge is covered by large and conspicuous, terminally rounded, lobose protuberances, $1 \frac{1}{2}-3 \mathrm{~cm}$. broad and about as long, which hang down stalactite-fashion. Most of them are attached with a considerable portion of one side to the body of the sponge. In external appearance and in size it corresponds with the specimens examined by Sollas and Thiele.

In some of the narrowest, most sheltered fissures between adjacent stalactite lobes a rather dense spicule-fur about 1.5 mm . high is observed. Apart from this the surface is now entirely destitute of a spicule-fur. The whole of the surface, also that of the margin of the cup, is dotted with small holes, the entrances to the radial cortical canals. Some of these holes are partly covered by remnants of pore-sieves. In the specimen examined by Sollas there were no holes (eanal-entrances) on the margin of the cup. On the outer, lobose surface the width of and the distances between these holes are quite constant, their diameter here being about 300μ and the distances between their centres about 700μ. On the margin of the upper cup the holes are much smaller and farther apart. In this upper cup the holes are more variable in size and much less regularly distributed than on the outer surface, some being as much as 500μ wide. In extensive tracts of the lower cup, these holes are $400-450 \mu$ wide and the distances between the margins of adjacent ones smaller than their diameter.

The colour (in the dry state) is white.

The sterraster-armour layer of the cortex is a little over 0.5 mm . thick. Sollas gives the thickness of the cortex as 0.8 mm ., Thiele the thickness of the sterraster-armour layer as 0.3 mm . Aecording to my measurement it is in Sollas's type about 0.65 mm . thick.

Skeleton. In the interior of the choanosome numerous large, stout amphioxes are found, also less numerous large, slender amphioxes, a few large styles, numerous large oxyasters, numerous small strongylosphaerasters, and very few sterrasters. In the superficial (subcortical) part of the choanosome the same three kinds of large choanosomal rhabds, numerous orthotriaenes, a few plagiotriaenes, many large anatriaenes, various promesoclades, numerous minute dermal amphioxes, a few minute dermal styles and minute dermal anaelades, some large oxyasters, and a good many large oxysphaerasters and small strongylosphaerasters occur. In this region the large rhabds and the rhabdomes of the large telo- and mesoclades form radial bundles. The minute dermal amphioxes, styles, and anaclades are situated radlially or obliquely, and scattered; the asters chiefly occupy the canal-walls. The sterraster-armour of the cortex is composed of dense masses of sterrasters. Where the surface has not been rubbed off or otherwise injured numerous minute amphioxes and some minute dermal styles and minute dermal anaclades, implanted in the distal part of the sterraster-armour, and an outer covering of small strongylosphaerasters are observed. Large spieules situated radially and broken off distally also occur oceasionally in this region. These are probably rhabdomes of mesoclades and perhaps also of large anatriaenes similar to the ones found intact in the subcortieal layer. The spicule-fur is composed of anatriaenes and mesoproclades. The large slender amphioxes, the large styles, the mesoproclades, the minute dermal styles, and the minute dermal anaclades are not mentioned either by Sollas or by Thiele. The latter also failed to find any large oxysphaerasters but, on the other hand, observed sphaeres, which were not found in the specimens examined by Sollas and by myself. In the type of Sollas reexamined by me, some large styles and a good many minute dermal rhabds with one end very blunt and more or less style in eharacter were met with. Mesoproclades and minute dermal anaelades appear, however, to be absent.

The large stout amphioxes (Plate 37, figs. 18-21, 22a) are generally simple, straight or slightly curved, and rather abruptly pointed. They are 2.t-3.2 nim. long and $30-51 \mu$ thick. Aecording to Sollas they measure 2.7 mm . by 32μ, according to Thiele 2 mm . and over by $35-40 \mu$. In the type of Sollas reexamined by me these amphioxes were $2.4-3.3$, mostly $2.8-3.2 \mathrm{~mm}$. long and $32-50 \mu$ thick.

It is known that sometimes the amphioxes of tetraxonid sponges are bifurcate at one end. Such forms are, however, very rare and usually considered pathologie. In the specimen of Geodia juponica examined by me large stout amphioxes, bifureate at one end, are remarkably frequent. I found no less than six in one spicule-preparation. The two branches of these bifureate amphioxes are equal or unequal and $10-80 \mu$ long. The angle they enclose is ahways small; the largest observed was 12°. When very short the two branehes are nearly parallel to each other and appear as terminal spines.

The rare large styles are 2.1-2.8 mm. long; their maximum thickness is $40-43 \mu$; the rounded end measures $10-31 \mu$, about one third to two thirds of the maximum thiekness in transverse diameter. Such spicules are not mentioned either by Sollas or Thiele. I found them, however, in Sollas's type.

The large slender amphioxes (Plate 37, fig. 22d) are strongly and very irregularly eurved, $1-2.2 \mathrm{~mm}$. long and, in the middle, $12-22 \mu$ thiek. Their ends are exceedingly slender, thread-like. Though not mentioned by Sollas or by Thiele, I found such spicules in Sollas's type.

The minute dermal amphioxes (Plate 39, figs. 1-9) are usually somewhat anisoactine and rather abruptly pointed. They are straight (Plate 39, fig. 9) or more or less, sometimes very considerably curved, usually in an irregular manner (Plate 39, figs. 1-8). They are $195-280 \mu$ long and, in the middle, $3.5-7 \mu$ thick. In Sollas's specimen they were small and fusiform. Thicle gives their length as 300μ. Neither Sollas nor Thicle mentions the remarkable irregular eurvature of so many of them. In the type of Sollas reexamined by me these spicules are $190-270 \mu$ long and $3-6 \mu$ thick. Most of them are more or less anisoactine, and some strongly and irregularly eurved.

The rare minute dermal styles are not so strongly eurved as the amphioxes, somewhat shorter, and in the middle $5.5-6.5 \mu$ thick. The rounded end is 2.4$3.5 \mu$, about half the maximum thickness of the spicule in transverse diameter. These spicules can be considered as derivates of the minute dermal amphioxes in which the anisoactinity has been carried to the extent of the rounding off of the proximal end. I found such spicules in Sollas's type though they are not mentioned by him or by Thicle.

The orthotriaenes and plagiotriaenes (Plate 37, figs. 15-17, 22b, c, 23-28; Plate 38, figs. 1-7) have a straight conic rhabdome, 2.3-3.2 mm. long and, at the eladome, $64-85 \mu$ thick. A little below it is usually somewhat thiekened and here measures $65-89 \mu$ in transverse diameter. This thickest part of the rhabdome is, on an arerage, about 6% thicker than its cladomal end. The acla-
domal end is usually blunt pointed, rarely rounded and slightly thickened. The elades are, when normally developed, stout, conic, usually blunt pointed, and $180-350 \mu$ long. Their basal part is slightly eurved, coneave to the rhabdome, their distal part straight. Their chords enclose angles of $90-102^{\circ}$, on an average 96.4°, with the axis of the rhabdome. The orthotriaene forms (with clade-angles $90-100^{\circ}$) greatly predominate, the plagiotriaene forms (with cladeangles over 100°) forming only about 15% of these spicules. The clades of the same cladome are, in the normally developed triaenes, usually rather unequal in length. In the normal cladome (Plate 37, fig. 17), the three clades measured 250,300 , and 340μ. Sometimes one, two, or all three clades are considerably reduced in length, cylindrical and rounded terminally. Aecording to Sollas these spicules have a rhabdome $2.4-2.6 \mathrm{~mm}$. by 78μ and clades $230-380 \mu$ long; according to Thiele a rhabdome 2.5 mm . by $50-60 \mu$, clades 200-300 μ long, and elade-angles of 92°. In Sollas's type I found these spicules had a rhabdome $2.3-2.9 \mathrm{~mm}$. by $50-70 \mu$, elades $200-300 \mu$ long, and clade-angles of $93-100^{\circ}$, on an average 95.5°.

The mesoproclades (Plate 38, figs. 9-17) have a rhabdome $2.8-4.3 \mathrm{~mm}$. long and $11-21 \mu$ thick at the cladomal end. At the acladomal end the rhabdome thins out to a slender, irregularly curved thread. The cladomes are variable, irregular forms with partly reduced elades predominating over the regular mesoprotriaenes. The epirhabd is usually straight, conical, sharp pointed, and $40-105 \mu$ long. Sometimes (Plate 38, fig. 16) it is shortened, rounded at the end, and curved, rarely reduced to a mere knob on the apex of the cladome. The clades are, when properly developed, conical, pointed and 65-125 μ long. Their basal part is eurved, coneave to the epirhabd, their distal part straight (Plate 38, figs. 9, 11, 17) or curved in the opposite direction (outwards) (Plate 38, figs. 12, 15). An abrupt angular bend often intervenes between these two parts. In the majority of these spicules one or two clades are more or less reduced in length, eylindrical, and terminally rounded (Plate 38, figs. 15, 17). Sometimes this reduction has gone so far that one, two, or all three clades appear as mere knobs (Plate 38, figs. 11, 13, 16) or are altogether absent (Plate 38, fig. 12). The chords of the clades enclose angles of $22-45^{\circ}$, on an average 34°, with the axis of the epirhabd. In young mesoproclades (Plate 38, fig. 14) not only are the epirhabd and the clades shorter but also the clade-epirhabd angles mueh greater. Mesoproclades or proclades are not mentioned as occurring in this sponge either by Sollas or by Thiele, neither could I find any in the type of the former.

The large anatriaenes (Plate 37, figs. 29, 30; Plate 38, figs. 18-29) have a
more or less curved rhabdome, $3.3-4.3 \mathrm{~mm}$. long, and at the cladome, $8-16 \mu$ thick. It its achadomal end it is usually attenuated to a fine, often considerably and irregularly curved thread (Plate 38, figs. 29, 30). Exceptionally the Habdome is somewhat shortened and thickened to a tyle at the adadomal cond. The elades arise at an angle of about 80° from the rhabdome. In very jomug anatriaenes, such as the one with clades only 20μ long represented in Plate 38, fig. 18, the clades are uniformly curved, concave to the rhabdome throughout their entire length. This eurvature not being great, however, the chords of the clades of such young anatriaenes enclose angles of over 50° with the axis of the rhabdome. During the further development the direction of growth undergoes a change, the silica being thenceforth apposed to the growing clade in such manner that its tip becomes a straight, slender, and sharp-pointed cone, strongly inelined to the rhabdome and enclosing with it an angle of only about 20°. The further growth of the elade may go on in the same direction: then chades with straight distal parts are formed (llate 38, figs. 19-22); or there may be a continuous change in a direction opposite to that of the curvature of the proximal part: then clades with distal ends eurved outward are formed (Plate 38, figs. 23-29). This eurvature gives, when well pronounced (Plate 38, figs. 28,29), a sigmoid appearance to the elades. The anatriaenes with such sigmoid clades are very characteristic of this sponge. The chords of the clades of the full-grown anatriaenes are $80-130 \mu$ long and enclose angles of $23-41^{\circ}$, on an arerage 32.2°, with the axis of the rhabdome. The anatriaenes have, according to Sollas, a rhabdome 18μ thick and clades 100μ long. According to Thiele the anatriaene-clades are 70μ long. The remarkable outward curvature of the ends of the elades of many of the anatriaenes is indicated in Thiele's figure but is not mentioned in the text either by lim or by Sollas. In the type of Sollas examined by me a few anamonaenes of similar dimensions besides the regular anatriaenes were found. The latter have a rhablome $2.1-5 \mathrm{~mm}$. by 11-23 μ, clacles $70-110 \mu$ long and elade-angles of $32-45^{\circ}$ on an average 36.7°.

The minute dermal anaclades (Plate 39, figs. 13e, 14-17, 38, 39) have a more or less curved rhabdome, $235-310 \mu \mathrm{long}$ and rounded at the aeladomal end. It the cladome the rhabelome is $1-2 \mu$, in its thiekest part, which usually lies below the middle, 2.8-5 μ, and at the rounded, acladomal end $1.3-3 \mu$ thick. The proportion of the thickness of the cladomal enrl to the thickest part to the aclaclomal end is, on an average, $10: 28: 17$. I have observed triaene, diaene, and monaene forms. The clades are always curved, concave to the rhabdome; their length is very variable. The chords of the clades are $3-10 \mu$ long and
enclose angles of $30-54^{\circ}$, on an average 39°, with the axis of the rhabdome. Such spicules are not mentioned either by Sollas or by Thiele neither eould I on examination find any in the type of Sollas.

The large oxyasters (Plate 39, figs. 13a, 18-26, 27a) usually have no central thickening, and from three to seven equal, concentric, regularly distributed rays. The rays are straight, conic, blunt, and everywhere, except quite at the base, thickly covered with spines. The spines appear to increase in size towards the end of the ray; those large enougl to be clearly made out, are somewhat recurved, claw shaped. The size of the whole aster and of the rays is in inverse proportion to the number of the latter.

NUMBER OF RAYS AND DIMENSIONS OF ONYASTERS.

Number of rays	Total diameter of asters	Length of rays	Thickness of rays at base
$3-4$	$30-16 \mu$	$18-23.5 \mu$	$2-2.8 \mu$
$5-6$	$27-39 \mu$	$15-21 \mu$	$1.2-2.7 \mu$
7	$25-31 \mu$	$13-16 \mu$	$1.3-1.8 \mu$

Oceasionally small oxyasters with a distinct centrum and more than seven rays are observed. These may be considered as transitional between the true large oxyasters described above and the large oxysphaerasters described below. According to Sollas the large oxyasters are 32μ in diameter. He deseribes their rays as smooth. Thiele says that the rays of the oxyasters are few in number and $6-14 \mu$ long. In the type of Sollas I found that the large oxyasters have from three to seven straight, spined rays. The rays are usually conical and pointed; very rarely some of them are reduced in length and terminally rounded. The rays are, at the base, $1.8-2.8 \mu$ thick. The total diameter of the aster is 21-36 μ.

The large oxysphaerasters (Plate 39, figs. 27e, to the right, 33, 40, 41) have a spherieal centrum, $5-7.5 \mu$, usually not quite a third of the whole aster, in diameter, from which from fifteen to twenty-one concentric, regularly arranged radial rays arise. Usually the rays are equal, rarely one or more reduced in length and rounded at the end. The normal rays are conical, sharp pointed, (without the centrum) $5.5-8 \mu \mathrm{long}$, and, at the base, $1.9-2.5 \mu$ thick. They bear a small number of spines, which are usually restricted to a belt lying some distance below the end. Sometimes the spines are rather large and then one perceives that they are slender and directed obliquely outward. More
often they are so small that they can hardly be made out and in some of these asters the rays seem to be quite smooth. The total diameter of the oxysphaerasters is $17-2 \mu$. Is stated above transitional forms eonnect these oxysphaerasters with the oxyasters. Sollas also mentions these asters. He gives their diameter as 20μ. Thiele did not find any such asters in the specimens examined by him and expresses the opinion that the ones described by Sollas were young sterrasters. In the type of Sollas I found these asters fairly abundant; they have a centrum about 5μ in diameter, from sixteen to twenty conical, sharp-pointed rays, at the base $1.4-2 \mu$ thick, and measure $15-21 \mu$ in total diancter.

Most of the small strongylosphaerasters (Plate 39, figs. 10-12, 13b, 27b, 36, 3^{7}) are regular, but irregular forms also oceur in small numbers. The regular forms have a spherical centrum, 1.2-5 μ, usually about one to two thirds of the whole aster, in diameter, from which from twelve to twenty-one equal, concentric, and regularly arranged radial rays arise. The rays are (without the centrum) $0.6-2 \mu \mathrm{long}$, at the base $0.5-1.2 \mu$ thick, and cylindrical. The end is truncate or rounded. The basal part of the ray is smooth, the end bears spines, which often form a verticil just below the tip. The total diameter of the regular small strongylosphacrasters is 46 , usually $5-5.5 \mu$. In the few-rayed forms with 12-13 rays the rays are, as a rule, relatively longer and more slender than in the many-rayed forms with $15-22$ rays.

The irregular small strongylosphaerasters have a centrum 1.5-3.6 μ in diameter, from which from six to mineteen rays arise. These are irregularly arranged, unequal in length, not always concentric, and usually entirely covered with spines. The rays are (without the centrum) $1.6-3 \mu \mathrm{long}$ and, at the base, $0.6-1.3 \mu$ thick. The total diameter of the irregular strongylosphaerasters is $5.8-7.3 \mu$

The diameters of the small strongylosphacrasters given by Sollas and Thiele are 5μ and 4π respectively. In the type of Sollas reexamined by me these asters have a centrum $1.5-2.2 \mu$ in diameter, from sixteen to twenty rays $0.6-0.8 \mu$ thick, and measure $4-5.5 \mu$ in total diameter.

The sterrasters (Plate 39, figs. 2S-32, 34, 35) are flattened ellipsoids $80-89 \mu$ long, 65-78 μ broad, and 55-61 μ thick. The average proportion of length to breadth to thickness is $100: S 3: 58$. The freely protruding rays which surround the umbilicus have transverse sections elongated in a direction radial to the centre of the umbilicus, mostly measuring $2.5 \times 4 \mu$, and bear five or six lateral spines. The spines directed towards the umbilicus are larger than the others.

The other protruding rays, away from the umbilicus, have more or less circular transverse seetions, about 2.5 mm . in diameter, and generally bear four or five spines. The measurements of the sterrasters given by Sollas and Thiele are 77.5 or 90 by 77.5 by 58μ, and 75 by 65μ respectively. In the type of Sollas examined by me the sterrasters measure $84-92$ by $70-80$ by 61μ.

This sponge was labeled Ace. No. 31982, Cydonium japonicum, Japan, and, as seen from the above description, although very similar to the sponges deseribed by Sollas as Cydonium japonicum and by Thiele as Geodia japonica in many respects, appears to differ from them very considerably in others. The most important of these apparent differences are the presence of large styles, large, slender amphioxes, minute dermal styles, mesoproclades, and minute dermal anaclades in the "Albatross" specimen and the absence of any reference to them in the descriptions of Sollas and Thiele. If these differences were real I should not consider these sponges the same species. Since, however, I have found large slender amphiozes and styles and also minute dermal styles in the type of Sollas, the differences due to these spicules not being mentioned in the descriptions of Sollas and Thiele in reality do not exist. It is different, however, with the mesoproclades and the minute dermal anaelades, which I failed to find in Sollas's type. Since, however, these spicules protrude beyond the surface and are, in much worn specimens, broken off and lost, and since, judging from the descriptions given by Sollas and Thiele and from the type examined by me the specimens at their disposal had been much worn, I do not think their presence in the "Abatross" specimen and their absence in Cydonium japonicum Sollas and Geodia japonica Thicle sufficient for systematie distinction. For this reason and on account of the great similarity of these sponges in every other respect, I eonsider them all as belonging to the same species.

Geodia atarastra, sp. nov.

angustana, var. nov.
Plate 43, figs. 9-25, 28-38; Plate 44, figs. 1-12. 14-49.
latana, var. nov.
Plate 43, figs. 26, 27; Plate 44, fig. 13.
I establish this species for eight specimens in spirit from Perico Island, Panama. It is characterized by the possession of ataxasters, and to this the specific name refers. Seven of the specimens are similar and have narrow anatriaene-cladomes: for these I establish the var. angustana. One is somewhat different and has broad anatriaene-cladomes: for this I establish the new var. latana.

The seren specimens of var. angustana (Plate 44, fig. 25) are attached to a stone and partly joined. The smallest are quite regularly spherical, the larger ones more irregular, elongated, divided into lobes, or tuberous. The largest, which is tuberous, measures $44 \times 41 \times 29 \mathrm{~mm}$. Two, which are elongated, have a length of 46 and 50 mm . The others are spherical or tuberous and $17-37 \mathrm{~mm}$. in maximum dianeter. The branch-like lobes of the lobate specimens are $8-11$ mm . broad. Execpt in the sheltered places adjacent to the base of attachment, where remmants of a spicule-fur can be detected, the surface is bare. In the smaller specimens it is almost continuous, in the larger undulating. At one place on the surface of the largest specimen (Plate 44, fig. 25, right above) there is a row of five low warts. Apart from these warts and the most prominent convexities of the larger specimens the whole of the surface is occupied by poresieves. The dermal membrane is, probably in consequence of post mortem slurinkage, more or less depressed over the radial cortical canals and their distal branches, so that the surface appears more or less pitted. In a restricted area, $6-10 \mathrm{~mm}$. in maximum diameter, which is in the larger specimens situated in a concavity, the dermal pores are rather large, everywhere else they are quite small. I consider the small pores, which oceupy by far the greater part of the surface, as the afferents, the large ones, confined to the restricted areas mentioned, as the efferents.

The single specimen of var. latana is fragmentary. It has the shape of a dise and measures $23 \times 19 \times 9 \mathrm{~mm}$. Its contour is pear shaped, and it was attached to a stone. The natural surface is destitute of a spicule-fur, quite smooth, and occupied throughout by small, apparently afferent pores.

The colour of the specimens of var. angustana is, in spirit, nearly white throughout; one has a slight hlac-gray tinge. The specimen of var. latana is gray with a lilac tinge throughout.

The superficial part of the body forms a cortex, which consists of a thin, in many places hardly perceptible, outer dermal layer; a middle sterraster-armour layer (Plate 43, fig. 25a; Plate 44, fig. 26a), for the most part $400-700 \mu$ thick; and a thin, inconspicuous inner fibrous layer. In one place, where a foreign body appears formerly to have been attached to the surface (Plate 43, fig. 25a, to the left), the sterraster-armour is only $150-250 \mu$ thick.

Canal-system. More or less stellate groups of afferent pores (Plate 43, fig. 26) occupy the largest part of the surface. These sieve-like pore-groups are $250-500 \mu$ in diameter and quite close together, their centres being only $300-$ 600μ apart. The pores themselves are oval or circular, $10-50 \mu$ wide, and
separated by rather broad strands of dermal tissue. The pores of each group lead into a system of lacunose, subdermal canals, which converge and unite below the centre of the pore-group to form an afferent radial canal (Plate 44, fig. 26b). The subdermal afferent canals are wide, separated only by relatively thin walls, vertical to the surface of the sponge, which radiate from a common centre. These walls attach the pore-sieves to the sterraster-armour and give to them, when viewed en face, the stellate appearance referred to above (Plate 43, fig. 26). The radial cortical afferent canals are $120-230 \mu$ wide and circular in transverse (paratangential) section. Their centres are $300-600 \mu$ apart.

Below the sterraster-armour layer numerous small cavities, measuring on an average about 100μ in radial diameter, are met with (Plate 44, fig. 26). The radial cortical canals open out into these cavities, and from them the choanosomal afferents take their rise. The flagellate chambers (Plate 44, fig. 24) are spherical and measure $15-20 \mu$ in diameter. In the interior of the choanosome large canals, some 1 mm . and more wide, are observed (Plate 43, fig. 25).

The efferent cortical canals, which are confined to the efferent areas referred to above, also have a circular transverse section. They are $200-300 \mu$ wide and their centres mostly $600 \mu-1 \mathrm{~mm}$. apart. In places, particularly towards the margins of the areas occupied by them, they are more distant. The outer openings of these canals are covered by nets of dermal strands, only $10-20 \mu$ broad. The meshes of these nets are oval or polygonal, $70-200 \mu$ broad, and up to 400μ long (Plate 43, fig. 28). Thus, when the efferent area is viewed en face one sees only a few strands or a loose net work of strands spread out over the entrances of the efferent cortical canals.

Skeleton. Strands of rhabds, extending obliquely or paratangentially, traverse the deeper parts of the choanosome. The rhabds composing them are chiefly amphioxes, but amphistrongyles, styles, and angularly bent or irregularly branched amphiox-derivates also occur in them in small numbers. In var. latana, the amphistrongyles and styles are relatively much more numerous than in var. angustana. In the distal part of the choanosome similar thabds and the rhabdomes of orthoplagiotriaenes, anatriaenes, and mesoproclades, chiefly mesoprotriaenes, form radial bundles. The rhabdomes of some of the orthoplagiotriaenes are reduced in length and rounded at the end. Orthoplagiotriaenes with such rhabdomes have been chiefly observed below the thin part of the cortex of a specimen of var. angustana, mentioned above. The cladomes of nearly all the orthoplagiotriaenes and of a large number of the anatriaenes lie in the level of the lower limit of the sterraster-armour. A few
anatriaene- and mesoproclade-cladomes were found further down in the choanosome. Host of the mesoproclades seen protruded $800 \mu-1 \mathrm{~mm}$. beyond the surface. The small remmants of spicule-fur observed consisted nearly entirely of the distal parts of such spicules (Plate 44, fig. 27b).

In the interior no minute rhabels are observed; in the distal part of the choanosome and in the imer and middle (sterraster-armour) layers of the cortex, on the other hand, such spicules, for the most part situated radially, oceur in considerable numbers. Where the dermal layer is better preserved, particularly orer the entrances to the radial cortical canals, large numbers of minute rhabeds are observed. They are here situated radially, their distal ends protruding a little beyond the surface. These minute dermal rhabds are arranged in groups, those of the same group being either parallel or diverging distally tuft-fashion. Most of these spicules are amphiox, a few amphistrongyle or style. Minute amphistrongyles and styles are relatively much more numerous in var. latana than in var. angustana. In var. angustana a few minute dermal anaclades are intermingled with these minute dermal rhabels.

In the interior of the choanosome a few sterrasters and large, few-rayed oxyasters oceur. The latter are situated in the canal-walls. In the distal part of the choanosome and the inner layer of the cortex oxysphaerasters, aeanthtylasters, small strongylosphaerasters, and ataxasters are met with. The middle layer of the cortex is occupied by dense masses of sterrasters. It also contains the parts of the rhabdomes of the fur-spicules which traverse it, the minute rhabds mentioned above, and small strongylosphaerasters and ataxasters. In the dermal membrane a thin but dense layer, composed of small strongylosphacrasters and ataxasters is observed. The strongylosphaerasters are much more numerous than the ataxasters.

The large choanosomal amphioxes (Plate 43, figs. 23d, 27d) are usually slightly curved, fairly isoactine, and gradually attenuated to sharp points, much more rarely blunt at one or at both ends. The last-named forms are relatively much more frequent in var. latana than in var. angustana. The measurements of three amphioxes, two isoactine and one anisoactine, given in the subjoined table, inclicate the degree of attenuation towards the ends.

Var. angustana	AMPHIOXES				100%
	Thickness				
	100μ	200 /	in the middle	200μ	
	below one end			below the other end	
	$17 / 2$	20μ	30μ	20μ	17μ
Var. latana	12μ	16μ	27μ	16μ	12μ
Var. latana	12μ	17μ	32μ	25μ	$17 /$

In var. angustana the large choanosomal amphioxes are 1.2-2.8, mostly $1.6-1.8 \mathrm{~mm}$. long, and $17-43$, mostly $22-38 \mu$ thick. In var. latana they are considerably smaller, measuring only $0.6-1.9 \mathrm{~mm}$., mostly $1.2-1.6 \mathrm{~mm}$., by 12 37 , mostly $20-34 \mu$.

I have subjected the length of the large amphioxes (and also the length of the rhabdomes of the orthoplagiotriaenes) of this species to a biometric investigation for the purpose of attaining an insight into the relative frequency of the different lengths of these spicules. In all, the length of about a hundred and fifty amphioxes of the two varieties, taken at random, were measured. The amphiox-lengths within ranges of 0.1 mm . (from $0.45-0.55 \mathrm{~mm}$., from 0.55 to 0.65 mm ., and so on) were counted, these numbers reduced to percentage, and the percentage frequency-numbers thus obtained plotted on the ordinates erected at the points of the horizontal axis indicating the amphiox-lengths (of 0.5 for $0.45-0.55 \mathrm{~mm}$., 0.6 for $0.55-0.65 \mathrm{~mm}$., and so on). By connecting the points thus plotted the two curves for the two varieties (Fig. A) were obtained.

Per cents of all the
large rhabds measured.

Fig. A. Percentage frequeney of lengths of the large ehoanosomal rhabds (ehiefly amphioxes) measured - Geodia ataxastra var. angustana, --- Geodia ataxastra var. latama.

Although somewhat irregular, both curves have one very well-pronounced main culminttion, broad in the var. lutana curve, and narrow in the var. angustana curve. These main culminations show that one amphiox-length is much more frequent than any other. The most frequent lengths represented by these culminations are 1.4 to 1.5 mm . in var. latana and 1.8 mm . in var. angustana. These may be considered as the normal amphiox-lengths. That the "normal" amphiox-length is greater in var. angustana than in var. latana accords with the fact that the specimen of var. angustana selected for this examination is much larger than the specimen of var. latana.

The var. latana curve has one, the var. angustana curve two, minor cuminating points besides the main one. The left one (at 1.3 mm .) of the latter appears to correspond to the single one (at 0.9 mm .) of the former. Since the majority of amphoxes shorter than those of "normal" length ($1.4-1.5 \mathrm{~mm}$. in var. latana and 1.8 mm . in var. angustana) are probably young, still growing spicules, the minor cummination which precedes the main one in both curves indicates that the rate of longitudinal growth of these spicules is not uniform, a stage of cessation or retardation of growth at 0.9 mm . in var. latana and at 1.3 mm . in var, angustana intervening between the earlier and the later periods of rapid growth.

The rare large amphistrongyles have similar dimensions to the large amphioxes.

The rare large styles are $0 . \overline{5}-1.6 \mathrm{~mm}$. long and $11-30 \mu$ thick. Their thickness is by no means proportional to their length.

The rare angularly bent and irregularly branched amphiox-derivates have similar dimensions as the regular amphioxes. In the angularly bent amphioxderivates the bend is always near one end. The angle may be over or under 90°. Most of the branched forms are amphichade in character and consist of a shaft with a short branch-ray near each end. In some only one branch-ray, situated near one end of the shaft, is observed. Generally the branch-rays are simple, straight, conical, and pointed, rarely irregularly curved or divided into secondary branchlets. The simple branch-rays are $20-100 \mu$ long and rise vertically or obliquely from the shaft. The oblique ones are inclined outward, proclade-fashion.

The mimute rhabds of the distal part of the choanosome, the cortex, and the dermal groups (Plate 44, figs. 31a, 32, 33a, 40a) are, in var. angustana, mostly fairly straight, rather abruptly pointed amphioxes. In var. latana minute dermal rhabds rounded at one end or at both occur in fair numbers besides the
ordinary amphiox forms with both ends sharp pointed. In var. angustana these spicules are $120-200$, mostly 160200μ long and $3-5 \mu$ thick; in var. latana somewhat larger, $145-215 \mu$ long and $4-7 \mu$ thick. The shorter ones are on the whole thicker than the longer ones. In var. angustana the average thickness of the minute rhabds less than 160μ in length is 4.6μ, that of the ones more than 160μ in length 3.9μ.

The orthoplagiotriaenes (Plate 43, figs. 9-22, 24a, 27a) have a straight, usually conical and sharp-pointed, rarely shortened, cylindrical, and terminally rounded rhabdome. The ordinary pointed rhabdomes are, in var. angustana, 1.6-2.3, mostly $1.9-2.2 \mathrm{~mm}$. long and, at the eladome, 29-70, mostly $40-60 \mu$ thick, in var. latana they are considerably smaller, $1.3-1.7$, mostly $1.5-1.6 \mathrm{~mm}$. long and $30-45$, mostly $30-40 \mu$ thick. The cylindrical, terminally rounded rhabdomes are as thick as the conical ones at the cladome but only $330 \mu-1.4$ mm . long.

I have studied the frequency of the different lengths of the ordinary pointed orthoplagiotriaene-rhabdomes in a similar manner to the amphiox-lengths. The curves representing the frequency of the different lengths measured are here reproduced (Fig. B).

Fig. B. Percentage frequency of lengths of rhabdomes of the orthoplagiotriaenes measured.

> - Geodia ataxastra var. angustana.
> -- Geodia ataxastra var. latana.

They are similar to the frequeney-curves of the imphiox-lengths, and like them exhibit a distinct main culmination, broad in var. latana and narrow in
var. angustana, which shows that the "normal" lengths of the orthoplagio-triacne-rhabdomes are $1.5-1.6 \mathrm{~mm}$. in var. latana and 2 mm . in var. angustana. Also in these curves a minor culmination, preceding the main one, is observed, and I think there ean be little doubt that this indicates, as in the ease of the amphiox-lengths, a temporary cessation or a retardation of longitudinal growth of the orthoplagiotriacne-rhabdomes, in this case when they are 1.3 mm . long in var. latana and when they are 1.6 mm . long in var. angustana. In these curves, as in the ones pertaining to the amphioxes, the part beyond the main culmination descends very rapidly at first and less rapidly later on. This seems to show that most of the amphioxes and orthoplagiotriaene-rhabdomes becoming longer than the normal grow beyond this very rapidly.

Fig. C. Correlation between the lengths and angles of the clades of the orthoplagiotriaenes of Geodia ataxastra var. angustana.

The clactomes of most of the orthoplagiotriaenes are regular, the three clades of the same cladome being nearly equal in length, position, and curvature. The clades of these regular orthoplagiotriaene-cladomes are conical, pointed, and curved, concave to the rhabdome, rather strongly in their proximal and central parts but only slightly or not at all in their distal part. In var. angustana they are $170-290$, mostly $230-270 \mu$ long, in var. latana shorter, only $130-$ 220μ long. The angle enclosed between the elade-chords and the rhabdomeaxis is in var. angustana $85-116^{\circ}$, on an average 100.3°, in var. latama $95-111^{\circ}$, on an arerage 101°. Considering, as I do, teloclades with a elade-angle between $S 0^{\circ}$ and 100° as orthoelades and teloclades with a clade-angle of $100-120^{\circ}$ as plagioclades, I name these spicules orthoplagiotriaenes.

For the purpose of asecrtaining the correlation between the clade-length on
the one hand and the clade-angle and the rhatrdome-thiekness (at the cladome) on the other I measured these dimensions in eighty-one cladomes taken at random. I arranged these measurements in the order of the elade-length, and divided up the series at intervals of 10μ, considering all clade-lengths from 145 to 155 as about 150μ, all from 155 to 165 as about 160μ and so on. All the measurements of clade-angles and rhabdome-thickness pertaining to clades of similar length (150, 160, and so on) were combined and their averages taken. These averages were then plotted on the ordinates erected in the points of the horizontal axis representing the clade-length ($150,160 \mu$, and so on). The curves connecting the points thus plotted in are here reproduced.

Fig. D. Correlation between the clade-length and rhabdome-thickness of the orthoplagiotriaenes of Geodia ataxastra var. angustana.

These curves are very irregular, but they show nevertheless that the cladeangle on the whole decreases with inereasing elade-length, while the rhabilomethickness increases with it. That is to say, that, roughly speaking, the width of the elade-angle is in inverse, the thickness of the claclomal end of the rhabdome in true proportion to the clade-length. According to the curves the clade-angle and the thickness of the cladomal ends of the rhabdones do not seem to be correlated with each other any more closely than with the clade-length. On the whole it may therefore be said, that, although there undoubtedly exists a corre-

Lation between the three clactome dimensions, they are subject to considerable, apparently independent variations.

Besides the orthoplagiotriaenes with regular cladomes, above described, a few oceur in which the clades are irregularly and unequally curved (Plate 43, fig. 10). Very rarely monaene and amphiclade derivates of orthoplagiotriaenes are met with. A monaene form observed had a bifureate elade. An amphiclade possessed, besides the ordinary three terminal elades, a fourth clade, which arose some distince down the rhabdome.

The mesoproclades of var. angustana (Plate 43, fig. 24b; Plate 44, figs. 112,14) have a straight or slightly curved rhabdome $1.6-3.4$, mostly $2.1-2.8 \mathrm{~mm}$. long. At the cladome the rhabelome is $9-20 \mu$, most frequently $10-15 \mu$ thick. Farther down it thickens, and at its thickest point, which is situated near the middle, it is usually half again as thiek as at the cladomal end. It the acladomal end the rhabdome is usually attenuated to a fine point. Generally the eladome is regularly triacne. The clades are usually conical, about 70μ long, slightly cursed, coneave to the epirhalod basally and straight distally. Their chords enclose angles of $40-50^{\circ}$ with the epirhabl. The latter is straight, conical, printed, and $40-50 \mu$ long. Besides these regular forms various irregular ones are observed. In some of these a fourth clade is added to the three normal ones, so that the spicule appears as a mesoprotetraene. The clades of these tetracne mesoproclades (Plate 44, fig. 1) are somewhat unequal in length and position. The longest clade of the eladome is $50-75 \mu$ long. The chords of the clades enclose angles of $36-62^{\circ}$ with the axis of the epirhabd. The latter is conical, pointed, and $35-58 \mu$ long. Other derivates are produced by one or more clades being abruptly (angularly) bent outward in the middle (Plate 44, fig. 14). These spicules are also very rare. More frequently irregularities due to one or two of the clades being reduced in length, cylindrieal, and terminally rounded, are observed (Plate 44, figs. 11, 14). Rarely one clade is absent altogether, so that the spicule appears as a mesoprodiaene (Plate 44, fig. 12). Taking all the mesoproclades together, but leaving out of account the exceptionally large, quite abnormal angles of some of the tetraene clades, which, as mentioned above, measured up to 62°, we find that the longest clade of the eladome is $44-80 \mu$ and the epirhabd $40-60 \mu$ long, the angle between the clade-chords and the epirhabd axis being $33-45^{\circ}$, on an average 41.3°.

In var. latana the mesoproclades (Plate 44, fig. 13) have a rhabdome 2-2.4 mm . long and, at the eladome, $7-13 \mu$ thick. As in the mesoproclades of var. angustana the rhabdome thickens towards the middle. Regular mesoprotriaenes,
like those predominant in var. angustana, are rare in var. latana, one, two, or even all three clades (Plates 44, fig. 13) being reduced in length and terminally rounded in most of the mesoproclades observed in this variety. Nost of the pointed, fully developed clades are angularly bent outward in the middle like some of the clades of the mesoproclades of var. angustana (Plate 44, fig. 14). The dimensions of the cladomes of the mesoproclades of var. latana are: length of longest clade of the cladome $25-58 \mu$, mostly $32-50 \mu$; length of epirhabd $28-$ 50μ, mostly $34-47 \mu$; angle between clade-chord and epirhabd axis $25-55^{\circ}$, on an average 43.6°.

The large anatriaenes (Plate 44, figs. 15-23, 40d, 41) have in var. angustana a rhabdome 2.1-3.1 mm. long and, at the cladome, 3-10 μ thick. In var. latana the anatriaene-rhabdome is somewhat shorter and thicker, measuring 2.-2.8 mm. in length and $7-12 \mu$ in thickness. The cladomes are generally regular, irregular anatriaene-cladomes with one clade shorter than the others (Plate 44, figs. 17,41) being rare. Exceptionally all three clades are greatly reduced in length, so that the whole cladome appears as a three-lobed tyle (Plate 44, fig. 23). In the anatriaenes of var. angustana the cladome is usually destitute of an apical protuberance. The clades of these anatriaenes are regularly conical, taper uniformly to a sharp point, are strongly curved, concave to the rhabdome basally, straight or just perceptibly bent outward distally, and 17-6S μ, mostly $30-65 \mu$ long. Their chords enclose angles of $20-42^{\circ}$, on an average 34°, with the axis of the rhabdome. The cladomes of the large anatriaenes of var. latana are different in appearance. Most of them have a distinct apical protuberance and their clades are very thick and not very strongly curved, concave to the rhabdome at the base, and abruptly attenuated to very slender, straight or slightly outwardly curved, sharp-pointed tips. They are $30-55 \mu$ long, their chords enclose angles of $41-55^{\circ}$, on an average 47°, with the axis of the rhabdome.

The minute dermal anaclades (Plate 44, figs. 28d, 42, 46-49), which have been observed only in var. angustana, have a slightly curved rhabdome $190-340 \mu$ long. At the cladomal end it is $0.5-2 \mu$ thick, and it increases in thickness towards the middle to $1.4-3.5 \mu$, the central part of the rhabdome being usually not quite twice as thick as its cladomal end. The acladomal end of the rhabdome is rounded and usually slightly thicker, rarely thinner, than the cladomal end. Most of these minute anaclades are regularly triaene. The basal parts of their clades are generally quite strongly curved, concave to the rhabdome, while their central and distal parts are straight. The chords of the clades are
26μ long and enclose angles of $33-57^{\circ}$, on an average 47.6°, with the axis of the rhabitome.

Geodia atarastra is very rich in asterforms. Eight different kinds of asters can be distinguished. 1. Large oxyasters with few rays. 2. Oxysphaerasters with numerous slender, spiny rays. 3. Oxysphaerasters with numerous stout, smooth rays. 4. Small strongylosphaerasters. 5. Ataxasters. 6. Aeanthtylasters. 7. Irregular sterraster-derivates. S. Regular sterrasters. Three and seven are very rare and have been observed only in centrifugal spicule-preparations of rar. latana. Six also, which occurs in both varieties, is by no means frequent. The five other kinds, particularly four, are abundant, five being more numerous in var. latana than in var. angustana. One and two, and also four, five, and six are connected by some transitional forms; seven may also belong to the series of forms represented by the three latter, and at the same time exhibits great aflinities to eight.

The large oxyasters (Plate 43, figs. 35, 36, 37a, 38; Plate 44, figs. 28c, 29c, $30 \mathrm{e}, 33-35 \mathrm{c}, 39,40 \mathrm{c}$) oceur in both varicties. Those of var. angustana are usually destitute of a centrum, only the two-rayed forms possessing a slight central thickening. They have from two to ten concentric and regularly distributed, straight or slightly curved, usually simple rays. In some oxyasters, however, one or more of the rays are bifureate, the terminal branches being nearly equally long and strongly divergent. Very rarely trifureate rays have been observed. The simple rays are conical, gradually or abruptly pointed, and always spiny. When abruptly pointed and distally covered with very numerous spines they have a somewhat strongyle appearance. As a rule nearly the whole ray is covered with spines, only a narrow belt at the base being smooth. The spines increase in size towards the end, just below which they oceasionally form a conspicuous verticil. The spines of the proximal half of the ray are often so minute as merely to render the appearance of this part of it rough. When large enough to be elearly made out, the spines are seen to arise vertically from the ray and to bend down at the end in a claw-shaped manner. In regard to their spines the branched rays agree with the simple ones. The size of the aster is in inverse proportion to the number of its rays. The two-rayed (diactine) asters are $40-50 \mu$, the three- to seven-rayed $21-40 \mu$, and the eight- to ten-rayed 1.528μ in cliameter. The rays are half or a little more than half of the diameter of the whole aster in length, and, at the base, $0.6-2.6 \mu$, usually $1-2 \mu$ thick. The basal thickness is by no means in proportion to the length of the ray, shorter rays being often much thicker than longer ones. As, however, the relatively
thick-rayed oxyasters (Plate 43, figs. 36, 37a) are connected with the relatively thin-rayed ones (Plate 43, figs. 35, 38) by numerous transitions, which form a continuous series, it does not appear advisable to separate them.

The large oxyasters of var. latana are on the whole similar to those of var. angustana, but considerably smaller. Diactine oxyasters and asters with branched rays were not observed in this variety. The increase in the size of the spines towards the end of the ray is not so marked in the oxyasters of this varicty as in those of var. angustana. The large oxyasters of var. latana have from three to eleven rays, the threc- to seven-rayed are $17-28 \mu$, the eight- to eleven-rayed $15-21.5 \mu$ in total diameter. The basal thickness of the rays is 0.7-1.8 μ.

The oxysphaerasters with slender spiny rays (Plate 43, figs. 29-32; Plate 44, fig. 29e, 34e) occur in fair numbers in both varieties. Those of var. angustana consist of a spherical centrum $2.6-5.5 \mu$, that is about a third, of the whole aster, in diameter, from which eighteen to twenty-eight regularly distributed rays arise radially. The rays are straight, conical, and sharp pointed. Their distal parts bear spines of considerable size, some of which are often arranged in a verticil, situated some distance below the tip. The rays are, without the centrum, 3.5-5 μ long and at the base $0.7-1.3 \mu$ thick, the total diameter of the aster being $S-13 \mu$. The spined oxysphaerasters of var. latana have cighteen to twenty-one rays and resemble those of var. angustana very closely but are somewhat larger and have relatively smaller centra. Their dimensions are: centrum $2.4-3.5 \mu$, a fifth to a third of the whole aster, in diameter; rays, without the centrum, $4-5.5 \mu$ long and at the base 1.2μ thick; total diameter 10-14.4 μ.

In both varieties a few asters transitional between the oxyasters and oxysphacrasters above described, in regard to ray-number, size, and development of the centrum, have been met with.

The rare oxysphaerasters with stout smooth rays, which have been obscrved only in var. latana, have a centrum 4.5μ, that is a little over a third of the whole aster, in diameter, and about eighteen, regularly distributed, straight, smooth, conical, and rather blunt rays, which are, without the centrum, 4.5μ long and at the base 2μ thick. The total diameter of the aster is about 13μ.

The small strongylosphaerasters (Plate 43, figs. 33, 34, 37b; Plate 44, figs. $30 \mathrm{~b}, 31 \mathrm{~b}, 33-35 \mathrm{~b}, 40 \mathrm{~b}$) are exceedingly abundant in both varieties. Those of var. angustana have a more or less regularly spherical centrum, $0.6-2.3 \mu$, exceptionally as much as 3μ, a sixth to a half of the whole aster, in diameter,
from which from seven to twenty, very rarely as many as thirty, fairly regularly distributed rays arise radially. The rays are straight or slightly curved, and appear as short eylinders, rounded and often somewhat thickened at the end. Indications of the presence of exceedingly small spines have frequently been observed. The rays are, without the centrum, $0.7-2.6 \mu$ long and $0.2-0.8 \mu$ thick. The total diameter of the aster is 2.6-6, usually $3-4.5 \mu$. The small strongylosphacrasters of var. latana are very similar. They have a centrum $1-3 \mu$, a fifth to a third of the whole aster, in diameter, and from eleven to nineteen, rarcly as few as nine, rays. The rays are, without the centrum, $0.6-1.5 \mu$, rarely as much ats $2.5 \mu \mathrm{long}$, and $0.3-0.8 \mu$ thick. The total diameter of the aster is 3-6.4, usually $3.4-4.3 \mu$.

The atuxasters are more abundant in var. latana than in var. angustana. Those of rar. angustana consist of a spherical or irregularly tuberous centrum, $1.4-3.5 \mu$ in diameter, from which from one to eight rays arise. The rays are conical or, more frequently, eylindrical and always rounded, sometimes thickened at the end. They are rough or distinctly spined, without the centrum, $0.3-2.8 \mu$ long and $0.4-1.2 \mu$ thick. This distribution is most irregular, and they arise radially or obliquely. Those of the same aster often differ very considerably in size. When only a few, two to four, rays are developed, they usually stand close together and form a bunch arising from one point of the surface of the centrum, the rest of the latter being often rough or spiny, but free from rays. When more rays are present they are usually somewhat scattered, but in this case also a large part, generally more than a half, of the surface of the centrum is free from rays. The whole aster is $4-7 \mu$ in diameter. The ataxasters of var. latana have from two to fourteen rays. They are very similar to those of var. angustana, but on the whole larger and covered with somewhat larger spines. Among the ataxasters of this variety a few with branched (bifureate) ray's have been observed. Their dimensions in this varicty are: centrum 24.5μ, a third to three quarters, of the whole aster, in diameter; rays, without the centrum, $0.3-2.5 \mu$ long and $0.7-1.5 \mu$ thick; total diameter 5.3-8.3 μ.

Strongylosphacrasters with a less pronounced irregularity in the distribution of the rays conneet these ataxasters with the small strongylosphaerasters described above.

The acanthtylasters occur in both varieties, but they are far from numerous, and particularly searee in var. angustana. Those of var. angustana have from ten to fifteen rays and measure $8-16 \mu$ in diameter; those of var. latana have
from four to nine rays and measure $10-14.5 \mu$ in diameter. The acanthtylasters have no central thickening. Their rays are usually distributed fairly regularly, cylindrical, $1-2 \mu$ thick, and rounded at the end. The end, which usually appears distinetly thickened, is densely covered with large spines, which are for the most part directed outward. The central and proximal parts of the rays are quite smooth. In the asters of this kind whieh I have found in var. angustana the rays were always simple, while in several of the acanthtylasters of var. latana some of the rays were terminally divided into two or, rarely, three short branches, each provided with a special acanthtyle.

The rare irregular sterraster-derivates, which have been observed only in var. latana, consist of a central mass from which tufts of large, slender spines arise. The central mass is either simple and spherieal, or oval, in which case two tufts of spines, lying nearly opposite each other, rise from it; or it is lobate, in which case the distal convex face of each lobe is covered with spines. The number of the lobes of the lobate form is from two to five. Sometimes the lobes are separated by rather deep recesses. The spines are $4-8 \mu \mathrm{long}$, the whole spicule measuring $21-50 \mu$ in diameter. In their dimension and in the shape, size, and position of the spines these spicules agree with young sterrasters, and they make, on the whole, the impression of being early stages of abnormal spicules of this kind. Abnormal sterrasters, which might be considered as their adult forms, have, however, not been observed.

The sterrasters (Plate 44, figs. 36-38, 43-45) are abundant in both varieties. They are flattened ellipsoids. Those of var. angustana are $65-98 \mu$ long, 58-67 μ broad, and $47-57 \mu$ thick, the average proportion of length to breadth to thickness being $100: 89: 74$. The sterrasters of var. latana are similar but smaller and relatively thicker. They are $55-65 \mu$ long, $50-60 \mu$ broad, and $47-50 \mu$ thick, the average proportion of length to breadth to thickness being 100:90:79.

In the centre of the sterraster a cluster, about 4μ in diameter, of small granules is observed. Outside the umbilical area the rays protruding beyond the surface are about 2.3μ thick and have a circular or broad-oval transverse section. The transverse section of the rays surrounding the umbilicus is greatly elongated in a direction radial to the centre of the latter and measures about 2.4 by 7μ. The terminal spine verticils are, in the rays away from the umbilicus, composed of from six to ten, in those of the rays surrounding the umbilicus of a much larger number of lateral spines. On some of the periumbilical rays I counted as many as sixteen. The spines are broad, conical, and small, mostly under 1μ in length. The terminal faces of the periumbilical rays are very
oblique, strongly inclined inwards (Plate 44, figs. 43-45). The umbilicus is about 10μ deep.

The eight specimens of the two varieties of this species were collected on October 26,1904 , on the shore of Perico Island, Panama.

Although these specimens belong without doubt to the same species, they are not quite identical. Seven of them are quite or nearly white and have the same structure, one is gray and differs from the rest by its ataxasters being larger, by its megaseleres and sterrasters being smaller, by the clade-angles of its large anatriacnes being considerably wider (averages 34° and 47° respectively), by its mesoproclade-cladomes being different in shape, by the rays of none of its large oxyasters being branched, by possessing a few oxysphaerasters with thick, smooth rays and irregular sterraster-derivates, and by being destitute of minute dermal anaclades. Some of these differences, particularly those of the asters and the ana- and mesoproclades, seem to me to be germinal in character.

The spiculation and the cribriporal nature of the afferents and efferents show that these sponges belong to Geodia. For the reasons given in the description of Geodia agassizii I have compared them not only with the deseribed species of Cleodia but also with those of Sidonops. The species most nearly allied to them are Geodia tuber (tuberosa) O. Schmidt, G. distincta Lindgren, G. hilgendorf Thiele, G. mülleri (mulleri) Fleming, that described by Dendy as G. ramodigitata Carter and here described as G. mesotriaenella. Geodia tuber, G. distincta, G. mülleri, G. ramodigitata (Dendy), and G. mesotriaenella are distinguished from G. ataxastra by being destitute of ataxasters and by having much larger dermal strongylosphaerasters. Geodia hilgendorfi differs from G. ataxastra by possessing small oxysphaerasters instead of the strongylosphaerasters.

DIMENSIONS AND CHARACTERS OF THE SPICULES OF THE TWO VARIETIES OF GEODIA ATAXASTRA.

Spicules.	var. angustana.	var. latana.
Large choanosomal rhabels	chiefly amphiox, amphistrongyles and styles rare; 1.2-2.8, mostly $1.6-1.8 \mathrm{~mm}$. long and $17-43$, mostly 22-38 μ thick.	ehiefly amphiox, but amphistrongyles and styles relatively much more frequent; $0.6-1.9$, mostly $1.2-1.6$ mm. long, and $12-37 \mu$ thick.
Minute dermal rhabds	nearly all amphiox, styles exceedingly rare; 120-200, mostly 160 200μ long, and $3-5 \mu$ thick.	chiefly amphiox, but also a fair number of styles; 145-215 μ long, and $+7 \mu$ thick.
Orthoplagiotriaenes	rhabdome 1.6-2.3, mostly 1.9-2.2 mm . long, and at cladome 29-70, mostly $40-60 \mu$ thiek; clades 170 290, mostly $230-270 \mathrm{k}$ long; eladeangle $85-116^{\circ}$, a verage 100.3°.	rhabdome $1.3-1.7$, mostly $1.5-1.6$ mm . long, and, at cladome, $30-45$, mostly $30-40 \mu$ thiek; clades $130-$ 220 /t long; elade-angle 95 - 111°, average 101°.
Mesoproclades (nearly all are triaene)	rhabdome 1.6-3.4, mostly 2.1-2.8 mm . long, and, at eladome, $9-20 \mathrm{R}$ thick; (longest) clades $4+80 \mu$ long; clade-epirhabd angles $33-48^{\circ}$, a verage 41.3°; epirhabed 33-73, mostly 40-60 μ long.	rhabdome $2-2.4 \mathrm{~mm}$. long, and, at eladome, $7-13 \mu$ thiek; longest clades $25-58$, mostly $32-50 \mu$ long; eladeepirhabd angle $2 \overline{5}-55^{\circ}$, average 43.6°; epirhabd 2S-50, mostly $34-17 \mu$ long.
Large anatriaenes	rhabdome 2.1-3.1 mm. long; at elatome, 3-10 μ thiek; (longest) elades 17-68, mostly $30-6.5 \mu$ long; clateangles $20-42^{\circ}$, average 34°.	rhabdome $2-2.8 \mathrm{~mm}$. long, and, at cladome $7-12 \mu$ thick; (longest) clades $30-55 \mu$ long; clade-angles $41-55^{\circ}$, average 47°.
Minute dermal anaclades	rhablome 190-340 μ long; at cladome, $0.5-2 \mu$ thick; clates 2-6 μ long; clade-angles $33-57^{\circ}$, average 47.6°.	not observed.
Large oxyasters	two-rayed $40-50$, threp- to sevenrayed 21-40, eight- to ten-rayed 15 $2 x \mu$ in diameter.	threc- to seven-rayed 17-2s, eightto eleven-rayed 15-21.5 μ in diameter.
Oxysphaerasters with sleuler, spined rays	S-13 μ in diameter.	10-14.4 μ in diameter.
Oxysphaerasters with stout, smooth rays	not observed.	13μ in diameter, rare.
Small strongylosphaerasters	2.6-6 μ in diameter.	3-6.4 μ in diameter.
Ataxasters	4-7 μ in diameter.	5.3-8.3 μ in diameter.
Acanthtylasters	with ten to fourteen rays, $8-16 \mu$ in diameter, very rare.	with four to nine rays, $10-14.5 \mu$ in diameter.
Irregular asters (sterr-aster-derivates)	not observed.	21-50 μ in diameter.
Sterrasters	65-78 μ long, 58-67 μ broad, $47-57 \mu$ thick.	55-65 μ long, $50-60 \mu$ broad, 47-50 μ thiek.

pachana, var. nov.
Plate 21, fig. 1; Plate 23, figs. 3, 5, 6, s, 9; Plate 24, figs. 3, 5, 9.
microana, var. nov.
13ate 23, figs. 1-2; Plate 24, figs. 2, 6, 7, 10-13, 16, 19, 21.
megana, var. nov.
1’ate 21. firs. 2-6; 1’ate 2.2, figs. 1-10; Plate 23, figs. 4, 7, 10-25; Plate 24, figs. 1, 4, 8, 14, 15, 17, $18,20,22-32$; Ilate 25 , figs. 1-11.

I establish this speeies for three sponges, a complete dry specimen, a complete spirit specimen, and some fragments, also preserved in spirit. These specimens were collected at Stations 2909, 2942, 2958, off the coast of southern California. Their spicule-fur is composed of large and conspicnous mesotriaenes and to this the specifie name refers. Athough these three specimens are similar (nough to be considered as the same species, each possesses peculiar characters so that it seems advisable to separate them as varieties. The most conspicuous differences between them are those of their anatriaenes. In the specimen from Station 2909, var. pachana, the anatriaene-cladomes are small and stout; in that from station 2942, var. microana, the anatriaene-cladomes are small and slender; and in that from station 2958 , var. megana, the anatriaene-eladomes are large.

The specimen of var. microana is cake shaped and appears as a low and broad inverted cone with bulging sides, 72 mm . high, with largest and smallest horizontal diameters of 116 and 104 mm . respectively. The upper side, forming the base of the cone, is quite flat, the lower side, forming its apex, rounded. Judging from the fragments of var. megana this was similar (Plate 21, fig. 2) but larger, probably ats much as 200 mm . in maximum diameter. The specimen of var. puchana (Plate 21, fig. 1) is relatively broader than the other two and somewhat similar to a plane-convex lens with vertical axis and flat upper face. It is 230 mm. in horizontal diameter and 120 mm . high. The basal part, the apex of the lower convex side wherewith the sponge was attached, has been torn off - in its complete state, with this apex, its height may have been 140 mm .

The colvur of var. microana is yellow, that of var. megana brown and that of var. pachana dirty olive-brown on the surface and a lighter, yellowish brown in the interior. The first two are in spirit. The last is dry.

On the upper face and on the sides depressions are met with. In the smaller specimens (var. microana and var. megana) these are few in number, large parts of the surface being without any trace of them (Plate 21, fig. 2). In the larger
specimen of var. pachana they are more numerous and larger, $15-30 \mathrm{~mm}$. wide (Plate 21, fig. 1). Between the depressions on the upper face and the sides of the latter low elevations, $18-27 \mathrm{~mm}$. broad, arranged in curved rows and forming gyrus-shaped ridges arise. Some of the depressions are isolated and shallow, most of them join to form furrows, $6-12 \mathrm{~mm}$. deep, separating the gyri. At the bottom of these furrows apertures, $5-8 \mathrm{~mm}$. in diameter, which lead into irregular tubes, $4-13 \mathrm{~mm}$. wide, traversing the interior of the sponge and occasionally anastomosing, are observed. These tubes must not be confounded with true canals; they are, as will be shown, pracoscular cavities. Masses of sponge-tissue, on an average 30 mm . thick, separate these tubes from each other. In var. megana and var. microana tubes of this kind are also met with. Here, however, they are wider, in var. megana 20 mm . in diameter, and less numerous (Plate 21, fig. 2b).

In all the specimens portions of the outer surface (Plate 21, figs. 1, 2a), chiefly the sheltered parts in the depressions, are covered with protruding spicules which form a fur. This spicule-fur is 5 (var. microana) to 10 (var. megana and var. pachana) mm. high. The walls of the praeoscular tubes are also hirsute, but here the protruding spicules are less numerous and do not extend nearly so far beyond the surface. I do not doubt that the fur is produced by partial ejection of radial spicules on all parts of the surface, and that, wherever it is now wanting, it has been lost by friction, either during life or post mortem. As stated above, the protruding spicules forming this fur are mostly mesotriaenes.

Where the large protruding spicules have been lost, slight depressions 1.3 (var. megana) to 2 mm . (var. microana) apart are observed on the surface. Apart from these the surface appears, to the unaided eye, quite smooth.

The superficial parts, abutting on the outer surface and the pracoscular tubes, are differentiated to form a cortex free from flagellate chambers.

This cortex (Plate 21, fig. 2; Plate 22, figs. 1-7, 10; Plate 23, figs. 24, 25; Plate 25, fig. 1) is composed of three layers: an outer layer, containing small dermal amphioxes and various euasters but no sterrasters, and traversed by systems of mostly oblique canals (Plate 23, figs. 24, 25, Plate 25, fig. 1); a middle layer filled with dense masses of sterrasters and traversed by the distal parts of the narrow, radial, chonal canals (Plate 22, figs. 3-5, 7a; Plate 23, figs. 24b, 25b; Plate 25, fig. 1e); and an inner layer, poor in microscleres, traversed by the proximal parts of the chonal canals (Plate 22, figs. 5 , to the right, 6,71 ; Plate 23, figs. 24, 25). All three layers are penetrated by the rhabdomes of the
protruding mesotriacnes, the inner layer also by the distal parts of the rhabdomes of those orthotriaenes and anatriaenes the cladomes of which lie near its outer limit. The outer layer is $300-500 \mu$ thick. The middlle layer, being ehiefly composed of sterrasters, firmly held together by connective fibres, appears as a strong armour (sterraster-armour). Below the outer part of the surface this layer is in all the three varicties $1-1.5 \mathrm{nmm}$. thick, in the walls of the pracoscular tubes thimer, in var. megana hardly half as thiek (Plate 21, fig. 2). The tissue composing the inner layer extends along some of the large, radial, choanosomal eanals a considerable distance into the interior; between these eanals it is usually $300-600 \mu$ thick.

As stated above the outer surface is covered with slight depressions 1.3-2 mm. apart. These are situated between the points where the radial spiculebundles abut on the surface (Plate 23, fig. 24), so that it appears as if these depressions had been produced by a subsidence of the parts of the surface (cortex) not supported by the radial spicule-bundles. The depressions are obviously homologous to the depressed parts of the surface of horny sponges lying between the conuli, while the elevated parts, supported by the radial spicule-bundles, correspond to the conuli. Not only the outer surface but also the surface forming the limit between the outer and middle layers of the cortex is raised in the radlii of the spicule-bundles, so that this also appears conulated; the "conuli" of this limiting surface are even higher than those of the outer surface. The surface forming the lower limit of the middle cortieal layer is not thus raised in the radii of the spieule-bundles and nearly continuous. The thickness of the outer and middle layers of the cortex are consequently far from uniform; in the depressions the outer layer is thicker and the middle layer (sterraster-armour) thimer than in the radii of the spicule-bundles (under the conuli). The small amphoxes in the outer layer of the cortex form radial tufts. Their outer ends protrude some distance beyond the surface (Plate 23, fig. 25i; Plate 25, fig. 1b); on the outer surface of var. megana usually $50-80 \mu$, in the pracoseular tubes of this variety $200-300 \mu$. Where the spicules penetrate it, the dermal membrane is drawn up tent-fashion (Plate 25, fig. 1). Thus a great number of small, one might say secondary, conuli are formed rising, everywhere from the surface between the large (primary) conuli.

The canal-system proper. In the depressions between the conuli, groups of pores, penetrating the dermal membrane and rendering it sieve-like, are met with. On the outer, exposed surface of var. megana these pores are more or less circular and $40-60 \mu$ in diameter. They lead into canals (Plate 22, figs. 1b, 2b;

Plate 23, figs. 24c, 25c; Plate 25, fig. 1c) $120-300 \mu$ wide. All the canals originating from the pores of the same group converge to a point below its centre and there join to form a cavity of considerable extent, which lies in the outer layer of the cortex below the dermal membrane (Plate 23, figs. 24, 25). From this subdermal cavity a narrow tube, the chonal canal (Plate 22, figs. 3-7e; Plate 23, figs. $24,25 \mathrm{k}$) extends radially downards, penetrating the middle and inner layers of the cortex. This chonal canal, particularly its proximal part, which passes through the inner layer of the cortex, is surrounded by a ring of contractile tissue, the chone (Plate 22, fig. 6; Plate 23, figs. 24d, 25 d), according to the degree of the contraction of which the width of the chonal canal varies. In most of the sections it is about 200μ wide above, where it enters the middle cortical layer, and narrows contripetally to about 50μ at its proximal end (Plate 22, figs. 3-6; Plate 23, fig. 25).

At the lower limit of the immer layer of the cortex, the chonal canal opens out into a wide choanosomal canal, likewise radial, extending down towards the interior. These radial choanosomal canals (Plate 23, figs. 24, 25e) are usually $300-600 \mu$, sometimes as much as 1 mm . wide. Transverse membranes, protruding from their walls at intervals of $150-250 \mu$, partially divide the canal-lumen into a row of chambers. Some of these radial canals are short and soon split up into numerous narrow branch-canals which lead to the superficial flagellate chambers, others are long and open into larger canals, $3-5 \mathrm{~mm}$. wide, which extend in a paratangential or oblique direction into the deeper parts of the choanosome (Plate 21, fig. 2). Some of the radial canals leading down from the chones are surrounded by thick mantles free from flagellate chambers (Plate 23, figs. 24f, 2.5f), which appear as centripetal continuations of the tissue forming the lower cortical layer. The chamber-bearing tissue (Plate 23, fig. 24g) occupies the interstices between the canals (canal-mantles). Within this tissue the flagellate chambers are numerous and close together. They appear to be more or less spherical and have a diameter of $20-30 \mu$.

It will be seen by the above that in general structure and in the character of its canal-system this sponge is very similar to the Mediterranean Geodia mülleri (cydonium). ${ }^{1}$ I have been able to examine this species in various stages of growth and thus to ascertain the true nature of the tubes leading down from the large depressions on the surface and the different parts of the canal-system proper. I think there can be little doubt that in G. mesotriaena, as in G. mulleri, both the

[^4]afferent and efferent canals proper are cribriporal, some of the pore-groups being the begimings of the afferent, the others the termini of the efferent system. some of the radial choanosomal canals, as stated above, are surrounded by thick mantles of tissue free from flagellate chambers, others are not so surrounded. I think that the former are efferent, the latter afferent canals. Since in G. mesotrinena the walls of the tubes leading down from the large depressions on the outer surface have, as in Gr. mülleri, a cortex, continuous and virtually identical with the cortex of the outer, exposed parts, I do not doubt that the tubes themselves are in the former, as in the latter, produced by a plicature and local fusion of the growing sponge in such a manner that their lumina are in reality outside the sponge and the tubes themselves not to be considered as canals proper. As the afferent pores seem to predominate on the outer, exposed surface, and as efferent pores only seem to occur in the walls of the tubes, I consider the lumina of the latter as annexes of the efferent canal-system, that is, as praeoscular cavities.

The specimen of var. megana, the best preserved of the three, is, in its histological structure on the whole similar to G. mülleri, but also exhibits some peculiarities. There is no accumulation of stamable cells (nuclei) at the surface. The dermal membrane is traversed paratangentially by slender spindle-shaped - dements, drawn out at each end to a fine thread. The central swelling measures $1.5-2 \mu$, each terminal thread 0.3μ in thickness. These elements consist of a somewhat granular substance, the granulation being coarser and more distinct in the spindle-shaped thickening than elsewhere. Lower down in the outer layer of the cortex similar fibres, not situated paratangentially but arranged irregularly, occur. The fibres joining the sterrasters stain only very slightly with azure but deeply with iron-haematoxylin. In the proximal part of the cortex paratangential threads are often observed. These are not homologous to the threads in the distal part of the outer cortical layer but appear as the connecting fibres, stretched out between the most proximal of the sterrasters. Since these sterrasters at the proximal limit of the sterraster-layer are usually much farther apart than those above, the fibres connecting them are often of considerable length. The differentiated contractile tissue, forming a ring, $300-400 \mu$ broad, round the proximal part of the chonal canal, the chone, is brown in colour. I assume that all the chones observed are considerably contracted. The greater, outer part of the chone consists of a tissue composed of circular fibres (Plate 22, fig. 10c) and scattered enasters. This tissue does not extend right down to the chonal canal, a layer of massive or radially elongated
cells and a coating of densely packed euasters intervening between the layer of circular fibres and its lumen. The transverse membranes, crossing the radial canals, are composed of three layers, an upper and a lower superficial granular layer, and a central transparent, and more highly refractive, apparently fibrous layer about 10μ thick.

In the tissue free from flagellate chambers which as stated above, envelops some of the radial canals, large elongate cells are here and there met with singly and in groups. These cells (Plate 22, fig. 9a, b) appear to be destitute of a membrane; their protoplasm is coarsely granular; their nucleus oval or spherical. Most of these cells are thick spindles drawn out at each end to a point (Plate 22, fig. 9a); some of them, however, are thus drawn out at one end only and rounded off at the other, so that they appear pear shaped (Plate 22, fig. 9b). They attain a length of $30-50$ and a breadth of about 12μ. The nucleus measures 4μ in diameter. In some of them I have observed small masses of easily stainable granules close to the nucleus. In others, areas, more transparent and less stained than the other parts, are met with in the protoplasm. These cells seem to be ova.

Skelcton. In the innermost parts of the choanosome, that is, those farthest from the outer surface and the praeoscular tubes, masses of large amphioxes and a few large styles are found. Some of these are spicules irregularly scattered; the majority join to form loose strands extending towards the elevated parts. Bundles of spicules arise from these central masses (strands) and extend radially towards the surface. In the smaller and more solid specimens of var. microana and var. megana most of these bundles are straight or only slightly curved and abut vertically on the surface (Plate 21, fig. 2). In the larger specimen of var. pachana, the structure of which is more complicated, only the bundles extending towards the summits of the elevations (gyri) are straight and in their distal parts vertical to the surface, while the others curve strongly, attempting as it were, to reach the flanks of the gyri vertically, which, howerer, they do not succeed in, so that their distal ends abut obliquely on the surface. Like the central spicule-masses (strands), the proximal parts of these radial bundles are composed entirely of large rhabds (numerous amphioxes and few styles). In the distal parts of the radial bundles also rhabdomes of telo- and meso-clades occur. The teloclades are mostly anatriaenes and ortho- or plagio-triaenes, the mesoclades mesoprotriaenes. Besides these normal forms triaene-derivates with two clades or only one occasionally occur. The rhabds (amphioxes and styles) extend to the distal part of the choanosome, but usually do not reach the cortex.

Most of the cladomes of the anatriaenes lie in a zone, about 1 mm . thick, just below the lower limit of the sterraster-armour. The eladomes of most of the adult orthro- and plagio-triaenes are situated at the lower limit of the sterrasterarmour, appearing as if they supported this layer of the cortex. Lower down only young ortho- and plagio-triaene-cladomes are found. These are remarkably few in number. In the middle and outer layers of the cortex no teloclade- or meserclade-cladomes oceur. The rhabdomes of the protruding mesotriaenes penetrate the whole cortex; their cladomes lie high above the surface. The free, distal parts of these mesoprotrianes eompose the fur of the sponge.

Besides these large spicules numerous small spieules, small rhabds, various cuaster forms, sterrasters, and, oecasionally, sterroids are met with.

The smatl rhabels are irregularly scattered in the interior of the choanosome and form tuft-like groups in the outer layer of the cortex (Plate 23, fig. 25i; Plate 25, fig. 1b). Those in the proximal part of the choanosome are on the whole similar to but smaller than those in the superficial tufts. It is therefore to be supposed that these spicules are formed in the depth of the choanosome and then pushed up to the surface. The fact, however, that hardly any such spicules oceur in the distal part of the choanosome and the lower and middle layers of the cortex, which they would have to pass through on their way from the interior of the choanosome to the superficial tufts, makes it somewhat doubtful whether this supposition is correct. These small rhabds are anisoactine, the thimer, more pointed end of those forming the superficial tufts being direeted outward. The tufts of these spieules in the outer cortieal layer appear as conical groups, the apiees of which are situated at the limit between the outer and middle cortical layers. From these apices the spienles of each group (tuft) radiate outwardly, penetrate the whole of the outer layer of the cortex, and extend, as stated above, some distance beyond it, so that their distal ends protrude frecly over the surface. These spicule-tufts lie quite elose together, the neighhouring ones coming clistally nearly or quite in eontact with each other.

The sterrasters, between which oceasionally a few sterroids oceur, form a rather dense mass in the middle layer of the cortex (Plate 22, figs. 3-5, 7 ; Plate 23 , figs. 24b, 25b; Plate 25 , fig. 1e). Here only adult sterrasters oceur; young stages of these spicules are found in the lower cortical layer and the distal part of the choanosome. In all the three specimens examined such young sterrasters are, however, remarkably rare, which shows that, at the time of capture, these spicules were in none of them being producel at all rapidly.

The sponge is very rich in euasterforms. On the surface, both the outer
and that surrounding the pracoscular tubes, numerous small strongylosphaerasters, forming a thin superficial layer, are met with (Plate 22, fig. S). Similar strongylosphaerasters occur in the lower parts of the outer layer of the cortex and in the choanosome. Occasionally I have observed much larger strongylosphaerasters apparently transitional to the sterroids. In all parts of the sponge asters with small centra, or with no central thickening at all, are found. In many of these the rays are quite slender and fairly pointed, in others thicker and blunt. Since in all, however, the rays taper more or less towards their distal end and innumerable transition-forms connect the blunt-rayed with the pointedrayed ones, I think that all these euasters, the blunt-rayed ones as well as the pointed-rayed ones, should be considered as oxyasters. Of these oxyasters two kinds, a larger and a smaller, can be distinguished. The larger kind is restricted to the choanosome. The smaller kind is met with chiefly in the cortex and the distal part of the choanosome. Most of these asters lie superficially in the canal-walls. In the proximal part of the cortex and in the choanosome, chiefly in its distal part, large oxysphaerasters with numerous rays occur.

The large choanosomal amphioxes are 4.3-8.2 mm. long and 50-105 μ, usually $80-100 \mu$ thick. Those of var. microana are considerably thimer than those of the other two varietics. They are straight or slightly curved and gencrally sharply and rather abruptly pointed. The two ends are similar (isoactine) or slightly dissimilar (anisoactine). Very rarely spicules of this kind, blunt at both ends, are met with. In one or two this bluntness is such that these spicules might be termed amphistrongyles.

DIMENSIONS OF LARGE CHOANOSOMAL AMPHIONES OF GEODIA MESOTRIAENA.

	Var, pachana	Var. megana	Var. microana
Length mm...	5.5-7.1	5.38 .2	4.3-7.8
Thickness μ.	75-105	70-105	50-77

The large styles, scattered in small numbers among the large choanosomal amphioxes, are $3-4 \mathrm{~mm}$. long and $70-110 \mu$ thick. The thickest part of the spicule is close to the rounded end. These spicules are to be considered as amphiox-derivates in which one of the actines has become rudimentary. They are more frequent in var. meguma than in the other two varieties.

The small dermal rhabds of the superficial tufts (Plate 24, figs. 1-Ga; Plate 25, fig. 1d) are amphioxes and styles. They measure $380-680 \mu$ in length and $9-19 \mu$ in thickness. In var. megana (Plate 24, figs. 1a, 4a; Plate 25, fig. 1d)
and in valr. microanu (Plate 24, figs. 2al, 6a) most of these rhabds are quite or nearly isoactine amphioxes, usually nearly cylindrical in the middle, and abruptly attemated towards the blunt ends. A few are distinetly anisoactine and rounded at the thicker end so that they appear as styles. In var. pochana (Plate 24. figs. 3a, 5al) these spicules are more spindle shaped and usually taper more gradually towards the ends. It is also to be noted that strongly anisoaetine amphioxes and true styles are much more numerous among these spicules in var. pachana than in the other two varicties.

DIMENSIONS OF SMALL DERMAL RIIABDS OF GEODIA MESOTRIAENA.

	Var. pachana	Var. megana	Var. microana
Length mm. .	$420-680$	335-571	380-5.50
Thickness $\quad 1$.	10-19	$10-18$	9-15

The small amphioxes of the interior of the choanosome are similar to those in the tufts but somewhat smaller. In var. megana they measure 170-440 μ in length and $7-17 \mu$ in thickness. As stated above these spieules may be young stages of the small superficial rhabels in the tufts.

The rhabdomes of the ortho- and plagio-triaenes (Plate 21, figs. 3-5; Plate 23 , figs. 16, 20-23) are nearly straight or curved, more or less eytindrical in their cladomal part, and conical in their acladomal part. The acladomal end is sharp pointel or blunt. The observation of thin transverse splinters lying flat, with the rhabelome-axis vertical, shows the axial rod of the rhabdome to be triangular in transwerse section. Usually this rod (the canal wherein it lies) is quite narrow, 1μ broad or less. In some of these spicules, however, I found, after boiling them in nitric acid, the axial canal in the aeladomal part of the rhabdome as much as 9μ in diameter and wide open at the end, the latter having the shape of a very thim-walled tube. The rhabdome is $4.6-7.2 \mathrm{~mm}$. long and at the eladomal end $75-120 \mu$ thick. The clades are $200-670 \mu$ long; their chords enclose angles of $8.5-117^{\circ}$, on an average 98.5°, with the axis of the rhabdome. Very often the three clades of the same cladome differ considerably in size; ortho- and plagio-triaenes showing such an irregularity appear in fact to be more frequent than the regular ones. At the base the elades are always eurved, concave towards the rhabdome; their distal part is generally straight (Plate 24, figs. 16, 21,22), or slightly curved in the opposite direction (Plate 24, fig. 20), more rarely ahruptly bent towards the rhabolome (Plate 24, fig. 23). In var. megana the clade-rhabdome angle of these spicules is on an average only 91.9°, while it
is in the other two on an average 99.4° and 104.2° respectively. Thus these spicules are mostly orthotriaenes in var. megana, but partly (var. pachana or mostly (var. microana) plagiotriaenes in the other two. By the complete suppression of one or two of the clades ortho- and plagio-diaenes and monaenes are produced. These are, however, rare. A plagiomonaene which I found among the spicules of var. megana had a rhabdome 100μ thick at the cladomal end, and a clade $530 \mu \mathrm{long}$, the chord of which enclosed, with the rhabdomeaxis, an angle of 102°.

DIMENSIONS OF ORTHO- AND PLAGIO-TRIAENES OF GEODIA MESOTRIAENA.

		Var. pachana	Var. megana	Var, microana
Rhabdome	length mm.	4.6-6.6	$6.1-7.2$	5.7-7.2
	thickness at cladome μ	85-115	90-120	$75-100$
Clades	length μ	250-660	200-670	$320-630$
Angles between the clade-chords and the axis of the rhabdome	minimum and maximum ${ }^{\circ}$	91-108	85-96	95-117
	average ${ }^{\circ}$	99.4	91.9	104.2

The mesoprotriaenes (Plate 21, fig. 6; Plate 23, figs. 13, 14, 18, 19) have a rhabdome $6-14 \mathrm{~mm}$. long. It is thickest in the middle. Here it measures 38-70 μ in transverse cliameter and from here it tapers towards both the cladomal and the acladomal end. At the cladome it is usually half as thick or less than at its thickest point near the middle of its length, and here measures only 15 40μ in transverse diameter. As an example of this I give the following measurements of a mesoprotriaene of var. megana. The rhabdome of this spicule was 10.5 mm . long. At the thickest point, which was situated 4.8 mm . below the cladome, it was 59μ, and at the cladome 27μ thick. The epirhabd is $95-330 \mu$ long and usually simple, straight, conic, and pointed (Plate 23, figs. 14, 18, 19). Sometimes (Plate 23, fig. 13) it bears branches, forming an imperfect sccondary cladome above the cladome proper. The clades are not nearly so constant in shape as the epirhabd, and mesoprotriacnes with irregular clades of very frequent occurrence. In the most regular mesoprotriaenes (Plate 23, figs. 18, 19) the elades are conical, pointed, or blunt, and more or less curved, concave towards the epirhabl. Although this curvature appears rather uniform in the clades themselves, the observation of their axial rods shows clearly that it is in reality greatest at the base and decreases distally. The irregularities of the cladomes
are caused by retardation of growth or irregular bending of one, two, or, rarely, all three elades. The first leads to irregularities in the length of the elades, the last to other irregularities of the cladome. Not only the elades but also the epirhabd of the mesotrianes may become rudimentary, whereby forms like the one, represented in Plate 23, fig. 15, are reproduced. Such irregular teloclades are, however, rare. The clades are $90-310 \mu$ long; their chords form angles of $29-54^{\circ}$, on an average 42.4° with the epirhabd-axis. The mesoprotriaenes of var. megana have longer elades than those of the other two varicties. In the mesoprotriaenes of var. pachana the epirhabd is shorter than in those of the two others.

DIMENSIONS OF MESOPROTRIAENES OF GEODIA MESOTRIAENA.

		Var. pachana	Var. megana	Var. microana
Rhabilome	length mm.	6-14	8.8-11	
	thickness at the cladome :	$15-40$	1s 40	17-22
	maximum thickness μ	70	35-65	
Epirhabst	length μ	95-230	140-330	100-300
Ctades:	length μ	$90 \cdot 230$	140-310	130-210
Angles between cladechords and epiriabledaxis	maximum and minimum ${ }^{\circ}$	29-56	3.5-53	35-54
	ascrage ${ }^{\circ}$	43.7	43.5	40

The anotrinenes (Plate 23, figs. 1-12) have a rhabdome 11-16 mm. long, $\because 240$ thick at the cladomal end, and attenuated to a fine, more or less twisted thread at the arladomal end. The clade-chords are $90-270 \mu$ long and enclose angles of $3 t-58^{\circ}$ with the axis of the rhabdome. They are eurved, concave towards the rhabdome, either (Plate 23, figs. 3, 6) quite uniformly or (Plate 23, figs. 10-12) more strongly between the first and second third of their length than elsewhere. There is always a small protuberance on the summit of the cladome. The clades of the anatriaenes of var. megana are considerably longer than those of the other two varieties. The rhabdomes and clades of var. microana are considerably thinner than those of the other two varieties.

Rarely irregular, mesoclade anatriaene-derivates (Plates 23, fig. 17) with three regular anatriaene-elades and a curved epirhabd are met with. In their
dimensions these spicules agree with the regular anatriaenes described above. The epirhabd of the mesanatriaene of var. megana, Plate 23 , fig. 13 , is 200μ long.

DIMENSIONS OF ANATRIAENES OF GEODIA MESOTRIAENA.

		Var. pachana	Var. megana	Var. microana
Rhabdome	length mm.	11-16	15	11
	thickness at the cladome μ	$27-10$	$22-35$	$8-25$
Clade-chords	length $/ 2$	$90-170$	160-270	70-175
Angles between cladechords and axis of the rhabdome	maximum and minimum ${ }^{\circ}$	39-56	$34-58$	39-5.5
	average ${ }^{\circ}$	48.2	45.2	17.9

Among the normal euasters which occur in great numbers, small strongylosphaerasters, small and large oxyasters with small centrum or without centrum, and large oxysphaerasters can be distinguished. Besides these a few large strongylosphaerasters are found. These aster-forms are connected by numerous transitions.

The oxyasters (Plate 24, figs. 1b, 6b, 7a, 9b, 10-14a, 15, 19, 22, 23, 24a, b, $25 a, b, 26-31$) are $11-54 \mu$ in total diameter. They have a relatively small centrum, the diameter of which is from one eleventh to one seventh of the total diameter of the spicule, or no central thickening at all. Their rays are concentric, straight, and conical. In some of these asters the rays are in their proximal parts nearly eylindrical and decrease in thickness with increasing rapidity towards the distal end (Plate 24, fig. 23). In others the rays are more regularly conical and attenuated quite uniformly from base to tip (Plate 24, fig. 25a). The end of the raty is usually blunt pointed, not so frequently either sharp pointed or truncate. The basal part of the ray is smooth, the distal part, rarely also smooth (Plate 24, fig. 26), usually covered with a varying number of smaller or larger spines (Plate 24, figs. 27-31). The u. v. photographs (Plate 24, figs. 2831) show that these spines arise vertically and that they are often recurved towards the centre of the spicule, in a claw-shaped manner. These oxyasters have from five to twenty rays. Small oxyasters $11-20 \mu$ in diameter with from nine to twenty rays, and large oxyasters $19-54 \mu$ in diameter with from five to fifteen rays can be distinguished. The largest oxyasters, that is those over 40μ in diameter, have from six to eleven rays, while the smallest oxyasters have
from sixteen to twenty. The oxyasters attain a larger size in var. megana than in the other two varieties.

DIMENSIONS OF EUANTERS OF GEODIA MESOTRIAENA.

The large oxysphaerasters (Plate 24 , figs. $5 \mathrm{~b}, 7 \mathrm{e}, \mathrm{Sb}$) are $19-32 \mu$ in total diameter and have a spherieal centrum 3-10 μ in diameter from which from fif-
teen to twenty-five straight, conical, sharp-pointed, and uniformly distributed rays arise radially. The diameter of the centrum is from one seventh to one third of the diameter of the whole aster. The rays are very spiny, particularly in their distal part, $7-12 \mu$ long, and 1-3 μ thick at the base.

The small strongylosphaerasters (Plate 24, figs. 5-6c, 7d, 10-14b, 16-18, 20, $21 \mathrm{~b}, 32$) have from six to twenty concentric rays, usually equal in size, and quite regularly distributed. Rarely such asters with unequal rays occur. In these there are three or more long rays, and a number of more or less shortened, rudimentary ones. The rays are cylindrical or cylindroconical, usually rounded off terminally, covered with small spines, without the centrum 2-7 μ long, and $0.5-2.5 \mu$ thick. The centrum is $2-6 \mu$, and the whole aster $6-14.5 \mu$ in diameter. The small strongylosphaerasters of var. pachana have more numerous and more slender rays than the strongylosphacrasters of the other two varieties.

The rare large strongylosphaerasters (Plate 24, figs. 7b, 9a, 21a), transitional between the small strongylosphaerasters and the sterroids, have numerous, usually cylindroconical rays densely covered with large spines. Their centrum is from one third to a half of the whole aster in diameter. Their total diameter is $16-33 \mu$.

The rare sterroids (Plate 24, fig. Sa), which have been observed in var. megana only, have a very large centrum, two thirds or more of the whole aster in diameter, from which very numerous, short and stout, cylindrical rays arise. These are $5-8 \mu$ long and $4-6 \mu$ thick. Their sides are smooth, their convex terminal faces covered with numerous spines. These asters measure $39-58 \mu$ in total diameter.

DIMENSIONS OF STERRASTERS OF GEODLA MESOTRIAENA.

	Var. pachana	Var. megana	Var. microana
Length ..	102-125	100-115	$92-120$
Breadth μ.	$90-102$	80-105	$78-107$
Thickness μ.	75-82	75-82	$67-78$
Average proportion of length to breadth to thickness	$100: 91: 70$	$100: 90: 71$	100:79:71

The sterrasters (Plate 22, figs. 1-7; Plate 23, figs. 24, 25; Plate 25, figs. 1-11) are flattened ellipsoids $92-125 \mu$ long, $78-107 \mu$ broad, and $67-82 \mu$ thick. Their average length and average thickness is nearly the same in all the three
rapieties: their average breadth, however, is greater in var. megoma and var. pachama than in var. microama. The proportion of length to thickness is in the sterrasters of all three varieties $100: 70-71$; the proportion of length to breadth, on the other hand, in var. pachana and var. megano $100: 90-91$, in var. microana 100:79.

The umbilieus is a round (Plate 25, figs. 2, 3, 9-11), or more (Plate 25, fig. (6) or less (llate 25 , fig. 7) elongated, cup-shaped depression or pit, $10-18 \mu$ in maximum diameter. On the walls of the umbilical pit low irregular elevations, covered with numerous minute spines, often forming protruding tufts, are met with (Ilate 25, figs. 9, 10). These elevations appear as ridges, extending from the rays which surround the umbilical pit down towards its bottom, or as isolated patches, the transverse diameter of which is similar to that of the rays. The lowest part, bottom, of the umbilical pit is usually quite free from spined protuberances. The whole of the sterraster-surface, with the exception of the part occupied by the umbilicus, is eovered with protruding, cylindrieal rays, cireular in transwerse section, and usually about 3μ thick, whieh terminate with a rather flat apical face. From the margin of the latter stout and blunt, conical spincs arise. The axes of these spines are more or less vertical to the ray-axis, so that they appear as verticils round the summits of the rays (Plate 25 , figs. 6-8, 11). Away from the umbilicus the rays are mostly erowned by regular verticils of five or six spines (Plate 25 , fig. 8). The rays surrounding the umbilicus are provided with a greater number of spines, sometimes with as many as cleven (Plate 25, figs. 6, 7). From the ends of many of these periumbilical rays, not only the lateral spines forming the verticil, but also more or fewer upright spines arise (Plate 25, fig. 6). The spines attain a length of about 1.3μ ancl are, at the base, about 1μ thick. They are conical, straight, or more or less curved, and blunt. Those of the periumbilical rays are on the whole larger and more strongly curved than those of the rays on other parts of the sterraster. In a few sterrasters, one in a hundred or less, the rays are larger and distally crowned with a greater number of spines. These abnormal sterrasters appear as transitions between the regular sterrasters and the sterroids.

The specimen of var. pachana was trawled at Station 2909 on January S, 1889, in $34^{\circ} 22^{\prime} \mathrm{N} ., 120^{\circ} 8^{\prime} 30^{\prime \prime} \mathrm{W}$., depth 375 m . (205 f .); it grew on a bottom of green mud; the bottom temperature was $7.3^{\circ}\left(45.2^{\circ} \mathrm{F}\right.$.) ; that of var. microana was trawled at Station 2942 on February 5, 1889, in $33^{\circ} 38^{\prime} 45^{\prime \prime} \mathrm{N}$., $118^{\circ} 13^{\prime} 45^{\prime \prime}$ W., depth 37 m . (20 f .); it grew on a bottom of gray sand and broken shells; the specimen of var. megana was eaught with the tangles at Station 2958 on

February 9,1889 , in $34^{\circ} 4^{\prime} \mathrm{N} ., 120^{\circ} 19^{\prime} 30^{\prime \prime} \mathrm{W}$., depth 47 m . (26 f .); it grew on a bottom of gray sand; the bottom temperature was $12.7^{\circ}\left(54.9^{\circ} \mathrm{F}\right.$.).

These three varieties differ in many details. The speeimen from Station 2909, var. pachana, is meandric and rich in praeoscular cavities, the other two are nearly solid. The rhabdomes of all the three kinds of teloclades, the large ehoanosomal amphioxes, and the small dermal rhabds, are considerably thinner in var. microana than in the other two. Among the small dermal rhabds styles are frequent in var. pachana but rare in the other two. The average eladerhabdome angle of the orthoplagiotriaenes is in var. megana 91.9°, in var. pachana, 99.4°, and in var. microana 104.2°. The mesoprotriaene-epirhabds are shorter in var. pachana, the mesoprotriaene-clades longer in var. megana, and the elade-epirhabd angles smaller in var. microana than in the others. The anatriaene-clades are considerably longer and less divergent in var. megana than in the other two, which latter differ from each other by the anatriaeneclades being stout in var. pachana and slender in var. microana. The oxyasters and, to a smaller extent, also the oxysphaerasters are larger in var. megana than in the other two. The sterrasters are relatively narrower in var. microana than in the other two.

Since these specimens are all large and apparently full grown, these differences cannot be ascribed to differences in age. Some of them might of course be mere individual adaptations or due to differenees of germ-separation or mixture before or during fertilization; others, however, particularly the differences in the clade-rhabdome angles of the orthoplagiotriaenes, the shape of the dermal rhabds, and the relative breadth of the sterrasters, seem to be germinal in nature and sufficient for varietal distinction. (See table on p. 112.)

On account of their eribriporal afferents and efferents and their spiculation these sponges belong to Geodia. The only other speeies with similar spieulation, either of this genus or of Sidonops, which I have also compared with Geodia mesotriaena, are G. arabica Carter, G. agassizii, G. mesotriaenella, G. breviana, and G. ovis.

According to the description and figures given by Carter ${ }^{1}$ and Topsent ${ }^{2}$ the choanosomal euasters of G. arabica are different from those of G. mesotriaena; the megaseleres of the former are much smaller than those of the latter, and G. arabica has hitherto been found only in the Red Sea, while G. mesotriaena appears to be confined to the coast of California. G. agassizii has no

[^5]IHFFERLENER BETWEEN TIIE TIIREE VARIETIES OF GEODIA MEsOTRIAENA.

Ortho and phagiotriturnes

$\left\{\begin{array}{l}\text { Var. pachana } \\ \text { meandric } \\ 5.5-7.1 \mathrm{~mm} . \text { long, } 75-\end{array}\right.$
10.5μ thick
420-650 μ long, $10-19 \mu$
thick; styles numerous
chiefly plagiotriames; rhabilome $1.6-6.8 \mathrm{~mm}$. long. at clabome 85-115 μ^{2} thick; clarles $250-660 \mu$ long; clate-rhabalone angle $94-105^{\circ}$, average 99.4°.
rhabtome 6-14 mm . long, at cladome 15 40 z thick; epirhabed

Anatriaenes

Small strongylosphaerasters

Oxyasters
Uxysphatasters

Sterrasters

Var, megana
more solid
5.3-8.2 mm. long, 70$105 \%$ thick.

335-571 4 long, $10-18$,
thick; styles rare.
chiefly orthotriaenes: rhabelome $6.1-7.2 \mathrm{~mm}$. long, at cladome $90-120$ \% thick; clades 200-670 μ long; clade-rhabdome angle $85-96^{\circ}$, average 91.9°.
rhabdome $5.8-11 \mathrm{~mm}$. long, at cladome 1840 n thick; epirhabd 140-330 μ long; clades 140-310 μ long; cladeepirhabd angles $35-53^{\circ}$, a verage 43.5°.
rhabdome 15 mm . long, at cladome 22-38 μ thick; clades 160-270 nam. long; clade-chord rhabdome angle $34-58^{\circ}$, average 45.3°.
total diameter 6-14 μ.
total diameter $17-54 \mu$
total diameter 19-32 /
100-115 μ long, $\mathrm{S} 0-105 \mu$ broad, $75-82$ k thick; average proportion of length to breadth to thickness 100:90:71.

Yar. microana
more solid
4.3-7.8 mm. long, $50-$ 77μ thick.

350-550 μ long, 9-15 μ thick; styles rare.
chiefly plagiotriaenes; rhabdome $5.7-7.2 \mathrm{~mm}$. long, at cladome $75-100$ μ thick: clades 320-630 long; elade-rhabiome angle $95-117^{\circ}$, a verage 104.2°.
rhabdome at cladome 17-22 μ thick; epirhabd $100-300 \mu$ long; clades 130-210 μ long; cladeepirhabd angles $35-54^{\circ}$, a verage 40°.
rhabdome 11 mm . long, at cladome S-25 μ thick; clades $70-175 \mathrm{~mm}$. long; clade-chord rhabdome angle $39-55^{\circ}$, average 47.9°.
total diameter 7.5-14 μ. total diameter 11-42 μ.
total diameter 26-27 μ.
92-120 μ long, 78-107 μ broad, 67-78 /t thick; average proportion of length to breadth to thickness 100:79:71.
pracoscular eavities, differently shaped small strongylosphaerasters, and much smaller inegascleres and choanosomal oxyasters. Geodia breviana also has much smaller megascleres; this species is also distinguished from G. mesotriaena by its minute, dermal anaclades and the thickness of the clades of the large anatriaenes. The speries most nearly allied to G. mesotriaena are G. mesotriaenella and G. ovis. Of G. mesotriaenella there is only a small specimen in the collec-
tion, and at first I thought that it was a young G. mesotriuena. A more careful examination showed, however, that it differs from the latter not only by the smaller size of its spicules, which, in view of the small size of its body, would not, by itself, be of any systematic importance, but also by the shape of its mesotriaenes, orthotriaenes, and oxysphaerasters. The mesotriaenc-epirhabds are in G. mesotriaena as long as or longer than the clades in G. mesotriaenella, as a rule, they are very considerably shorter. The ortho- or plagio-triaene-clades are in G. mesotriaena nearly straight or somewhat turned upward at the end, in G. mesotriaenella concave towards the rhabdome right up to the tip. The oxysphaerasters of G. mesotriaenella have stouter and less spiny rays than those of G. mesotriaena. Geodia mesotriaena differs from G. ovis, by the possession of praeoscular cavities in the interior; by its spicule-fur being not nearly so highly developed; by having much smaller dermal strongylosphaerasters, and by the absence of the minute anatriaenes and the oxyasters with very stout, regularly conical, sharp-pointed rays, which characterize G. ovis.

Geodia agassizii, sp. nov.

Plate 26, figs. 1-21; Plate 27, figs. 1-19; Plate 28, figs. 1-28; Plate 29, figs. 1-17; Plate 30, figs. 117; Plate 31, figs. 1-10; Plate 32, figs. 1-46; Plate 33. figs. 1-14; Plate 34. figs. 1-17.
Cydonium mülleri L. M. Lambe (non Fleming), Trans. Roy. soe. Canada, 1593, 11. p. 36, pl. 4, fig. 2.
I establish this species for twenty-two specimens obtained at nine different stations on the west coast of North America; eight at Station 2886, one at Station 2887, two at Station 2978, one at Station 3088, one at Station 3168, two at Station 4193, four at Station 4199, two at Station 4228, and one at Station 4551.

The recxamination of the sponge determined by L. M. Lambe (loc. cit.) as Cydonium mülleri Fleming in the collection of the Ceological Survey of Canada, and which was kindly placed at my disposal for examination, shows that it differs specifically from the typical Geodia (Cydonium) mülleri and is an immature form of the sponges here described. A new species with another specific name must therefore be established for these sponges and Cydonium mülleri Lambe 1893.

Although much has been written on the variability of sponges, our knowledge concerning this subject is still very vague. The results of the examination of the differences between these sponges, given below, throw some light upon it so that greater general interest attaches to this species than to most of the others here described. For this reason I have selected for it the name agassizii.

One of the two specimens from Station 4228 is, like the one described by Lambe, in some respects immature in character; all the others, although of rarions sizes, are apparently adult. In the case where more than one adult specimen was ohtained at the same station, these are fairly identical in structure. The adult specimens from different stations, on the other hand, differ more or less, but although these differences are not inconsiderable, I have, for the reasons given below, united all in one species and have refrained from further subdividing this into subspecies, varieties, or forms.

Shape and size. All the specimens have a more or less continuous surface and are massive and destitute of vestibular or pracoseular eavities. The greater number are attached by a small base and are either quite regularly spherical (Plate 26, figs. 16, 19, 20; Plate 34, fig. 17), oviform (Plate 26, figs. 17, 18), or somewhat irregular (Plate 26, fig. 21). Some are more cushion shaped and attached by an extended base. The largest specimen, which is a stout oviform one (llate 26, fig. 17), was obtained at Station 4193 . It is 130 mm . long, 105 mm . broad, and 100 mm . high. Smaller, more or less regularly spherical specimens, 20-55 mm. in diameter, were obtained at Stations 2886, 4228, and 4551. The smallest one of these, which is at the same time the smallest of all the twenty-two, is the immature specimen above referred to. Two elongated ones, measuring $68 \times 35 \times 35 \mathrm{~mm}$. and $46 \times 20 \times 20 \mathrm{~mm}$. respectively, were trawled at Station 2886, and another elongated one, $47 \times 32 \times 30 \mathrm{~mm}$., at station 2887. The specimens from Stations $2978,3088,3168$, and 4199 are broad-based, more or less cushion shaped, and not so regular in outline. The largest of these was obtained at Station 4199 . It measures 50 mm . in length, 46 mm . in brealth, and 34 mm . in height. The maximum diameter of the others is $24-46 \mathrm{~mm}$. The specimens from Station 4199 show a predilection for the coneave, inner side of tubular hexactinellid skeletons. One of them quite fills such a tube, three quarters of the circumference of which is still present. The immature specimen deseribed by Lambe is smaller than any of these. It measures only 12 by 10 mm .

In all the specimens by far the greater part of the surface is free from projecting spicules and finely granular, or, as in the specimens from Station 4228 , nearly smooth. In some remnants of a spicule-fur have been observed. In the large specimen from Station 4193 there are a few areas with projecting spicules up to 16 mm . long and lying very obliquely to the surface. In the cushionshaped specimens from Stations 2978 and 4199 a well-developed spicule-fur, up to 9 mm . in height, is observed in sheltered places near the base of the sponge.

Also in the immature specimen from Station 4228 spicules protruding up to 5 mm . beyond the surface occur. From these observations I infer that large spicules are protruded and a spicule-fur is thus formed by all these sponges, and that this has been wholly or partly lost during life or after capture.

Larger apertures (oscules) are absent, but minute holes in the sterrasterarmour are observed in large numbers. Minute holes of two different sizes can be distinguished. The larger, which are clearly visible to the unaided cye, and through which the efferent cortical canals pass, are restricted to certain areas of the surface. The smaller, which are not visibte to the naked eye and through which the afferent cortical canals pass, occupy the remainder of the surface. In one of the specimens from Station 4199 the area perforated by the large efferent holes is roughly circular in outline, 18 mm . in diameter, and slightly concave, thus forming a shallow depression. In the other specimens the efferent areas are not depressed. In the large specimen from Station 4139 there are two efferent areas, one a horseshoe-shaped zone 20 mm . broad and 64 mm . in total diameter, the other an irregularly circular patch 15 mm . wide. In the smaller specimens there are one or two, rarely three, generally more or less circular efferent areas $\delta-24 \mathrm{~mm}$. in diameter. The holes piercing the sterrasterarmour in these efferent areas (Plate 26, fig. 13) are circular and measure 300$700 \mu$ in diameter, their centres being $1-1.5 \mathrm{~mm}$. apart.

Concerning the mode of attachment it is to be noted that the young specimen from Station 4228 has grown quite over part of the hexactinellid skeleton-net which forms its support, the siliceous bars of the latter partly penetrating the sterraster-armour of the Geodia and entering its choanosome which surrounds them as if they formed a portion of the true internal skeleton of the Geodia.

Most of the specimens are light brown in colour. The larger one of the two from Station 4193 has a few extensive darker, rust-brown patches on the surface. Of the eight specimens from Station 2886 some also are light brown, while the others are dark blue. The specimens from Stations 4228 and 4551 are lighter in colour than the others, nearly white. The true colour of these sponges, when preserved in spirit, is probably light brown or white; the rust-brown and dark blue pigmentations of some of the specimens may possibly have been produced after capture.

The sponge has a cortex, which is in the adult specimens about 1 mm . thick and composed of three layers, the dermal layer outside, the sterraster-armour layer in the middle, and a fibrous layer within. The dermal layer is in the young specimen from Station 4228 (Plate 32, figs. S, 11, 12) and in several of the adult
ones (Plate 27, fig. 1) merely a thin dermal membrane. In other adult specimens (Plate 27 , fig. '2a) it is 150200μ, rarely as much as 230μ, thick and composed of loose tissue, contaming small amphioxes and strongylosphaerasters, but no sterrasters or oxyasters. The sterraster-armour layer (Plate 27, figs. 1b, 2b; Plate 32, figs. Sa, 11a, 12a) is in the young specimen from Station $4228350-$ 400μ, in the adult specimens usually about 800μ thick. The inner, fibrous layer is free from sterrasters and quite thin. The limit between the dermal layer and the sterraster-armour layer is very clearly defined, the limit between the latter and the inner, fibrous layer is somewhat indistinct.

Canal-system. The areas of the large efferent holes in the sterrasterarmour are, in all sufficiently well-preserved specimens, covered by a dermal membrane perforated by numerous small afferent pores. These lead into systems of canals traversing the dermal layer and converging to points lying in the level of the limit between this layer and the sterraster-armom layer. Here the camals of each system join to form a radial tube, surrounded by a chonal sphineter, which oceupies one of the small afferent holes in the sterraster-armour. The afferent cortical canals are in all the sections examined very narrow, or quite closed. Below the sterraster-armour layer these camals open out into subcortical cavities (Plate 27, fig. 2c) which are higher than broad and often attain a radial dimension (height) of 1 mm . The chonal sphincters do not protrude into these cavities. From the majority of these subcortical cavities narrow afferent canals lead down to the adjacent flagellate chambers. Some of the subcortical cavities join below to form large afferent canals (Plate 27 , figs. 1d, 2d) 1-2 mm. wide, which, repeatedly ramifying, supply the more distant flagellate chambers. The flagellate chambers are spherical and measure $27-35 \mu$, usually about 30μ, in diameter. The efferent canals arising from them join to form large tubes (Plate 27, fig. 1e; Plate 32, fig. 5a), 1 mm . or more in diameter, which extend towards the areas of the large efferent holes in the sterraster-armour layer. The afferent canals are not separated from the chamber-bearing choanosomal tiscue by special mantles and have smooth surfaces. The efferent canal-stems on the other hand are, particularly in their wider distal parts (Plate 27, fig. 1e; Plate 32, fig. 5a), enclosed in sheaths, about 500μ thick, free from flagellate chambers, and greatly constricted at very frequent intervals by transverse sphincter-membranes, protruding far into their interior. Distally these efferent eanal-stems divide into branches which lead up to the cortex. From the summits of these branches arise radial cortical canals (Plate 26, figs. 13, 14a, 15a), surrounded
by chonal sphincters, generally found open and usually $120-500$ " wide. Many of these efferent chonal canals are destitute of dermal sieves and open out freely on the surface (Plate 26, fig. 13, those to the right). In some of the specimens nearly all of them are thus naked; in most, however, some of these efferents are covered by dermal sieves, composed of nets of threads, $50-$ 120μ broad, with round meshes of very variable size (Plate 26 , fig. 13 , those to the left, figs. $14 \mathrm{~b}, 15 \mathrm{~b}$). Thus, at first sight, it appears as if there were, in this sponge, two different kinds of efferents, cribriporal and uniporal ones. A closer examination, however, reveals remnants of clemal sieves in most of the apertures appearing at first sight uniporal. I think it therefore highly probable that all the efferents are, like the afferents, provided with sieve-membranes (cribriporal) in the living sponge, and that, where they are now missing, they have been lost post mortem.

The skeleton consists chiefly of large choanosomal and small dermal amphioxes, orthoplagiotriaenes, mesoprotriaenes, anatriaenes, large oxyasters, large oxysphaerasters, small strongylosphacrasters, and sterrasters. To these spicules, which occur in all the specimens, a few large amphistrongyles, slender and cylindrical or thick and club-shaped styles, mesoclade or amphiclade ortho-plagiotriaene-terivates, anadiaenes, sterroids, and other irregular forms may be added. In the specimens attached to hexactinellid skeletons, particularly in the young specimen from Station 4228, small hexactinellid spicules, hexactines, and scopules are also found imbedded in the choanosome. These foreign spicules are by no means restricted to the base of the sponge which is attached to the dictyonine network of the hexactinellicl, but are found in all parts.

The large choanosomal amphioxes are arranged radially and form loose, conical bundles extending from the centre or base to the surface of the sponge. Some of the outermost of these spicules protrude beyond the surface and thus take part in the formation of the fur (Plate 27, figs. 1, 2). The rare amphistrongyles, which I have observed only in the young specimen from Station 4228 , are scattered in small numbers between them. The rare, large styles, both the thinner cylindrical and the thicker club-shaped ones, are arranged radially like the large amphoxes among which they occur, their rounded end being situated distally, their pointed end proximally. These spicules are more numerous in the distal than in the proximal parts of the bundles and often protrude their rounded end beyond the surface. I have found the thick club-shaped styles only in the specimens from Stations 3168 and 4193, the thin cylindrical ones in all the specimens with the exception of those from Stations 2887, 2978,

4228, and 4551. The small dermal amphioxes form radial, tuft-like groups, which arise from the sterraster-armour, traverse the dermal layer and expand above (Plate 27, fig. 2), their (listal ends protruding more or less beyond the surface. In some specimens, as in the one from Station 3168, a section of which is represented in Plate 27, fig. 2, this protrusion is very slight; in others, as in a specimen from Station 4193 and in the young specimen from Station 4228 , the small amphioxes protrude as much as $200-280 \mu$ beyond the surface. It scems that these differences in the degree of protrusion of the small dermal amphioxes are, partly at least, due to differences in the state of preservation and degree of shrinkage of the tender dermal layer; in the Well-preserved and not much shrunken specimens their protrusion is slight, in specimens not so well preserved, it is great. Some small amphioxes, similar to those forming the tufts in the dermal layer, are occasionally onserved in the proximal layer of the cortex and in the distal part of the choanosome. The cladomes of the orthoplagiotriaenes generally lie at the limit between the cortex and the choanosome; their clades extend paratangentially in this level, their rhabdomes are direeted radially inwards. Sometimes, particularly in the young specimen from Station 4228, the ortho-plagiotriaene-cladomes are situated a little higher, within the sterraster-armour layer (Plate 32, figs. 8, 11, 12). The orthoplagiotriaenes do not protrude beyond the surface and take no part in the formation of the fur. The rare mesoclade and amphiclade orthoplagiotriaene-derivates and the quite irregular forms belonging to this category of spicules have been found only in spiculepreparations, so that I am unable to say what position they occupy in the sponge. I have found mesorthotriaenes in the spicule-preparations of the specimens from Stations 2978 and 4199, amphiclade orthoplagiotriaene-derivates in such preparations of the specimens from Stations 3168 and 4199 and the young specimen from Station 4228. The mesoprotriaenes, the anatriaenes, and their various derivates are also radially arranged. The cladomes of a few of them lie a short distance beneath the surface, most of them protrude freely beyond it. These spicules form the principal part of the spicule-fur. In this fur the mesoprotriaenes are generally much more numerous than the anatriaenes. Anadiaenes and other, irregular anatriaene-derivates have been observed only in the specimens from Stations 3168 and 4228.

The small strongylosphaerasters form a single but dense layer on the surface of the dermal membrane (Plate 26, fig. 15) and also occur in the interior. The large oxysphaerasters, which appear to be much more numerous in the specimens
from Stations 2886 and 3168 than in those from the other stations, are chiefly met with in the walls of the cortical and subcortieal canals (Plate 26, fig. 14) and in the inner layer of the cortex. The large oxyasters are seattered throughout the choanosome, where they chiefly occupy the canal-walls. The sterrasters occupy the middle layer of the cortex in dense masses (Plate 27, figs. 1b, 2b; Plate 32, figs. 8a, 11a, 12a). In some specimens, particularly the adult specimen from Station 3168 and the young specimen from Station 4228, a good many sterrasters, chiefly young ones, also occur in the choanosome (Plate 32, figs. $8,11,12$). A small number of sterroids are usually associated with the sterrasters.

The large amphioxes (Plate 28, figs. 15, 16a, 17a; Plate 32, figs. 9, 10) are numerous in all the specimens. They are cylindrical in their central part and rather abruptly and not very sharply pointed, sometimes blunt at the ends. They are usually isoactine or slightly anisoactine, a few are strongly anisoactine. In the adult specimens they are $2.3-4.8 \mathrm{~mm}$. long and $60-112 \mu$ thick, their general average maximum ${ }^{1}$ dimensions being $3.9 \mathrm{~mm} . \times S 6.3 \mu$. In the specimens from Station 2886 and the adult specimen from Station 4228 they are smaller, both shorter and thinner, than in those from any of the others. In the specimens from Station 4193 they are very slender, longer than in any and thinner than in most of the others. In the specimens from Station 2978 they are of medium length, but very much thicker than in any of the others. In the young specimen from Station 4228 the large amphioxes are $2.1-3.4 \mathrm{~mm}$. long and $20-66 \mu$ thick, their average maximum dimensions being $3.1 \mathrm{~mm} . \times 57 \mu$. In the immature specimen described by Lambe these amphioxes measure 1.8 3.4 mm . by $33-47 \mu$. (Sce table p. 120.)

The rare large amphistrongyles, which have been observed in the young specimen from Station 4228 are somewhat shorter than the large amphioxes, about 55μ thick in the middle, and attenuated to about 40μ at the rounded, somewhat truncate ends.

The large, slender, cylindrical styles (Plate 28, fig. 17b) which have been found in small numbers in all the specimens, with the exception of those from Stations 2887, 2978, 4228, and 4551, are $1.5-3.4 \mathrm{~mm}$. long and $60-110 \mu$ thick, gently curved, and only slightly thickened, or not thickened at all, at the rounded end.

[^6]DIMENSIONS OF LARGE CHOANOSOMAL AMPHIOXES OF GEODIA AGASSIZH. ${ }^{1}$

Station.		28,86	2887	2978	3088	3168	4193	4199	4228	4551	All Stations	4228
Length	of apparently full-grown spicules, mm.	2.4 3.8	$\begin{gathered} 2.4 \\ 4.1 \end{gathered}$	$\begin{gathered} 3.5- \\ 4.2 \end{gathered}$	$\begin{gathered} 3.5- \\ 4.1 \end{gathered}$	$\begin{gathered} 3.1- \\ 4.5 \end{gathered}$	$\begin{aligned} & 3.1- \\ & 4.8 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3.9 \end{aligned}$	$\begin{gathered} 2.3- \\ 3.5 \end{gathered}$	$\begin{gathered} 2.7 \\ 4 \end{gathered}$	$\begin{gathered} 2.3- \\ 4.8 \end{gathered}$	$\begin{gathered} 2.1 \\ 3.4 \end{gathered}$
	average of the three longest, mm.	3.4	3.5	4.1	4.	42	4.6	3.8	3.2	3.8	3.9	3.1
Thick- ness	of apparenty full-grown spicules, μ	$\begin{gathered} 60- \\ \times 1 \end{gathered}$	$\begin{aligned} & 80- \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 112 \end{aligned}$	$\begin{aligned} & 65 \\ & 82 \end{aligned}$	$\begin{gathered} 80 \\ 93 \end{gathered}$	$\begin{gathered} 72- \\ 95 \end{gathered}$	$\begin{gathered} 61- \\ 85 \end{gathered}$	$\begin{gathered} 35- \\ 80 \end{gathered}$	$\begin{aligned} & 68- \\ & 100 \end{aligned}$	$\begin{aligned} & 60- \\ & 112 \end{aligned}$	$\begin{gathered} 20- \\ 66 \end{gathered}$
	average of the three thickest, \&	75	93	111	76	89	87	79	74	93	86.3	57

The large, thick, club-shaped styles (Plate 28, figs. 12-14), which oceur in small numbers in the specimens from Stations 3168 and 4193, are straight or slightly curved, always thickened at the rounded end, and $115-145 \mu$ thick.

The minute dermal amphioxes (Plate 27, figs. 3a, 7a, Sa) oceur in all specimens. They are slightly curved and usually not very sharply pointed at the ends. Sometimes one end is much more blunt than the other, but the bluntness never secms to be great enough to make the spicule appear as a style. In the adult specimens these spicules are $160-480 \mu$ long and $5-12 \mu$ thick, their average maximum dimensions being $342 \times 9.06 \mu$. Those of the specimens from Station 2886 are considerably larger, both longer and thicker, than those of the others. Particularly slender ones are met with in the adult specimen from Station 4228. In the young specimen from station 4228 these spicules are $225-300 \mu$ long and $4-7 \mu$ thiek. In the immature specimen deseribed by Lambe they are $180-$ 480 by $3-8 \mu$.

DIMENSIONK OF SMALL DERMAL AMPIIOXES OF GEODIA AGASSIZII.

Station	2886	2887	2978	3088	3168	4193	4199	4228	4551	Fromall Stations	4228
Length, μ	$\begin{gathered} 220- \\ 180 \end{gathered}$	$\begin{gathered} 210- \\ 340 \end{gathered}$	$\begin{gathered} 230- \\ 270 \end{gathered}$	$\begin{gathered} 260- \\ 360 \end{gathered}$	$\begin{aligned} & 160- \\ & 290 \end{aligned}$	$\begin{gathered} 270- \\ 390 \end{gathered}$	290	$\begin{gathered} 185- \\ 330 \end{gathered}$	$\begin{gathered} 310- \\ 330 \end{gathered}$	$\begin{gathered} 160-480 \\ \text { maximum aver- } \\ \text { age } 342 \end{gathered}$	$\begin{gathered} 225- \\ 300 \end{gathered}$
Thickners, μ	7-12	8-10	7-8	8-10	7	7-10	8	5-8.5	S	$\begin{gathered} 5-12 \\ \text { maximum aver- } \\ \text { age } 9.06 \end{gathered}$	4-7

[^7]The orthoplagiotriaenes (Plate 26, figs. 3-12; Plate 29, figs. 1-6, S-12, 14-17; Plate 34, figs. $1-12,14,15$) occur in large numbers in all specimens. Their rhabdomes are straight or slightly curved and usually regularly conic, occasionally more cylindrical. The conical rhabdomes are generally pointed (Plate 26, figs. 3, 5-12; Plate 34, figs. 1-7), more rarely blunt (Plate 26, fig. 4; Plate 34, fig. 9). The more cylindrical rhabdomes are more or less shortened and thickened to tyles at the acladomal end (Plate 32, figs. 12b; Plate 34, fig. S, 10-12, 14, 15). Orthoplagiotriaenes with conical rhabdomes occur in all the specimens. The orthoplagiotriaenes with more cylindrical, shortened and terminally thickened rhabdomes are exceedingly rare in the adult specimens, but quite numerous in the young specimen from Station 4228 . The ordinary conical orthoplagio-triaene-rhabdomes of the adult specimens are $1.5-4.2 \mathrm{~mm}$. long and $65-150 \mu$ thick at the cladome, their average maximum dimensions being $3.39 \mathrm{~mm} . \times$ 115.44μ. In the ordinary orthoplagiotriaenes of the specimen from Station 4551 the rhabdome is remarkably stout, shorter and at the same time thicker than in the ordinary orthoplagiotriaenes of any of the others. In the ordinary orthoplagiotriaenes of the specimens from Station 4193 on the other hand the rhabdome is very slender, its length being above the mean and its thickness less than in the orthoplagiotriaenes of any of the others. The conical rhabdomes of the orthoplagiotriaenes of the young specimen from Station 4228 are $2-3.5 \mathrm{~mm}$. long and at the cladome $50-100 \mu$ thick, their average maximum dimensions being $3.3 \mathrm{~mm} . \times 90 \mu$. The orthoplagiotriaene-rhabdomes reduced in length and terminally thickened (Plate 34, figs. 8, 10-12, 14, 15) are more cylindrical, and much less attemuated towards the distal end than the ordinary ones. The degree of this attenuation is proportional to the length, very short ones (Plate 34, fig. 15) being not attenuated at all and regularly eylindrical. The terminal thickening is usually fairly spherical. Its diameter is $15-25 \%$ greater than the thickness of the part of the rhabdome lying just above it. Sometimes one or more slight thickenings of the rhabdome are observed above the terminal thickening. A cylindrical, terminally thickened orthoplagiotriaene-rhabdome of an adult specimen from Station 2978 was 900μ long and 155μ thick at the cladomal end, the thickness of the thickened acladomal end being 170μ. In the young specimen from Station 4228 these more cylindrical orthoplagiotriaenerhabdomes are $760 \mu-2.35 \mathrm{~mm}$. long, and at the cladome $60-105 \mu$ thick. Their thickness is, roughly speaking, in inverse proportion to their length. The two shortest observed, one of which is represented on Plate 34, fig. 15, were 950 and 760μ long and 95 and 105μ thick respectively.

In young orthoplagiotriaenes the entire clade, in the fully developed ones its basal part only, is directed obliquely upward. In their further course the clades of the fully developed orthoplagiotriaenes bend downwards, so that their distal parts lie more or less in a plane vertical to the rhabdome. The chords of the clades of the orthoplagiotriaenes of the adult specimens enclose angles of $73-$ 117°, on an average 98.2°, with the axis of the rhabdome. In the adult specimens from Stations 3168 and 4225 the elade-rhabdome angles do not exceed 100°, so that here all these triaenes appear as orthotriaenes. In the adult specimens from the seven other stations a smaller or a greater number of such triaenes with clade-chord angles exceeding 100° and appearing as plagiotriaenes in consequence, are observed. The arerage clade-angle, however, exceeds 100° only in the specimens from Stations 2886, 2887, and 4193. The angles of the three clades of the same cladome are usually nearly equal. It is very rarely that they become so different as to give the cladome a position oblique to the rhabdome. Such orthotriaenes with oblique eladomes are represented on Plate 26, fig. 3, and Plate 29, fig. 4.

The size and the shape of the clacles are far from constant, not only the clades of clifferent orthoplagiotriaenes of the same specimen but even the clades of one and the same triaene often being very dissimilar. Their maximum average dimensions are, however, about the same in all the specimens. At the base the clades are a little thimer than the cladomal end of the rhabdome, the ratio letween these two dimensions varying between 7 to 10 and 9 to 10 . The elades are $240-560 \mu$ long, their arerage maximum length being 490.89μ. The maximum average of those of the orthoplagiotriaenes of the specimen from Station 4551 is the smallest, of those of the orthoplagiotriaenes of the specimens from Station 4199 the largest. The orthoplagiotriaenes of the young specimen from Station 4228 have clades $300-500 \mu$ long, their average maximum length being 490μ. Their chords enclose angles of $\delta 8-108^{\circ}$, on an average 97° with the axis of the rhabdome.

In all specimens orthoplagiotriaenes with simple elades, gradually decreasing in thickness and curvature towards the usually not very sharp-pointed end (Plate 26 , figs. $3,4,6$, Plate 29 , figs. $1-5,8,11$), are met with. In the specimens from six of the stations all the orthoplagiotriaenes, or at least a very great majority of them, have regular clades of this description. In the specimens from Stations 3168, 4193, and 4199 on the other hand the orthoplagiotriacnes with such simple and regular clades are not so numerous as orthoplagiotriaenes with one or more clades rendered irregular by being either abruptly bent down
near the end, or branched. Clades abruptly bent down at the end are represented on Plate 26, fig. S, Plate 29, figs. 6, 15, Plate 34, figs. 5, S. The ramified clarles (Plate 26, figs. S-12; Plate 29, figs. 9, 10, 12, 14, 16, 17; Plate 34, fig. 15) are so variable, that it is difficult to find two alike. Their branches either extend in a longitudinal plane passing through the rhabdome, or less frequently they diverge in different directions forming, if numerous, a terminal bunch. They hardly ever lic in the plane of the cladome and therefore differ fundamentally from dichotriaene-end clades. The simplest and most frequent forms of these branched clades are those in which one straight, conical, thorn-like branch arises from the lower (rhabdomal) side of the distal part of the clade. This branch is either directed vertically downward (Plate 29, fig. 12), or, more frequently, obliquely downwards and outwards (Plate 26, figs. 9-12; Plate 29, figs. $9,16)$. Its size is in proportion to the distance of its origin from the end of the clade; when it arises near the end of the clade it is small (Plate 29, fig. 16) when it arises farther away from it, it is larger (Plate 29, fig. 9). In sone clades of this kind the branch is terminally divided into small secondary branchlets (Plate 29, fig. 17). Sometimes the clades bear two siniple or secondarily ramified branches (Plate 29, fig. 10). The most complicated forms are those in which the clade terminally divides into a greater number of clivergent simple, or more often, secondarily ramified brancles (Plate 29, figs. 14, 16). In the immature specimen, described by Lambe, orthoplagiotriaenes and dichotriaenes occur. According to Lambe (loc. cit., p. 37), the latter are much more numerous than the former, "few examples of the simple orthotriaenes" being found. I, on the contrary, found the orthoplagiotriaenes quite as numerous as the dichotriaenes if not more so. The orthoplagiotriaenes have a rhabdome 2.1-3 mm. by $70-90 \mu$, and clades $300-450 \mu$ long; the clade-angles are $91-103^{\circ}$. The dichotriaenes have a rhabdome $1-2.2 \mathrm{~mm}$. by $50-75 \mu$, main clades $150-300$, and end clades $30-130 \mu$ long; the breadth of the whole cladome is $350-700 \mu$, the main clades enclose angles of $109-112^{\circ}$ with the rhabdome.

DIMENIIONS OF THE ORTHOPLAGIOTRIAENES OF GEODLA AGASSIZII.

The mesorthotriaenes (Plate 26, fig. 1; Plate 29, fig. 7; Plate 34, fig. 16) are very rare and have been found only in the adult specimens from Stations 2978, 4199, and 4228, and the young specimen from Station 4228. They consist of a style-like shaft, from which three clades arise. The shaft is conical, $1.8-3 \mathrm{~mm}$. long and $78-164 \mu$ thick at the rounded end. It usually tapers to a simple point at the other end. In one of these spicules, however, the thin end of the shaft was bifid, terminating in two points, lying elose together. The three clades form a verticil situated $150-280 \mu$ below the rounded end. They are $78-300 \mu$ long. Their basal part is directed obliquely downward towards the pointed end of the shaft. Distally they curve round towards its rounded end, either uniformly, or abruptly. It is not quite easy to say which of the two parts of the shaft on either side of the elade-verticil is to be considered as the rhabdome and which as the epirhabd. The fact that the pointed part is very much longer than
the rounded part is in favor of the view that the former is the rhabdome and the latter the epirhabd. Since, however, the rounded part is the thicker of the two, since the clades have their concave side turned towards this shorter and thicker part; and since there can be little doubt that these spicules are derivates of the orthoplagiotriaenes, in which the concave side of the clades is invariably turned towards the rhabdome, it seems that the short, thick, and rounded part of the shaft should be considered as the rhabdome and the long, thin, and pointed part as the epirhabd.

The amphiclade orthoplagiotriaene-derivates (Plate 26, fig. 2; Plate 29, fig. 13; Plate 34, fig. 13) are also very rare. They have been found only in the adult specimens from Stations 3168 and 4199 and in the young specimen from Station 4228 . They differ from the orthoplagiotriaenes described above only by possessing, besides the terminal cladome proper, a short, rounded or pointed clade about $100-150 \mu \mathrm{long}$, which arises at the acladomal end of the rhabdome or some other part of it more or less remote from the true cladome.

Besides these orthoplagiotriaene-derivates a few quite irregular spicules have been observed, which, to judge from their general character, appear to be derivates either of the orthoplagiotriaenes or of the large choanosomal amphioxes. On Plate 28 photographs of some of these spicules are reproduced. One, fig. 8 , is a triaene with a shaft 35μ thick at the cladomal end, and three straight, conical clades, $130 \mu \mathrm{long}$, approximately extending in a plane which passes through the rhabdome. One, fig. 10 , is a stout, large amphiox with two straight and pointed, clade-like branch-rays, 165μ long, arising 250μ below one of the ends and extending very obliquely downward towards the centre of the amphiox. One, fig. 9 , has the appearance of a large amphox, one end of which is replaced by a centrally attached, obliquely situated, style-like rhabd, 430μ long. One, fig. 11, is a large amphiox, from which, at a distance of 260μ from one of the ends, a straight, conical, clade-like branch, 240μ long, arises vertically.

Of other irregular spicules observed I mention an amphistrongyle, about 1 mm . long and thicker at one end than the other, with a straight, conical, branchray 80μ long, arising obliquely 70μ below the thimner end and directed towards the thicker end.

The mesoprotriaenes (Plate 28, figs. 1-7, 16d; Plate 32, figs. 40, 41) occur in all specimens. Their rhabdome, which is thicker in the middle than at either end, is straight or only slightly curved, and in the adult specimens 2-6 mm. long and at the cladome $7-40 \mu$ thick, the average maximum dimensions being 5.1 $\mathrm{mm} . \times 25.11 \mu$. The rhabdomes of the mesoprotriaenes of the young specimen
from Station 4228 are, at the cladome, $9-13 \mu$ thick, the maximum average of this dimension being 12μ. The clades are conical, pointed, and always curved, coneave towards the epirhabd, in their basal part. In their distal part they are either curved in the same direction (Plate 28 , figs. $3,5,6$), or nearly or quite straight (Plate 28 , figs. 2, 4, 7 ; Plate 32 , figs. 40,41), rarely abruptly bent (Plate 28, fig. 1). The angles between the chords of the clades and the çirhabd are in the mesoprotriaenes of the adult specimens $22-55^{\circ}$, on an average 38°. The mesoprotriaenes of the specimens from Station 4193 have exceptionally large, those of the specimens from Station 2886 exceptionally small, cladeepirhald angles. As a rule the three clades of the same cladome are fairly equal in size; mesoprotriaenes with unequal clades are, however, by no means rare. Sometimes their inequality is so great that the longest clade of a cladome is more than twice as long as the shortest. Sometimes one clade is reducel to a mere knob, and the spicule appears as a promesodiaene. A few such promesodiaenes I found in the spicule-preparations of the young specimen from Station 4228. The rhabdomes of these spicules are much stouter and their clade-angles much smaller than those of the mesoprotriaenes and it is possible that they are foreign to the sponge. The chords of the clades of the mesoprotriaenes of the adult specimens are $60-250 \mu \mathrm{long}$, their average maximum length being 161.78 1t. The longest clades are observed in the mesoprotriaenes of the specimens from Station 2978 , the shortest in those of the specimens from Station 4193. The chords of the clades of the mesoprotriaenes of the young specimen from Station 4228 are $95-125 \mu$ long (maximum average 120μ) and enclose angles of albout 42° with the axis of the epirhabd.

The epirhabd is straight, conical, and pointed. In the majority of the mesoprotriacnes it is about as long as the clades (Plate 28, figs. 1-6; Plate 32, figs. 40, 41). In not a few, however, it is either considerably shorter or considerably longer (Plate 28 , fig. 7). It is in the adult speeimens $25-320 \mu \mathrm{long}$, its average maximum length being here 140.33μ. Of all the spicule-dimensions the length of the mesoprotriane-cpirhabd is the most inconstant, the differences of the adult specimens from the nine stations in this respect being very great incleed. The longest epirhabds are met with in the mesoprotriaenes of the specimens from Station 4199, the shortest in those of the specimens from Station 4193. In the young specimen from Station 4228 the epirhabds of the mesoprotriaenes are $85-100 \mu$ long, their average maximum length being 95μ. In the immature specimen deseribed by Lambe the rhabclome is 20μ thiek, the clades are $60-90 \mu$ long, the clade-angles are $36-47^{\circ}$, and the epirhabd is about 70μ long.

DIMENSIONS OF MEsOPROTRIAENES OF GEODIA AGAsSIZII.

Station			2886	2887	2978	3088	3168	4193	4199	4228	4551	From tions	4228
Rhabdome	length	of apparently full-grown spicules, mm.			2-5	$\begin{gathered} 35- \\ 5-8 \end{gathered}$	$\begin{gathered} 4.5- \\ 5-5 \end{gathered}$		4.1-6	6	$\begin{gathered} 3.6- \\ 4.3 \end{gathered}$	2-6	
		a verage of the three longest, mm .			4.7	5.5	5.1		5	6	4	5.1	
	thickness	of apparently full-grown spicules, μ	20	$\begin{gathered} 25- \\ 27 \end{gathered}$	$\begin{gathered} 15- \\ 40 \end{gathered}$	$\begin{aligned} & 15- \\ & 30 \end{aligned}$	$\begin{gathered} 20- \\ 30 \end{gathered}$	$\begin{gathered} 18- \\ 20 \end{gathered}$	$\begin{aligned} & 7- \\ & 32 \end{aligned}$	$\begin{aligned} & 12- \\ & 22 \end{aligned}$	$\begin{gathered} 10 \\ 23 \end{gathered}$	$\begin{aligned} & 7- \\ & 40 \end{aligned}$	9-13
		a verage of the three thickest, μ	20	27	34	26	28	19	30	21	21	2511	12
Clades	length	of apparently full-grown spicules, μ	120	$\begin{aligned} & 150- \\ & 180 \end{aligned}$	$\begin{gathered} 125- \\ 250 \end{gathered}$	$\begin{aligned} & 60- \\ & 150 \end{aligned}$	$\begin{gathered} 150- \\ 200 \end{gathered}$	$\begin{aligned} & 90- \\ & 100 \end{aligned}$	$\begin{gathered} 100- \\ 210 \end{gathered}$	$\begin{aligned} & 90- \\ & 180 \end{aligned}$	$\begin{aligned} & 90- \\ & 175 \end{aligned}$	$\begin{aligned} & 60- \\ & 250 \end{aligned}$	$\begin{aligned} & 95- \\ & 125 \end{aligned}$
		a verage of the three longest. μ	120	180	250	143	178	95	203	145	142	161.78	120
	angle	of apparently full-grown spicules, ${ }^{\circ}$	26	$\begin{gathered} 35- \\ 40 \end{gathered}$	$\begin{gathered} 30- \\ 50 \end{gathered}$	$\begin{gathered} 32- \\ 55 \end{gathered}$	$\begin{gathered} 30- \\ 40 \end{gathered}$	$\begin{gathered} 39- \\ 55 \end{gathered}$	$\begin{gathered} 22- \\ 48 \end{gathered}$	$\begin{gathered} 32- \\ 50 \end{gathered}$	$\begin{gathered} 33- \\ 55 \end{gathered}$	$\begin{gathered} 22- \\ 55 \end{gathered}$	42
		a verage, ${ }^{\circ}$	26	37	39	39	36	47	36	41	41	38	42
Epirhahd length		of apparently full-grown spicules, μ	110	$\begin{aligned} & 110- \\ & 150 \end{aligned}$	$\begin{aligned} & 70- \\ & 210 \end{aligned}$	$\begin{aligned} & 60- \\ & 135 \end{aligned}$	$\begin{aligned} & 25- \\ & 150 \end{aligned}$	$\begin{aligned} & 60- \\ & 100 \end{aligned}$	$\begin{aligned} & 90- \\ & 320 \end{aligned}$	$\begin{aligned} & 78- \\ & 125 \end{aligned}$	$\begin{aligned} & 60- \\ & 110 \end{aligned}$	$\begin{aligned} & 25- \\ & 320 \end{aligned}$	$\begin{aligned} & 35- \\ & 100 \end{aligned}$
		average of the three longest, μ	110	150	192	125	136	80	268	109	93	140.33	95

The anatriaenes (Plate 28, figs. 16e, 18-27; Plate 32, figs. 43, 45, 46) occur in all specimens. They appear to be particularly numerous in the specimens from Station 2587. The rhabdomes of the anatriaenes of the adult specimens are $4-9 \mathrm{~mm}$. long and at the cladome $10-50 \mu$ thick, their average maximum dimensions being $6.5 \mathrm{~mm} . \times 32.56 \mu$. The rhabdomes of the anatriaenes of the specimens from Station 4199 are considerably thicker than those of the others. The rhabdome is straight or slightly curved and thicker in the middle than at
either end (Plate 28, fig. 16e). The achadomal end usually thins out to a fine point, it is rarely blunt. The rhabdomes of the anatriaenes of the young specimen from Station 4228 are at the cladome $18-27 \mu$ (average maximum 25μ) thick. Among them a few with rhabdomes shortened and terminally thickened, like the rhabdomes of some of the orthoplagiotriaenes, have been observed.

The basal parts of the clades are curved, coneave to the rhabdome, the distal parts straight. Where the basal curved part passes into the distal straight part, a slight, abrupt, angular bend is sometimes discernible (Plate 28, figs. 19, 20, 25). In most of the anatriaenes the clistal straight part of the clade is about as long as the proximal curved part (Plate 28 , figs. 18-21, 24, 25); in some the former is considerably longer than the latter (Plate 28, figs. 23, 26; Plate 32, figs. 4.3, 45, 46). Anatriaenes of this kind occur in the specimens from Stations 4199 and 422 S . The chords of the clades of the anatriaenes of adult specimens enclose with the axis of the rhabdome angles of $32-65^{\circ}$, on an average 45.8°. In the anatriaenes of the specimens from Station $2 S 86$ this angle is considerably larger than in those of the others. The three clades of the same cladome are usually about equal in length (Plate 28, figs. 19-26). Sometimes, however, their length is unequal (Plate 28, figs. 18, 27 ; Plate 32 , fig. 45). In the adult specimen from Station 3168 and in the young specimen from Station 4228 anatriaenes with elades of unequal length are relatively more numerous than in the specimens from the other stations. The chords of the clades of the anatriaenes of the adult specimens are $40-155 \mu$ long, their average maximum length being 118.11μ. In the specimens from Station 2886 the clades of the anatriaenes are rery considerably shorter than any of the others. The chords of the clades of the anatriacnes of the young specimen from Station 4228 are $60-$ 110μ (average maximum 95μ) long and enelose angles of $31-45^{\circ}$ (average 38°) with the axis of the rhabdome. In the immature specimen described by Lambe the anatriaenes have a rhabdome $3.3-4.7 \mathrm{~mm}$. by $22-28 \mu$, clades 45100μ long, and clade-angles of $41-52^{\circ}$.

In the centrifugal spicule-preparations of this specimen also a few minute dermal anaclades were observed. These have a rhabdome about 290μ by $1-1.5$ μ at the cladome and $3-5 \mu$ at the thickest point below the middle; their clades are 46μ long; the clade-angles are $38-62^{\circ}$. These spicules may be foreign.

DIMENSIONS OF ANATRIAENES OF GEODIA AGASSIZII.

Station			2886	2887	2978	3088	3168	4193	4199	4228	4551	From all Sta- tions	4228
Rhabdome	length	of apparently full-grown spicules, mm.		5.3-9	$\begin{gathered} 4.1- \\ 58 \end{gathered}$	$\begin{aligned} & 7.2- \\ & 75 \end{aligned}$	$\begin{aligned} & 6- \\ & 75 \end{aligned}$			4-8.2	46	4-9	
		a verage of the three longest, mm.		87	54	73	7			6	4.6	65	
	thickness	of apparently full-grown spicules, μ	$\begin{gathered} 10- \\ 50 \end{gathered}$	$\begin{gathered} 17- \\ 35 \end{gathered}$	$\begin{gathered} 17- \\ 35 \end{gathered}$	$\begin{gathered} 20- \\ 32 \end{gathered}$	$\begin{gathered} 22- \\ 36 \end{gathered}$	$\begin{gathered} 25- \\ 33 \end{gathered}$	$\begin{gathered} 20- \\ 40 \end{gathered}$	$\begin{gathered} 30- \\ 37 \end{gathered}$	$\begin{gathered} 22- \\ 32 \end{gathered}$	$\begin{gathered} 10- \\ 50 \end{gathered}$	$\begin{aligned} & 18- \\ & 27 \end{aligned}$
		average of the three thickest, μ	29	35	33	31	32	31	40	36	26	32.56	25
Clades	length	of apparently full-grown spicules, μ	$\begin{aligned} & 40 \\ & 95 \end{aligned}$	$\begin{aligned} & 70 \\ & 150 \end{aligned}$	$\begin{aligned} & 90- \\ & 140 \end{aligned}$	$\begin{aligned} & 70- \\ & 115 \end{aligned}$	$\begin{aligned} & 75- \\ & 155 \end{aligned}$	$\begin{aligned} & 90- \\ & 140 \end{aligned}$	$\begin{aligned} & 100- \\ & 130 \end{aligned}$	$\begin{aligned} & 95- \\ & 140 \end{aligned}$	$\begin{aligned} & 80 \\ & 140 \end{aligned}$	$\begin{aligned} & 40- \\ & 155 \end{aligned}$	$\begin{aligned} & 60- \\ & 110 \end{aligned}$
		a verage of the three longest, μ	67	133	140	98	145	123	120	130	107	118.11	95
	angle	of apparently full-grown spicules. ${ }^{\circ}$	$\begin{gathered} 50 \\ 60 \end{gathered}$	$\begin{gathered} 40- \\ 65 \end{gathered}$	$\begin{gathered} 33- \\ 60 \end{gathered}$	$\begin{aligned} & 40- \\ & 55 \end{aligned}$	$\begin{gathered} 33- \\ 53 \end{gathered}$	$\begin{gathered} 32- \\ 47 \end{gathered}$	$\begin{gathered} 38- \\ 46 \end{gathered}$	$\begin{gathered} 32- \\ 51 \end{gathered}$	$\begin{gathered} 40- \\ 48 \end{gathered}$	$\begin{gathered} 32- \\ 65 \end{gathered}$	$\begin{gathered} 31- \\ 45 \end{gathered}$
		average, ${ }^{\circ}$	55	49	43	46	44	43	42	44	46	45.8	38

The anadiaenes (Plate 28, fig. 28; Plate 32, fig. 44) are rare. They have been found only in the adult specimens from Station 3168 and the young specimen from Station 4228, where also anatriaenes with clades of different length are more frequent than in the specimens from the other stations. In shape and size they perfectly resemble those anatriaenes, and I consider them as such anatriaenes, in which the inequality of the clades is carried to the extent of the complete suppression of one of them.

The irregular anatriaene-derivates differ from the ordinary anatriaenes by one of the three clades being directed upwards. These anatriaene-derivates are rare. I have observed them only in the specimens from Station 4228.

The large choanosomal oxyasters (Plate 27, figs. 3b, 6-14b; Plate 30, figs. 1b, $2 \mathrm{~b}, 4,5,10 \mathrm{~b}$; Plate 32 , figs. $4,6,7$) of the adult specimens have from four to sixteen rays and a small centrum the diameter of which is usually from two to
three times as great as the basal thiekness of the rays. The rays are usually radial and quite regularly distributed only in the rare, execptionally large, few-rayed oxyasters of the adult specimen from Station 4228 is an irregular distribution of the rays observed. The rays are straight, at the base 0.8-3.2 μ thick and conieal. They taper uniformly to the end, which is pointed, blunt, rounded, or ratrely, truncate. The distal parts of the rays are always more or less spiny. In some oxyasters the spines extend down nearly to the base of the rays, in others they are confined to the distal two thirds, and in a few - such as I have found chiefly in the specimens from Station 4199 - they are more or less restricted to verticils lying just below the tips of the rays. The oxyasters with spines arranged in this maner appear somewhat acanthtylaster-like. The oxyisters of the adult specimens measure $9-31 \mu$ in diameter, their average maximum diameter being 24.22μ. Oxyasters more than 26μ in diameter with irregularly distributed rays have been met with only in the adult specimen from Station 42. Among the others the specimens from Stations 3168 and 4551 have the largest, those from Station 4199 the smallest oxyasters. The size of these asters is in inverse proportion to the number of their rays. None of the oxyasters over 20μ in diameter observed by me had more than nine rays, all those with ten or more rays being less than 20μ in diameter. The large choanosomal oxyasters of the young specimen from Station 4228 are similar to those described above, usually have from nine to fourteen rays $0.8-1.7 \mu$ thick at the base, and measure $13-25 \mu$ in total diameter. In the immature specimen described by Lambe the oxyasters have from seven to nine rays $1.3-2.3 \mu$ thick and a central thickening; their total diameter is $13-20 \mu$.

TOTAL DLAMETERS OF THE LARGE ONYASTERS OF GEODIA AGASSIZII.

| 2886 | 2887 | 2978 | 3088 | 3168 | 4193 | 4199 | 4228 | 4551 | From all stations | 4228 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $11-21_{\mu}$ | $10-22 \mu$ | $12-23 \mu$ | $18-2.5 \mu$ | $14-26 \mu$ | $13-24 \mu$ | $13-20 \mu$ | $12.5-31$
 μ | $9-26 \mu$ | $9-31 \mu$
 maximum aver-
 age 24.22μ | $13-25 \mu$ |

The large oxysphaerasters (Plate 26, fig. 14; Plate 27, figs. 4e, 14c; Plate 30, fig. 3) appear to be more numerous in the specimens from Stations 2886 and 3168 than in those from the other stations. The oxysphaterasters of the adult specimens consist of a spherical central thiekening (centrum), $3.5-11 \mu$ in diameter, from which from fourteen to twenty-eight and perhaps more (it is exceedingly difficult to count them aecurately) equidistant radial rays arise. These are usually shorter than the diameter of the centrum, regularly conical,

1-2 μ thick at the base, and sharp or blunt pointed. From the distal parts of the rays a few quite large spines arise. These are often arranged in a somewhat verticillate manner near the tip of the ray. These oxysphaerasters are $10-21 \mu$ in total diameter, the average maximum being 18.2μ. In the young specimen from Station 4228 the large oxysphaerasters have from cighteen to perhaps thirty rays and measure $12.5-18 \mu$ in total diameter, the diameter of the centrum being rather less than in the oxysphaerasters of the adult specimens and rarely exceeding 4μ. In the immature specimen described by Lambe the oxysphacrasters have from ten to twenty rays, $0.9-2 \mu$ thick, the centre is $2.7-7 \mu$, the whole aster $\delta-21 \mu$, in diameter.

TOTAL DIAMETER AND DIAMETER OF THE CENTRUM OF THE LARGE OXYSPHAERASTERS OF GEODIA AGASSIZII.

Station.		2886	2887	2978	3088	3168	4193	4199	4228	4551	All Stations	4228
$\begin{aligned} & \text { Diameter } \\ & \text { of } \end{aligned}$	aster μ	$\begin{gathered} 14- \\ 15 \end{gathered}$	$\begin{aligned} & 14- \\ & 18 \end{aligned}$	$\begin{aligned} & 14 \\ & 20 \end{aligned}$	$\begin{aligned} & 18- \\ & 21 \end{aligned}$	$\begin{gathered} 10- \\ 13 \end{gathered}$	$\begin{gathered} 15- \\ 19 \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \end{aligned}$	$\begin{gathered} 10- \\ 18 \end{gathered}$	$\begin{aligned} & 15- \\ & 20 \end{aligned}$	10-21 maximum average 18.2	$\begin{gathered} 12.5 \\ 18 \end{gathered}$
	$\begin{gathered} \text { centrum } \\ \mu \end{gathered}$	7-9	7-7.5	7-11	7-9	6	10	5-8	3.5-7	6-8	3.5-11 maximum a verage 8.4	3.5-4

The small stronyylosphaerasters (Plate 26, fig. 15; Plate 27, figs. 3-14d;
Plate 30, figs. 1a, 2a, 6-9, 10a; Plate 32, figs. 2, 3) are abundant in all specimens. They consist of a central sphere (centrum), from which from six to twenty fairly equidistant rays arise radially. The length of these rays is usually smaller, rarely as great as or greater, than the diameter of the centrum. In the small strongylosphaerasters of the adult specimens the rays are at the base 0.6-1.6 μ thick and taper towards the truncate end, or are nearly cylindrical (Plate 30, figs. 6-9). The rays bear small spines, which often appear massed at their ends. The total diameter of these asters is $3.5-11 \mu$, the average maximum being 9.1μ. The centra are $1.5-6 \mu$ in diameter, the average maximum being 4.3μ. The centra of the small strongylosphaerasters of the specimens from Stations 2978 and 4193 are smaller than the eentra of those of the others. The small strongylosphaerasters of the young specimen from Station 4228 are similar to those of the adult specimens. They usually have from twelve to nineteen rays $0.5-1 \mu$ thick; and a centrum $2-3 \mu$ in diameter; their total diameter is $5.5-$ 9μ. In the immature specimen deseribed by Lambe the small strongylosphaerasters have from ten to twenty-eight rays $0.6-1 \mu$ thick, the centre is $2-3.5$, the whole aster $5-7 \mu$, in diameter.

TOTAL DIAMETER AND DIAMETER OF TIE CENTRUM OF THE SMALL STRONGYLOSPHAERASTERS OF GEODLA AGASSIZII.

Station		2×56	2887	2978	3088	3168	4193	4199	4228	4551	All stutions	4228
$\begin{aligned} & \text { Diameler } \\ & \text { of } \end{aligned}$	aster μ	4-K.5	4-9	+10	1-11	5-9	3.5-7	1.59	$\begin{gathered} 3.5 \\ 10 \end{gathered}$	$4-8$	3.5-11 maximum average 9.1	5.59
	centrum μ	2-4	$\begin{aligned} & 3.5- \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	3.56	2-1	2.5 3.2	2.5 4.5	1.5-1	3-4.5	$1.5-6$ maximum average 4.2	2-3

The normal sterrasters (Plate 27, figs. 15-19; Plate 30, figs. 11-17; Plate 31, figs. 1, 2, 5-7; Plate 32, figs. 32, 35; Plate 33, figs. 1-8, 12, 13) are abundant in all specimens. The full-grown sterrasters of the adult specimens are flattened ellipsoids $82-118 \mu$ long, $75-100 \mu$ broad, and $58-83 \mu$ thick, their average maximum dimensions being 103.55 by 88.56 by 69.22μ. The largest are those of the specimen from Station 30s8. The proportion of length to breadth to thickness is fairly constant. Those of the specimen from Station 3088 are relatively somewhat longer and those of the specimens from Stations 2S86 and 4228 relatively somewhat thinner than those of the others. In the young specimen from Station 4228 the full-grown sterrasters are similar in shape, $76-100 \mu$ long, $70-85 \mu$ broad, and $60-70 \mu$ thick, their average maximum dimensions being 95 by 83 by 68μ. In the immature specimen described by Lambe the sterrasters are $90-110$ by $74-92$ by $67-75 \mu$. (See table p. 133.)

On one of the two broader sides of the normal full-grown sterrasters an umbilicus, usually more or less cireular in outline, 1215μ in transverse diameter, and 6μ deep, is observed (Plate 27, figs. 15-19; Plate 31, figs. 1, 2, 5-7). With the exception of a small, smooth, centrad patch at its bottom, the wall of the umbilical pit appears to be roughened (Plate 31, figs. 5, 7). 1 am not quite positive, however, whether there really is a ronghness there, it being quite possible that its appearance in this place may be an optical illusion, caused by a refraction at the surface of the umbilical pit, that in fact this apparent roughness is in reality nothing but a blurred ultraviolet light-image of the rays and spines on the other side of the surface, which are traversed by the light before it reaches the umbilicus. Ohservations with high powers in ordinary light failed to decide this question.

From the whole of the surface of these normal, full-grown sterrasters, with the exception of the part occupied by the umbilicus, the distal ends of the rays
composing the sterraster protrude a short distance. The freely protruding distal parts of these rays are usually circular or somewhat polygonal, four- to seven-sided, in transverse section, 1.3-4 μ thick, regularly distributed, and hardly 1μ apart. They are truncate, and from the margin of their terminal face a vertieil of from four to seven, most frequently six, spines arises. These spines extend either transversely, vertical to the axis of the ray, or, less frequently, obliquely outward and a little upward. The spines of the rays remote from the umbilical pit are stout, straight cones, about 1.7μ long and 1.3μ thick at the base (Plate 31, figs. 1, 2, 6, 7; Plate 33, figs. 12, 13). Those of the spines of the rays surrounding the umbilieal pit, which extend towards the umbilicus, are often larger, as mueh as $2.5 \mu \mathrm{long}$, and not regularly conical but irregular, their ends being broad and sometimes covered with small, seeondary spinelets.

DIMENSIONS OF STERRASTERS OF GEODIA AGASSIZII

Station		2886	2887	2978	3088	3168	4193	4199	4228	4551	$\begin{gathered} \text { All } \\ \text { stations } \end{gathered}$	4228
Length	of apparently full-grown sterrasters, $/$ /	$\begin{aligned} & 90- \\ & 100 \end{aligned}$	$\begin{aligned} & 97 \\ & 104 \end{aligned}$	$\begin{aligned} & 90 \\ & 112 \end{aligned}$	$\begin{gathered} 110- \\ 118 \end{gathered}$	$\begin{gathered} 100 \\ 110 \end{gathered}$	$\begin{gathered} 9-2 \\ 97 \end{gathered}$	$\begin{gathered} 85 \\ 97 \end{gathered}$	$\begin{aligned} & 95- \\ & 100 \end{aligned}$	$\begin{aligned} & 95- \\ & 110 \end{aligned}$	$\begin{aligned} & 8- \\ & 118 \end{aligned}$	$\begin{aligned} & 76 \\ & 100 \end{aligned}$
	a verage of the three longest, ,	96	102	111	118	109	91	97	95	107	103.55	97
Breadth	of apparently full-grown sterrasters, !	$\begin{gathered} 78- \\ 83 \end{gathered}$	$\begin{gathered} 81- \\ 90 \end{gathered}$	$\begin{aligned} & 85- \\ & 100 \end{aligned}$	$\begin{aligned} & 87 \\ & 9 . \end{aligned}$	$\begin{gathered} 90 \\ 96 \end{gathered}$	$\begin{aligned} & 80- \\ & 83 \end{aligned}$	$\begin{aligned} & 75- \\ & 88 \end{aligned}$	$\begin{gathered} 80- \\ 90 \end{gathered}$	$\begin{gathered} 83- \\ 90 \end{gathered}$	$\begin{aligned} & 75 \\ & 100 \end{aligned}$	$\begin{aligned} & 70- \\ & 85 \end{aligned}$
	a verage of the three broadest, $/ 2$	82	88	91	91	91	S2	85	88	90	8S. 56	83
Thickness	of apparently full-grown sterrasters, μ	$\begin{gathered} 58- \\ 60 \end{gathered}$	$\begin{aligned} & 65 \\ & 72 \end{aligned}$	$\begin{gathered} 74 \\ 75 \end{gathered}$	$\begin{gathered} 7 \mathrm{~S} \\ 83 \end{gathered}$	$\begin{gathered} 6.5 \\ 70 \end{gathered}$	$\begin{gathered} 63- \\ 70 \end{gathered}$	$\begin{gathered} 67- \\ 70 \end{gathered}$	$\begin{aligned} & 54- \\ & 61 \end{aligned}$	$\begin{gathered} 69 \\ 73 \end{gathered}$	$\begin{gathered} 58- \\ 83 \end{gathered}$	$\begin{gathered} 60- \\ 70 \end{gathered}$
	a verage of the three thickest, 11	59	71	75	81	70	66	69	61	72	6.) 22	68

Besides these normal forms of full-grown sterrasters, which form the great majority, some others with fewer and usually stouter protruding rays and more numerous or larger and differently shaped spines, which I propose to name sterroids (Plate 31, figs. 3, 4, 8-10; Plate 32, figs. 13-28, 33, 34, 36-39; Plate 33, figs. 9-11, 14), are met with.

In one kind of sterroid (Plate 31, figs. 3, 4; Plate 32, figs. 33, 34, 36-39; l'late 33 , fig. 10) the free distal parts of the rays are considerably thicker, $t-$ 13μ in transwerse diameter, and farther apart than in the normal sterrasters. some of them, chiefly those surrounding the umbilicus, but also others, have an irregularly clongated transverse section. In these sterrasters the thick rays bear, besides a terminal verticil of from eight to fourteen lateral spines, rather larger than those of the normal sterrasters, several others which arise obliquely from their terminal face.

In another form of sterroid (Plate 31, figs. S-10; Plate 33, figs. 9, 14) the freely protruding distal parts of the rays are not very much thicker, but very much farther apart than in the normal sterrasters, and provided with very different spines. The part of the surface of the solid centrum lying between the protruding rays is in these sterroids covered by large numbers of small projections of various shape, and appears irregularly granular. Each ray bears from two to eight mostly lateral, but in part also terminal, spines, which are $2.5-5 \mu$ long, up to 3μ broad, slightly curved down at the end and covered with numerous small secondary spinelets. When viewed from above, the spines are somewhat similar to serrated leaves.

In a third kind of sterroid (Plate 32, figs. 25-28; Plate 33, fig. 11) the rays are thicker, up to 15μ in transverse diameter, and farther apart than in the forms above described. They are terminally rounded and covered with large numbers of recurved, somewhat claw-like spines. In most of these sterrasters the rays are all fairly equally developed, their free distal parts covering the whole of the solid centrum of the spicule and protruding equally far beyond it (Plate 32, figs. 25,26). In some, however, there are only a few groups of protruding rays, the greater part of the surface of the centrum being destitute of such (Plate 32, figs. 27, 28) but covered with groups of spines similar to the spines on the protruding rays.

In the specimens from Station 4228, both the young and the adult, I have found a few oxysphaerasters, about as large as the sterrasters, three in the former and one in the latter. These spicules have from thirteen to fifteen straight, conical and smooth, radial and concentric, rather irregularly distributed rays. They measure $90-100 \mu$ in total diameter; the diameter of the centrum is $25-27 \mu$; the rays are (without the centrum) $35-40 \mu$ long and $10-17 \mu$ thick at the base. I found these asters in situ in sections in the subcortical layer and I do not think that they are foreign to the sponge. For the reasons given below, I considered them as sterroid-derivates.

In the choanosome of several of the specimens of Geodia agassizii, particularly the adult one from Station 3099, and the young one from Station 4228, numerous young sterrasters in various stages of development have been observed. In the adult specimens all these young sterrasters exhibit the well-known form of spheres composed of very numerous, regularly distributed, slender, radial rays. In the young specimen from Station 4228 young sterrasters of this kind are also abundant, but here besides these ordinary forms numerous other asters, similar in dimension, but very different in appearance occur. A close examination showed the latter to be the young forms of the sterroids. By comparing a large number of these and the ordinary young sterrasters with each other and with the fully-developed ones I was able to trace the development both of the normal sterrasters and the sterroids.

On Plate 30, figs. 11-17, Plate 32, figs. 29-31, and Plate 33, figs. 1-8, two series of developmental stages of the normal thin-rayed sterrasters, the first from an adult specimen from Station 31SS, the sccond from the young specimen from Station 4228, are represented. One of the youngest stages observed, Plate 33 , figs. 1,2 , is a sphere 17μ in diameter. This young sterraster consists of about 460 straight and exceedingly slender, thread-like, concentric rays, which are equal in length, regularly distributed, and jointed proximally. Adjacent rays enclose angles of about 10°. As the spicule grows these rays increase in thickness, their proximal parts thickening first and this process of thickening then extending distally. The basal thickening parts of the rays coalesce, as they come in contact with each other, to form a solid centrum. In the next stage (Plate 33, figs. 3, 4) the basal parts of the rays protruding from the solid centrum thus formed show a slight bulbous thickening which increases so that in young sterrasters 50μ in diameter (Plate 33 , figs. 5-7) the rays are at the base already 2μ thick, their distal ends, however, being still quite thin. In this stage each ray appears as a cone, widened below like a bulb, and drawn out to a fine thread above. As development progresses the thickening of the rays extends farther and farther towards their distal ends (Plate 30, figs. 11-13), the whole sterraster and its solid centrum increase in size, and the fine terminal points of the rays become shorter and shorter, until they are entirely enveloped in the ascending thickening and thus altogether disappear. In this stage (Plate 30, fig. 14 ; Plate 33 , figs. 7,8) the young normal sterrasters appear as solid, at first still fairly spherical, central masses from which cylindrical rays, which stand close together and are about 4μ thick and simply rounded at the end, protrude. Without changing much in appearance, these young sterrasters in-
crease in size and begin to assume the flattened cllipsoidal appearance of the full-grown ones (l'late 32, figs. 29-31). Then the basal parts of the protruding rays coalesce farther and spines begin to grow out from the margin of their terminal face (Plate 30, figs. 15, 16). These spines at first appear as small rounded knobs. Later (Plate 30 , fig. 17) the rays are thickened terminally and the spines grow in length. They are in such young sterrasters very slender and do not attain their full thickness for some time.

The early stages of the sterroids differ from those of the normal sterrasters described above by the rays composing them being not nearly so mumerous and usually also not so regularly arranged. In accordance with the smallness of the number of the rays the angles between them are much larger than in the young forms of the normal sterrasters. The thickening and conerescence of the basal parts of the rays, which in the latter lead to the carly formation of a solid centrum, here therefore does not have this effect until a very much later stage. Young stages of the thick- and few-rayed sterrasters $60-70 \mu$ in diameter (Plate 32, figs. 13-20), which correspond to the stages of the normal sterraster represented on Plate 32, figs. 29, 30, accordingly have a much smaller centrum and much longer cylindroconical, terminally rounded protruding rays. As stated above these rays are often irregularly distributed and the angular distances between them are very unequal. Rays of such young sterrasters standing particularly close together coalesec as early as all rays of the normal sterrasters do, whereby the irregularity in the appearance of these spicule is greatly enhanced (Plate 32, figs. $15,16,19,20$). The distal parts of the rays cover themselves with numerous small spines, which later grow in size. Subsequently, through the continued thickening and concrescence of the basal parts of the rays, the centrum increases in size (Plate 32, figs. 21-26). Finally sterroids are formed, the centra of which are as large as the centra of the nommal sterrasters, the surface of which, however, bears much fewer and usually thicker rays covered with a much larger number of spines. While the rays of the normal sterrasters are nearly always equal in length, the rays of the sterroids are occasionally unequal. In such sterroids with rays unequally long the concrescence may reach up to or even beyond the shorter rays, which are then totally enveloped by the mass of the centrum, their positions being indieated in the full-grown sterroid only by the groups of spines on the parts of the surface of the centrum free from protruding rays. In this way irregular few- and thick-rayed sterroids like the one represented on Plate 32, figs. 27-28 are formed.

The sterroids differ from the normal sterrasters accordingly not only when full grown but also, and even to a greater degree, when young.

The large oxysphaerasters of the specimens from Station 4228 above referred to, which in their dimensions equal the sterrasters, are rather similar to some of the young stages of the sterroids. They may therefore be such spicules, in which the development has, as it were, gone wrong, the thickening of the rays, which normally leads to the formation of a large solid centrum, and the formation of the spines on the rays having been suppressed.

LOCALITfES AND NATURE OF ENVIRONMENT.

	Locality	Date	Depth		Bottom	
2856	$\begin{aligned} & \text { Off Oregon, } 43^{\circ} 59^{\prime} \mathrm{N} ., 124^{\circ} \\ & 56^{\prime} 30^{\prime \prime} \mathrm{W} . \end{aligned}$	19 Oet., 1888	91 m . (5) f.)	$\left(\begin{array}{c}9^{\circ} \\ \left(48.1^{\circ} \mathrm{F}\right)\end{array}\right.$	Roeky	8
2887	Off Oregon, $43^{\circ} 58^{\prime} \mathrm{N} ., 124^{\circ}$ $57^{\prime} \mathrm{W}$.	19 Oct., 1888	$77 \mathrm{~m} .(42 \mathrm{f}$.	$\begin{gathered} 8.4^{\circ} \\ \left(47.1^{\circ} \mathrm{F} .\right) \end{gathered}$	Clay, pebbles	1
2978	Off southern California, 33° $59^{\prime} 45^{\prime \prime} \mathrm{N} ., 119^{\circ} 22^{\prime} 15^{\prime \prime} \mathrm{W}$.	12 Feb., 1889	S 4 m . (46 f.)	$\begin{gathered} 13.6^{\circ} \\ \left(56.5^{\circ} \mathrm{F} .\right) \end{gathered}$	Gray sand	2
3088	$\begin{aligned} & \text { Off Oregon, } 44^{\circ} 28^{\prime} \mathrm{N} ., 124^{\circ} \\ & 25^{\prime} 30^{\prime \prime} \mathrm{W} \text {. } \end{aligned}$	3 Sept., 1889	st m. (46 f.)	$\begin{gathered} 8^{\circ} \\ \left(46.3^{\circ} \mathrm{F} .\right) \end{gathered}$	Clay, pebbles	1
3168	Off eentral California, $38^{\circ} 01^{\prime}$ $25^{\prime \prime}$ N., $123^{\circ} 26^{\prime} 55^{\prime \prime}$ W.	24 Mar., 1890	$62 \mathrm{~m} .(34 \mathrm{f}$.	-	Rocky coral	1
4193	Gulf of Georgia: Halibut Bank; Cape Roger Curtis, Bowen Island: S. 89° E., 20 km . (10.8 miles), drift S. $1^{\circ} \mathrm{E}$.	20 June, 1903	$\begin{gathered} 33-40 \mathrm{~m} \\ (18-23 \mathrm{f} .) \end{gathered}$	$\begin{gathered} 10.2^{\circ} \\ \left(50.3^{\circ} \mathrm{F} .\right) \end{gathered}$	Fine green sand	2
4199	Queen Charlotte Sound: off Fort Rupert, Vancouver Island, B. C. Centre of Round Island. S. $46^{\circ} \mathrm{W} ., 11.5 \mathrm{~km}$. (6.2 miles), drift S. 85° E.	25 June, 1903	$\begin{aligned} & 124-196 \mathrm{~m} . \\ & (6 \mathrm{~S}-107 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 7.7^{\circ} \\ \left(45.9^{\circ} \mathrm{F} .\right) \end{gathered}$	Soft green mud and voleanie sand	4
4228	Vieinity of Naha Bay: Behm Canal. S. E. Alaska, Indian Point. N. 18° E., 1.7 kn. (0.9 miles), drift N. $2^{\circ} \mathrm{W}$.	7 July, 1903	$\begin{gathered} 75-245 \mathrm{~mm} . \\ (41-134 \mathrm{f} .) \end{gathered}$	$\begin{gathered} 8.8^{\circ} \\ \left(47.5^{\circ} \mathrm{F} .\right) \end{gathered}$	Gravel and sponge spieules	2
4551	Monterey Bay, Cal.; Point Pinos Light House. S. 9° E.. 8.4 km . (4.5 miles), $\mathrm{drift} \mathrm{S} .37^{\circ} \mathrm{E}$.	7 June, 1904	$102 \mathrm{~m} .(56 \mathrm{f}$.	-	Coarse sand, shells, rock.	1
-	Houston Stewart Channel, Queen Charlotte Island.	1893	-	-	-	1

The young stages of the sterroids have been observed only in the young specimen from Station 4228 and in the immature specimen described by

Lambe. They are much more numerous in the former than in the latter. Fully developed sterroids occur sparingly in all adult specimens. In other Geodidae, where I have found them, they also occur in small numbers. These facts lead me to consider the sterroids as spicules produced, like the milk-teeth of mammals, in the immature state only. If this assumption is correct, the sterroids might be similar to the ancestral form of the normal sterrasters, and represent a link connecting the latter with the sphaerasters from which I should be inelined to derive them.

To simplify the references to these sponges, I will, in the following discussion of their relative systematic position, designate:-

Those	from	Station	$2 \mathrm{~S}, 86$ as A	Those	from	Slation	4193 as F
"	.	"	2Si87 B	"	"	"	4199 " G
"	"	"	2978 " C	"	"	${ }^{4}$	4228 " H
"	"	"	3088 " D	"	"	*	+551 " I
"	"	"	3165 " E				

To avoid confounding characters immature in nature with the systematically important peculiarities of the full-grown sponges, the young specimen from Station 4228 and the immature specimen described by Lambe are not taken into account in the following discussion.

In the character of their shape these sponges are very similar, their differences in this respect not exceeding the individual variations usually met with in the species of geodine sponges. In the structure of their canal-system, their soft parts, and the general arrangement of their skeleton they are also uniform. In their colour and in the shape, relative frequency, and dimensions of their spicules however, only the specimens collected at one and the same station agree. The differences in the colour of specimens from different stations are certainly very considerable. But since it is very likely that these differences have been produced post mortem through differences in the external influences to which the different lots were exposed after eapture, they are without systematic significance. The differences in the spicules, on the other hand, are systematically important, and it is therefore necessary to study them with eare if we wish to decide in what systematic relation these otherwise similar sponges stand to each other.

The differences in the shape and relative frequency of the spicules of the several lots of these sponges are as follows: in E and F both thick club-shaped and thin cylindrical styles are met with in small numbers; in A, D, and G thin ones only; and in B, C, H and I no styles at all. In E, F, and G the orthoplagiotriaenes with clades either abruptly bent down at the end or terminally
branched are more numerous than the orthoplagiotriaenes with simple and regular clades. In the others all, or nearly all, orthoplagiotriaenes have simple and regular elades, orthoplagiotriaenes with clades like those of the majority of E, F, and G being very rare or absent altogether. In the elades of the anatriaenes of G and H the straight distal part is considerably longer than in those of the others. In E and H anatriaenes with elades unequal in length or position have been met with. In some of the anaclades of E one clade is absent altogether, these spicules appearing as anadiaenes. Oxyasters over 26μ in diameter with irregularly arranged rays have been found only in H. The small strongylosphaerasters of C and F have on an average smaller centra than those of the others. In A and E the large oxysphacrasters are much more numerous than in the others.

In dimension the spicules of the lots from the different stations differ more or less. To obtain a base for studying these differences the sets of measurements of the fifteen spicule-dimensions obtainable with the greatest accuracy of each of the nine lots of adult specimens from the nine stations, were selected for further study. These dimensions are: - the diameter of the oxyasters; the length and breadth of the sterrasters; the length and thickness of the large choanosomal amphioxes, the small dermal amphioxes, and the rhabdomes of the orthoplagiotriaenes; the thickness of the rhabdomes of the anatriaenes and mesoprotriaenes; the length of the elades of the orthoplagiotriaenes, anatriaenes, and mesoprotriaenes; and the length of the epirhabds of the mesoprotriacnes. Of each of these $(15 \times 9=) 135$ sets of measurements the largest alone were taken into account. Of three, the length and thickness of the small dermal amphioxes and the diameter of the large oxyasters, the largest dimension observed in each lot was taken by itself. Of the twelve other dimensions averages of the three largest dimensions measured were taken. These single maxima and maximum averages of three of the fifteen spicule-dimensions taken into account in the nime lots are given in IV of the subjoined table. From these maximum averages (maxima) the general averages (means) were taken. These general maximum averages (means) are given in II of the table. The deviation of the average maximum (maximum) of each of the fiftcen dimensions of each of the nine lots (IV) from the mean (general maximum average, II) of the same dimension was ascertained by subtraction. These (135) deviations are given in V of the table. Referring as they do to spicule-dimensions of very different size the numbers giving these deviations are not conmensurate and directly comparable with each other. To obtain numbers expressing these deviations from the general
maximum averages (per eent) in a commensurate manner, the number, different in cach case, with which the gencral maximum average must be multiplied to make the product 100 mm . was ascertained by dividing 100 mm . by the general maximum arerage of the dimension in question (II). With these numbers, which are given in III, the deriation of cach dimension from the means (V) was then multiplied. The product thus obtained is the pereentage (eommensurate) deviation given in VI.

To bring out more clearly the significance of the commensurate numbers given in VI, I have represented the variations of the spicule-dimensions ex-

pressed by these numbers also graphically. This graph, Figure F, was obtained by erecting fifteen ordinates, representing the fifteen spicule-dimensions under discussion, at equal intervals on a baseline. These ordinates are arranged in the order of the maximum variations of the dimensions they represent, the one to the left representing the most constant dimension. The mean general averages (II) multiplied by the corresponding numbers in III of course all gave products of 100 mm . The points graphically representing these numbers, plotted on the fifteen coordinates 100 mm . from the axis, all lie in the straight horizontal line m . This line graphically represents the ideal mean of all the sponges obtained by multiplying the numbers in col. 111 and col V. mm .

		C	D	E	F	G	H	1	A	B	C	D					
Station	${ }_{2887}$	Station	${ }_{3088}^{\text {Station }}$	Station													
		2978	3088				4228	4551	2856	2857	2978	3088			4199	4228	4551
-0.5	-0.1	+0.2	$+0.4$	$+0.3$	$+0.7$	-0.1	-0.7	-0.1	-12.82	-2.56	$+5.13$	+10.26	$+7.69$	$+17.96$	-2.56	-17.96	-2.56
-11.3	$+6.7$	$+24.7$	-10.3	$+2.7$	+0.7	-7.3	-12.3	$+6.7$	-13.09	$+7.77$	$+28.62$	-11.94	$+2.67$	+0.81	-8.46	-14.26	+ 7.77
+138	-2	-72	+18	-52	$+48$	-52	-12	-12	+ 40.35	-0.58	-21.06	$+5.27$	-15.21	+14.04	-15.21	-3.51	-3.51
$+2.94$	+0.94	-1.06	$+0.94$	-2.06	$+0.94$	-1.06	-0.56	-1.06	$+32.45$	+10.38	-11.69	$+10.38$	-22.74	+10.38	-11.69	-6.25	-11.69
-0.29	-0.29	$+0.61$	+021	+0.51	$+0.21$	+0.31	-0.89	0.39	-8.56	-8.56	+18.00	+6.2	+15.05	$+6.2$	+9.15	-26.26	-11.51
-12.49	-5.44	$+23.56$	$+4.56$	$+16.56$	-23.44	-13.44	-17.44	+27.56	-10.78	-4.72	+20.41	+3.97	+14.35	-20.30	-11.64	-15.10	$+23.88$
-23.89	+16.11	-7.89	$+2.11$	-7.89	+29.11	+ 49.11	+6.11	-62.89	- 4.86	+3.28	-1.61	$+0.43$	-1.61	$+5.93$	$+10.00$	+1.24	-12.97
-5.11	+1.89	$+8.89$	$+0.89$	+2.89	-6.11	+4.89	-4.11	-4.11	-20.35	+7.53	+35.41	$+3.55$	+11.51	-24.34	+19.46	-16.39	-16.39
-41.78	+18.22	+88.22	-18.78	+16.22	-66.78	+41.22	-16.78	-19.78	-25.83	$+11.26$	$+54.53$	-11.61	+10.03	-41.28	+25.48	-10.37	12.23
-30.33	$+9.67$	$+51.67$	-15.33	-4.33	-60.33	+127.67	-31.33	-47.33	-21.62	$+6.89$	$+36.82$	-10.93	-3.09	- 42.99	+90.98	-22.33	-33.73
-3.56	$+2.44$	+0.44	-1.56	-0.56	-1.56	$+7.44$	+3.44	-6.56	-10.94	$+7.50$	$+1.35$	-4.79	-1.72	4.79	$+22.85$	$+10.57$	-20.15
-51.11	+14.89	+21.89	-20.11	$+26.89$	$+4.89$	$+1.89$	$+11.89$	-11.11	-43.28	$+12.61$	$+18.5$	-17.03	$+22.77$	+4.14	$+1.60$	$+10.07$	-9.41
-3.22	-2.22	-1.22	+0.78	+1.78	-0.22	-4.22	+6.78	+1.78	-13.30	-9.17	-5.04	+3.22	$+7.35$	-0.91	-17.42	$+28.0$	$+7.35$
-7.56	-1.56	$+7.44$	+14.44	$+5.44$	-9.56	-6.56	-5.56	+3.44	-7.30	-1.51	+7.19	+13.94	$+5.26$	-9.23	-6.34	-5.37	$+3.32$
-6.56	-0.56	+5.44	$+5.44$	$+5.44$	-6.56	-3 56	-0.56	+1.44	-7.41	-0.63	+6.15	$+6.15$	$+6.15$	-7.41	-4.02	-0.63	+1.63

of this group examined in respect to the fifteen spicule-dimensions under discussion. From the fifteen points forming this line of mean general averages, the numbers in VI, giving the deviations from the means in a commensurate manner were plotted on their respective ordinates,- above if positive and below if negative - and designated with the letters A - I standing for the lots from the nine different stations. The points with the same letter, commensurately representing the different dimensions of the spieules of the same lot, were then connected by lines. The nine lines (curves) thus obtained are maximum spic-ule-dimension curves and graphically represent the peculiarities of each of the nine lots in respect to the fifteen spieule-dimensions selected.

The nine stations where these sponges were collected are situated on the Pacific coast of North Ameriea, between 33° and $56^{\circ} \mathrm{N}$. They are not uniformly distributed but form five groups separated by wide intervals, and thus these sponges may be said to come from five distinct regions. These are, from north to south: 1. Behm Canal Station (4228, H); 2. Vancouver Island Stations (4193, 4199, F. G.); 3. South Oregon Stations (2886, 2887, 3088, A. B. D.); 4. Middle California Stations (3168, 4551, E. I.); and 5. South California Station (2978 C).

The spicule-curves, Figure F, pertaining to the lots from these five different regions are differently drawn as follows: Behm Canal (HI, 4228) ------; Charlotte Sound and Gulf of Georgia (F, G, 4193, 4199) -••-•-••-; coast of southern Oregon (A, B, D, 2886, 2887, 3088) ——; coast of middle California (E, I, 3168, 4551) - —— ; and coast of southern California (C, 2978) ———

Fig. E. Pacific coast of North America, showing Stations of Geodia agassizii. A. Station 2886. B. Station 2887. C. Station 2978. D. Station 3088. E. Station 3168. F. Station 4193. G. Station 4199. H. Station 4228. I. Station 4551. (See page 144.)
Fig. F. Geodia agassizii. Spicule curves.

Sterrasters, breadth; magnified 1129.24.
Orthoplagiotrianeses, clades, length; magnified 203.72 .
Sterrasters, length; magnified 965.66.
Large amphioxes, length; magnified 25.65 .
magnified 1158.75.
Anatriaenes, rhabdome, thiekness; magnified 3071.26.
magnified 866.2 .
Orthoplagiotriaenes, rhabdome, length; magnified 29.5 .
Large oxyasters, total diameter; magnified 4128.44.
Small dermal amphioxes, thiekness; magnified 11037.5.
Mesoprotriacnes, rhabdome, thickness; magnified 3982.48.
Small dermal amphioxes, length; magnified 292.4 .
Anatriaenes, elades, length; magnified S46.66.
Mesoprotriacnes, clades, length; magnified 618.13.
Mesoprotriaenes, epirhabd, length; magnificd 712.59 .

The graph shows that only very few of the maximum averages (maxima) of the same dimensions of spicules from different lots are identical with each other, and that not a single one coincides with the mean. The extent of their maximum and average deviations from the mean are tabulated below.

Dimension	Maximum deviation		Total range of maximum deviation	Averages of the deviations of the9 lots
	above the mean	below the mean		
	per cents of the respective dimensions			
Breadth of sterraster	6.1	7.4	13.5	4. 46
Length of orthoplagiotriaene-elade	10	12.8	22.8	4.61
Length of sterraster	13.9	9.2	23.1	6.61
Length of large amphiox	17.9	17.9	35.8	8.83
Thiekness of large amphiox	2 S. 6	14.3	42.9	10.60
Thiekness of anatriaene-rhabdome	22.8	20.1	12.9	9.11
Thiekness of orthoplagiotriaenerhabdome	23.9	20.3	44.2	13.91
Length of orthoplagiotriaene-rhabdome	18	26.3	44.3	12.17
Diameter of oxyaster	28	17.4	45.4	10.20
Thickness of small dermal amphiox	32.5	22.7	55.2	14.15
Thickness of mesoprotriaene rhabdome	35.4	24.3	59.7	17.21
Length of small dermal amphiox	40.4	21	61.4	13.19
Length of anatriaene clade	22.7	43.3	66	15.49
Length of mesoprotriaene clade	54.5	41.3	95.8	22.51
Length of mesoprotriaene epirhabd	91	43	134	29.93

Having thus ascertained the differences in the spicules and stated them in a manner suitable for discussion, the question of their systematie and zoögeographic signifieance may be taken up.

There can be no doubt that external forces, acting on the growing sponge, exert an influence on the shape and the dimensions which the spicules attain. We know that at the stations where these sponges were obtained the bottom temperature and the nature of the bottom differ more or less. From this it follows that the forces which aeted on the several lots during growth were,
generally speaking, different, and we may therefore expect to find certain differences in the spicules. The question therefore arises whether all the differences observed are entirely due to the differences of the external forces which acted on the growing sponges, or whether they are in part germinal (hereditary) in character.

None of the differences in the shape and relative frequency of the spicules seems to me to exceed the limits allowable for such somatic (individual) nongerminal (non-hereditary) variation. The average and maximum deviations of the dimensions of the oxyasters, sterrasters, large amphioxes, and orthoplagiotriaenes from the mean are only 4.46-13.91 and $6.1-28.6 \%$ respectively, and also fairly within these limits. The average and maximum deviations of the dimensions of the small dermal amphioxes, anatriaenes, and mesoprotriaenes, which range from 9.41 to 29.93 and from 20.1 to 91% respectively, are so considerable that at first sight it seems necessary to consider them as germinal. The greatest deviations are observed in the length of the clades of the anatriaenes and the clades and epirhabds of the mesoprotriaenes, the total range of maximum deviation of the latter exceeding 130%.

The position of the oxyasters, sterrasters, orthoplagiotriaenes, and large amphioxes is different from that of the small amphioxes, anatriaenes, and protriaenes. The former lie within the sponge and are thus to a certain extent sheltered from the influence of the external forces; the latter lie superficially and are protruded more or less beyond the sponge and thus more exposed to the external forces. These external forces are different in the nine stations. It is therefore only to be expected, that the last named, exposed, spicules on which the external forces act more directly, should be much less constant than the first named, sheltered ones, on which they act more indirectly.

These facts and considerations clearly show that the peculiarities of the internal spicules must be systematically much more important than the peculiarities of the protruding ones. I therefore thought it desirable to ascertain what systematic result an examination of the internal spicules by themselves leaving the external ones out of account - would lead to. To do this I selected the most accurately determinable dimensions of the internal spicules, namely the length of the sterrasters and orthoplagiotriaene-clades and the length and thickness of the large choanosomal amphioxes and orthotriaene-rhabdomes. These six dimensions of each lot I compared with the six corresponding dimensions of each of the other eight lots. In each of the thirty-six possible pairs (combinations of nine in the second class without repetition) I added up the
differences of the commensurate proportional amounts of the maximum averages of the homologous dimensions and then divided the sums by six. In this way the average percentage differences of the nine lots in respeet to the dimensions of these internal spicules, least subject to the influence of external forces, were obtained. In the following table, where the thirty-six pairs are arranged in the order of their similarity in respect to these dimensions, the numbers thus arrived at are given.

Pairs of lots.	Average percentage differences in the length of the sterrasters, the orthopla-giotriaene-rhabdomes, orthoplagiotriaene - clades, and large amphioxes, and the thickness of the orthoplagiotriaene - rhabdomes and large amphioxes.	Pairs of lots.	A verage percentage differences in the length of the sterrasters, the orthopla-giotriaene-rhabdomes, orthoplagiotriaene - clades, and large amphioxes, and the thickness of the orthoplagiotriaene - rhabdomes and large amphioxes.	Pairs of lots.	A verage percentage differ ences in the length of the sterrasters, the orthopla giotriaene-rhabdomes, or thoplagiotriaene - clades and large amphioxes, and the thickness of the orthoplagiotriaene - rhabdomes and large amphioxes.
AH	6.1	GH	11.6	DI	15.6
CE	6.5	BH	11.9	FH	16.2
DE	7.8	DF	12.2	AE	16.8
FG	8.1	BD	12.3	DH	17.
AG	8. 2	CI	12.7	GI	17.4
AB	8.5	EG	12.7	CG	18.4
BG	8.7	EF	12.9	HI	18.8
BI	8.7	AD	13.3	CF	19.5
DG	10.7	AF	13.6	FI	20.1
EI	10.7	CD	13.7	EH	21.1
BF	11.3	AI	14.6	AC	22.5
BE	11.6	BC	15.6	CH	26.8

The table shows that these differences are very unequal and vary between $6.1 \%(\mathrm{AH})$ and $26.8 \%(\mathrm{CH})$. It would therefore seem that it might be possible, by joining the pairs differing only slightly, and by keeping apart the pairs differing greatly, to arrive at some systematic grouping. The regular gradation in the increase of the average percentage difference from the lowest to the highest, however, makes it difficult anywhere to draw a line of demareation between differences insufficiently and differences sufficiently great for systematie distinction. If we consider, as we surely may, differences in respect to these dimensions up to 10.7% insufficient for systematic distinction, we must unite all the pairs differing 10.7 \% or less. These pairs are AH, CE, DE, FG, AG, AB, BG, BI, DG, and EI. Now if these pairs are united: A joined to H, G, and $\mathrm{B} ; \mathrm{C}$ to $\mathrm{E} ; \mathrm{D}$ to E , and $\mathrm{G} ; \mathrm{F}$ to $\mathrm{G} ; \mathrm{B}$ to G , and I; and E to I ; it will be seen that all nine lots are united, however different certain pairs may be. In truth, we can say that biometrically a continuous series of transitional forms connect the most aberrant members of the whole group.

One of the most remarkable features of the peculiarities of the spicules of the nine lots is the want of correlation between them. So far as their dimensions
are concerned this want of correlation is most clearly brought out in the graph: no two of the spicule-dimension curves are near to each other and parallel throughout, lots similar in some respects being invariably different in others.

This want of correlation of the peculiarities and the results obtained by the comparison of thirty-six pairs given above, foree us either to consider all these nine luts of sponges as representatives of the same systematic unit, or to establish a distinct group (species, subspecies, variety, or form) for each one.

Before entering upon the discussion of this question it will be well to ascertain whether there is any correlation between the degree of the difference between the pairs and the distance of the localities where they were obtained.

As stated, these sponges come from five different regions of the Pacific coast. To ascertain what correlation there is between the distances of their localities and the degree of difference between them in regard to the six spieule-dimensions here under discussion, I arranged the thirty-six pairs of specimens from the different localities in five groups: 1 , pairs of specimens from localities in the same region; 2, pairs of specimens from localities in adjacent regions; 3, pairs of specimens from localities in regions between which one other region lies; 4, pairs of specimens from localities in regions between which two other regions lie; and 5 , pairs of specimens from localities in regions between which three other regions lie. Then the ranges and averages of the differences of these groups of pairs were ascertained for each group.

To the first group (pairs from localities in the same region) the pairs $A B$, $\triangle \mathrm{D}, \mathrm{BD}$, EI, and FG belong; the differences of these pairs range from 8.1 to 13.3, their average being 10.6 .

To the second group (pairs from localities in adjacent regions) the pairs AE, AF, AG, AI, BE, BF, BG, BI, CE, CI, DE, DF, DG, DI, FH, and GII belong: the differences of these pairs range from 6.5 to 16.8 , their average being 11.7 .

To the third group (pairs from localities in regions with one other region between) the pairs $\mathrm{AC}, \mathrm{AH}, \mathrm{BC}, \mathrm{BH}, \mathrm{DC}, \mathrm{DH}, \mathrm{EF}, \mathrm{EG}, \mathrm{FI}$, and GI belong; the differences of these pairs range from 6.1 to 22.5 , their average being 14.9 .

To the fourth group (pairs from localities in regions with two other regions hetween) the pairs CF, CG, EIJ, and HI belong: the differences of these pairs range from 18.4 to 21.1, their average being 19.4.

The only pair of the fifth group (pairs of localities in regions with three other regions between) is CH; the difference of this pair is 26.8 .

This shows that the variation of the specimens from different localities in
the same region is inconsiderable (never over 13.3) and that the averages of the differences between the specimens from localities in different regions are proportional to the distance between the regions.

As in the ease of the morphological aspect of the differences between the pains we also find, when examining them from this distributional point of view, that these differences are regularly graduated: forms intermediate in structure, growing in places intermediate geographically, connect the very different forms C and H oceupying the two extremities of the stretch of coast off which these sponges grow.

This morphological and distributional continuity of the whole series of forms renders it, in my opinion, advisable to consider the great differences of the protruding spicules as due to mere individual adaptation, and to place the whole series in one speeies not divided into minor systematic units.

Although I refrain from systematieally separating the different forms growing in the different regions, I think that they might well be considered as "ineipient" varieties or subspecies, which, adapting themselves more and more to the different peculiarities of their surroundings, may, and very likely will, in course of time, become systematically distinet - particularly if, through some eause or other, they should disappear from the eentral stretch of coast they now inhabit.

Of course there can be no doubt, that these sponges belong to the Geodidae, but it is not so easy to decide the genus to which they should be assigned. As some of their efferents are not covered by pore-sieves I was at first inelined to place them in Sidonops. A eareful investigation of the apparently uniporal efferents made it highly probable, however, that these had, like the ones over which sieve-membranes extend, been covered by such when the sponge was alive and had been lost post mortem. For this reason I place these sponges in Geodia. It is, in some cases, particularly when the specimens are not well preserved, difficult to deeide whether a geodid sponge with apparently uniporal efferent apertures should be considered as a Sidonops or as a Geodia, and it is probable that some of the species placed by me ${ }^{1}$ in sidonops ought to be considered as speeies of Geodia. In studying the affinities of Geodia agassizii with other previously deseribed speeies, I have, for these reasons, compared it not only with the sponges deseribed as species of Geodia but also with those described as species of Sidonops.

The species of Geodia which have orthoplagiotriaenes, subeortical teloclades,

[^8]sterrasters, and cuasters more or less similar to those of Geodia agassizii are G. spherustrella Topsent and the sponges here deseribed as G. (Cydonium) japonica Sollas, G. mesotriaena, G. mesotrinenella, and G. breviane. Geodia japonica is distinguished from G. agassizii by being cup shaped, having rounded, lobate protuberances on the outer surface, and possessing, although very large in size, considerably smaller megascleres; the large amphioxes of this species are less than half as thick as those of G. agassizii. Geodia spherustrella is distinguished from G. agassizii by being inerusting and having much larger dermal strongylosphacrasters. Whether there are also differences in the size of the megascleres, as is very likely, I camot say, since Topsent ${ }^{1}$ gives no measurements. Geodiu mesotriaena is more or less meandric and provided with praeoseular canals; and it has choanosomal amphioxes and orthotriaene-cladomes twice as long, and also larger euasters. Geodia mesotriaenella has more slender and differently shaped anatriaene-clades, no mesoprotriaenes with epirhabd exceeding the clades in length, and somewhat different strongylosphacrasters. Geodia breviana possesses minute dermal anaclades, its large anatriaenes have much thicker clades aud its strongylosphaerasters are larger.

The only species of Sidonops which has orthoplagiotriaenes, subcortical teluclacles, sterrasters, and euasters similar to those of G. agassizii is the sponge deseribed by Dend y^{2} as G. ureolata Carter. This sponge differs from G. agassizii by the absence of mesoprotriaenes, by having somewhat smaller spicules, particularly thinner choanosomal amphioxes and orthoplagiotriaene-rhabdomes, and by the reticulate structure of its surface. The differences in the size of its spicules and the absence of mesoprotriaenes, which, if present only in the fur, have perhaps been lost post mortem, may not be sufficient for distinguishing it specifically from G. agassizii. The reticulate appearance of the surface of G. arcolate is caused by the presence of a superficial network, which consists, according to Carter (Ann. mag. nat. hist., 1880, ser. 5, 6, p. 133, pl. 6, fig. 37), of rows of small protruding dermal amphioxes, according to Dendy (loc. cit.), of subdermal pigment-cells. In none of the specimens of G. agassizii could I detect the slightest trace of a network of either of these kinds on the surface. I am not prepared to express an opinion on the systematic value of the presence or absence of this network. Since, however, it may be systematically important; since there is a difference in the spicules, although by itself perhaps too slight for specific distinction; and since the localities where these sponges oeeur, Pacific

[^9]coast of North America and coast of Ceylon (Gulf of Manaar), are so far apart, I think it advisable to keep them systematically distinct.

Geodia (Cydonium) mülleri Fleming, to which species Lambe (loc. cit.) assigned the specimen of G. agassizii examined by him, differs from this species in having much larger and more elongated sterrasters.

Geodia mesotriaenella, sp. nov.

Plate 34, figs. 18-26; Plate 35, figs. 28-35.
I establish this species for a specimen captured off the coast of southern California at Station 4417. It is similar to the species described as Geodia mesotriaena, but in regard to the size of the body and the dimensions of its spicules is much smaller and to this the name refers.

Shape and size. The sponge (Plate 34 , fig. 19) is nearly spherical; its smallest and largest diameters are 15 and 19 mm . respectively. The surface is quite smooth and covered by a spiculc-fur still fairly intact in several places, chiefly near the base. There are no larger oscules.

The colour, in spirit, is dirty white, rather darker above than below.
The superficial part of the body forms a cortex composed of three layers: a dermal (outer) layer free from sterrasters, $30-60 \mu$ thick; a middle sterrasterarmour layer, $320-380 \mu$ thick; and an inner, fibrous layer, free from sterrasters, $120-220 \mu$ thick.

Canal-system. Apart from a few patches on the upper side, the largest of which is roughly circular and 8 mm . in diancter, the whole of the surface is occupied by groups of afferent pores (Plate 34, fig. 20), about 700μ in maximum diameter and separated by poreless strips, usually $1 \tilde{j}-50 \mu$ broad. The pores themselves are oval, $20-80 \mu$ in diameter, and the strands of tissue separating them narrower the larger the pores are. In the efferent areas smaller groups, only $200-500 \mu$ in diameter, containing a smaller number of larger pores, $40-160 \mu$ wide (Plate 34, fig. 25), are met with.

Skelcton. Radial bundles of megascleres traverse the choanosome and penetrate the cortex; their distal parts protrude freely beyond the surface and form the spicule-fur. The proximal parts of these bundles in the interior of the choanosome are composed entirely of amphioxes. Distally orthotriaenes, mesoprotriaenes, and anatriaenes are added to the amphioxes. Host of the orthotriaene-cladomes lie in the inner layer of the cortex. Anatriaene-cladomes are found in considerable numbers, both at this and at a lower level. The spiculefur is composed of the distal parts of amphioxes, mesoprotriaenes, and anatriaenes.

Intact mesoprotriaene-cladomes are very numerous in the proximal portion of the fur, a short distance above the surface. The spieules forming the distal (superficial) portion of the fur are mostly broken off. So far as I could see, most of these terminally broken spieules are anatriaene-rhabdomes. In the dermal layer small, more or less radially arranged rhabds, mostly styles attenuated towards both ends, oecur. Their proximally situated rounded ends are implanted in the sterraster-armour; their pointed distal ends protrude a short distance beyond the surface. Small stronglosphaerasters form a thin but rather dense and continuous layer on the outer surface (Plate 34, figs. 20, 25) and also occur in the lower parts of the dermal layer. Large oxysphaerasters are imbedded in the walls of the cortical and subeortical canals. Oxyasters are scattered in large numbers throughout the choanosome. Everywhere, except in the vicinity of the radial canals, whieh traverse it, the middle layer of the cortex is occupied by dense masses of sterrasters. Many sterrasters, particularly young forms, also occur scattered in the choanosome. It is to be noted that the sterrasters are not nearly so numerous in the lower layer of the cortex and the distal part of the choanosome as in the proximal part of the latter.

The large amphioxes (Plate $\mathbf{3 5}$, fig. 31c) are slightly eurved, gradually attenuated towards the pointed ends, and isoactine or anisoactine. Anisoactine forms were chiefly found among the stouter amphioxes. The amphioxes are 2-2.6 mm . long and $20-50 \mu$ thick.

The minute dermal rhabds are 196-260 μ long and $4-5 \mu$ thick. The greater number of them are styles with attenuated rounded ends. In some of these rhabds this attenuation is so great that the proximal "rounded" end is hardly less pointed than the distal. These spicules appear as anisoactine amphioxes.

The orthotriaenes (Plate 35, fig. 31a) have a fairly straight, conical rhabdone, usually sharp pointed, very rarely rounded at the acladomal end. The rhabdome is $2.1-2.4 \mathrm{~mm}$. long and, at its thickest point, $75-120 \mu$ thick. This thickest point is situated either at the cladome or a short distance below it, and, in the latter ease, separated from the eladome by a slight neek-shaped constriction. The clades are always conical and curved, coneave to the rhabdome in their entire length; the degree of curvature and the size of the clades are, however, variable, the clades of the same cladome often differing from each other considerally in these respects. The clades are sharp pointed or, more rarely rounded at the ends, and generally simple, but cladomes with one or two bifurcate clades have also been observed oceasionally. The clades are $350-600 \mu$ long and their chords enclose angles of $90-96^{\circ}$, on an arerage 93°, with the axis of the rhabdome.

Some intact rhabdomes of the mesoprotriaenes (Plate 35, figs. 28-30, 31b) were $2.8-3.4 \mathrm{~mm}$. long, but several of the fragments observed appeared to be parts of rhabdomes longer than that. The thickness of the rhabiome at the cladome is $9-19 \mu$. The thabdomes which are thick at the cladome are in their cladomal half nearly cylindrical, hardly perceptibly thickened towards the middle; the rhabdomes thin at the cladome, on the other hand, are very considerably thickened towards the middle of their length. The epirhabd is straight, conical, pointed, and $70-165$, usually $90-120 \mu$ long. The clades are slender, conical, and curved, concave to the epirhabd. Their chords are $100-220 \mu$ long and enclose angles of $30-47^{\circ}$, on an average 36°, with the axis of the epirhabd. The clades of the same cladome are equal or, more frequently, unequal in length (Plate 35, figs. 28-30); all of them or, if they differ considerably in length, two, or at least one, are longer than the epirhabct. The proportion of the length of the epirhabd to the length of the longest clade of the same cladome being 100:130 to $100: 233$.

The anatriaenes (Plate 35, figs. 32-35). The longest intact rhabdome measured was 3.7 mm . long. Fragments indicate that many anatriames have rhabdomes considerably longer. The thickness of the rhabdome at the cladome is $18-30$, usually $20-22 \mu$. The clades are conical, pointed, uniformly and not strongly curved, concave to the thabdome. Their chords are $\delta 7-140$, usually $110-130 \mu$ long and enclose angles of $41-57^{\circ}$, on an average 48°, with the axis of the rhabdome. Besides these normal anatriaenes with simple clades I have observed a few, similar to them in all other respects, with one of the clades bifurcate.

The large oxyasters (Plate 34, figs. 18a, 21, 22, 24) have a small centrum the diameter of which is usually about double the hasal thickness of the rays. From this centrum from five to eleven fairly regularly distributed rays arise radially. The rays are straight, conical, usually quite blunt, $9-14 \mu \mathrm{long}$, and, at the base, $1.5-2.8 \mu$ thick. The basal parts of the rays are smooth, the distal parts covered with spines (Plate 34, figs. 21, 22). The size of these spines is variable and their number is, roughly speaking, in inverse proportion to their size. The largest spines measured were 0.7μ long. The spines arise vertically from the ray. Those large enough to be properly seen are usually sharp pointed, but occasionally I have also obscrved stout and cylindrical, terminally rounded spines. The whole oxyaster is generally $17-26 \mu$ in diameter. In the centrifugal spicule-preparations also large ones, up to 40μ in diameter, have been observed. As, however, I never found such large aster in situ in the sections
and as they are exceedingly scaree in the spicule-preparations, I am by no means sure that they are proper to the sponge. A correlation between the ray-number and the size of the spicule is not clearly discernible.

The large oxysphaerasters have a spherical centrum, 6-9 μ in diameter, from which from fifteen to twent y-three regularly distributed rays arise radially. The rays are straight, conical, sharp pointed, 6-7 μ long and $2-2.5 \mu$ thick at the base. Each ray bears a small number, sometimes only one or two, vertically arising spines. The whole aster is $20-21 \mu$ in diameter.

The diameter of the centrum of the small strongylosphaerasters (Plate 34, fig. 26) is $1.6-4.5 \mu$, usually from a quarter to a half of the diameter of the whote aster. From this centrum generally from ten to seventeen regularly distributed rays arise radially. Tery rarely strongylosphaerasters with fewer (one or three), or with more numerous (up to twenty-five) rays have been observed. The rays are cylindrical or cylindroconical and truncate. In the strongylosphacrasters with small centrum (Plate 34, fig. 26a) the rays are much longer than thick and attenuated towarls the end. In the strongylosphacrasters with large centrum (Plate 34, fig. 26b) the rays are only twice as long as thick or even shorter, and cylindrical. The rays are covered with spines, which are larger in the one- and three-rayed than in the many-rayed forms. The ray of the one-rayed strongylosphaeraster is 7.2μ long and 2μ thick; the rays of the three-rayed forms are $4-5 \mu$ long and 1μ thick; those of the many-rayed forms are $2-4.5 \mu$ long and $0.5-1 \mu$ thick. The total diameter of the aster is $6-11 \mu$. The ray-number is in so far in inverse proportion to the size of the spicule as the one- and threerayed forms are $8.4-11 \mu$, the forms with more rays $6-10 \mu$ in total diameter.

The sterrasters (Plate 34, fig. 23) are flattened ellipsoids, usually $87-97 \mu$, rarely as much as $107 \mu \mathrm{long}, 77-86 \mu$, rarely as much as 92μ broad. and 5869μ thick. The proportion of length to breadth to thickness is, on an average, 100: 89: 71.

This sponge was caught with the tangles at Station 4417 on April 12, 1904, near santa Barbara Islands, S. W. rock Santa Barbara Island, N. So W., 11.7 km . (6.3 miles), drift S. $73^{\circ} \mathrm{W}$. ; depth 53 m . (29 f.); it grew on a bottom of fine yellow sand and coralline rock.

The cribriporal character of the afferent and efferent apertures and the ellipsoidal sterrasters show that this sponge belongs to Ceodia. It is most closely allied to the sponges described by Dendy (1905) as Geodia ramodigitata Carter and G. areolata Carter, and to those described here as Geodia ataxastra, G. breviana, G. agassizii, and G. mesotriaena. In Dendy's Geodia ramodigitata

Carter the oxyasters are much larger and destitute of spines. In Dendy's Geodia areolata (Carter) the orthotriaene-rhabdomes are much more stender, the ana-triaene-clades shorter, the mesoprotriaenes absent, and the surface marked with a reticulate tracing. In Geodia ataxastra the mesoproclades and anatriaenes have differently shaped cladomes, the dermal strongylosphaerasters are much smatler, and ataxasters are met with; in G. breviana minute, dermal anaclades are present, the clades of the large anatriaenes are mueh stouter and the strongylosphaerasters larger; in G. agassizii some of the spicule-dimensions are considerably greater, the anatriaene-clades stouter and more angularly bent, the orthotriaene-elades often provided with one or more spine-like branches, some of the mesotriaene-epirhabds much longer than the clades of the same cladome, and smaller oxyasters abundant; and in G. mesotriaena most of the spiculedimensions are from two to three times as great, the anatriaene-clades stouter and curved in a different manner, the mesotriaene-epirhabds usually longer than the clades of the same cladome, the rays of the strongylosphaerasters more slender, and the oxysphaerasters much more spiny and provided with relatively smaller central thickenings.

Geodia agassizii and G. mesotriaena appear to be more closely allied to G. mesotriaenella than the other four. It is true that many of the spicule-dimensions of these sponges, particularly of G. mesotriaena, are much greater; in view of the fact, however, that the specimen of G. mesotriaenella is very much smaller, and therefore probably much younger, than the specimens of G. agassizii and G. mesotriaena examined, this might be of no systematic importance. The differences between these species and G. mesotriaenella in regard to the shape of the spicules may, of course, also be due to differences in the degree of development (age), in which case G. mesotriaenella would have to be considered as a young form of one or the other of them. Since, however, this seems very doubtful, I deem it better, in order to avoid confusion, to describe this sponge as a distinct speeies.

Geodia breviana, sp, nov.

Plate 35, figs. 1-27; Plate 36, figs. 1-12.
1893. Cydonium mülleri L. M. Lambe (non Fleming), Trans. Roy. soc. Canada, 1893, 10, p. 72, pl. 4, fig. 1; pl. 6, fig. 1, 1a-i.

I establish this species for a specimen dredged at Station 2894, off southern California. The large anatriaenes have unusually stout and relatively short clades, and to this the speeific name refers. The study of the sponge determined in 1893 by Lambe (loc. cit.) as Cydonium mülleri Fleming which is in the
collection of the Geological survey of Canada and which was kindly placed at my disposal for examination, has shown that it differs from the type of Geodia (Cydonium) mülleri and is identical with the specimen referred to above.

Shape and size. The specimen is fragmentary, 32 mm . long, 21 mm . broad, and 10 mm . thick. Its surface is now fairly smooth, but the living sponge was probably covered with a spicule-fur. There are three small groups of circular or oral pores $300-800 \mu$ wide, most of which open freely on the surface. The specimen deseribed by Lambe is a thick-walled eup, 6 en. high, with a rather small cavity, ofcupied by a high spicule-fur, which consists of long anaclades and mesoproclades.

The colour, in spirit, is dirty white on the surface, darker in the interior.
The superficial part of the borly forms a cortex, composed of a very thin outer, dermal layer, a middle sterraster-armour layer $700-900 \mu$ thiek, and an inner fibrous layer, which latter is, hike the demal layer, destitute of sterrasters. The thinness of the dermal layer may be due to a post mortem collapse in consequence of indifferent preservation.

Canal-system. A eloser investigation of the wide apertures $300-800 \mu$ in diameter, mentioned above, revealed remmants of pore-sieves in many of them. From this I conclude that, in life, all of them were covered by pore-sieves and that, where the sieves are now missing, they have been lost post mortem. Radial canals of equal width and only very slightly constricted below, at the lower limit of the sterraster-armour layer, lead down from these apertures to the choanosome. Outside the regions occupied by the groups of these wide apertures (cortical canals) no open canals and only few pores, about 50μ wide, were observed. I take the latter for the afferents and the large apertures in the groups for the places where, in life, the sieves with the efferent pores were spread out.

Skeleton. Radial bundles of megaseleres traverse the choanosome, and penetrate the cortex. Their distal parts appear to have protruded freely and to have formed a spicule-fur. Their proximal parts are composed of amphioxes; distally orthotriaenes, anatriaenes, and probahly also mesoprotriaenes are added to the amphinxes in the bundles. The cladomes of the orthoplagiotriaenes lie partly at, partly a little above, and partly a little below, the lower limit of the sterraster-armour layer, the most distal ones being partly enveloped in sterrasters. Anatriane-eladomes are quite numerous below the sterraster-armour layer. In the spicule-preparations a few mesoprotriaenes were found, but I saw none in situ in the sections. Minute amphioxes and anaelades are implanted in the distal part of the sterraster-armour. These spicules are situated radially
or obliquely. They traverse the thin dermal layer and protrude freely beyond its outer surface. The spicule-fur appears to have consisted of a high portion, composed of the distal parts of the large amphioxes, anatriacnes, and perhaps also mesoprotriaenes protruding several millimeters; and a low portion, forming a sort of undergrowth, composed of the distal parts of the minute dermal amphioxes and anaclades, protruding only $100-200 \mu$.

The microscleres are thick-rayed and perhaps also thin-rayed oxyasters, large oxysphaerasters, small strongylosphaerasters, and sterrasters. The thickrayed oxyasters are numerous throughout the choanosome. The thin-rayed oxyasters are rare and were found only in the centrifugal spicule-preparations; they may be forcign. The large oxysphaerasters occur chiefly in the walls of the subcortical canal. The strongylosphacrasters form a single layer on the outer surface and also occur seattered in the lower parts of the cortex. The sterrasters occupy the sterraster-armour layer in dense masses.

The large amphioxes (Plate 35, figs. 1-4) are slightly curved and uniformly and gradually attenuated towards their pointed ends. They measure 1.8-3.7 mm . in length and $30-88 \mu$ in thickness. Their thickness is by no means always proportional to their length. In the specimen described by Lambe the ordinary choanosomal amphioxes are $3-5 \mathrm{~mm}$. by $50-70 \mu$ (Lambe, $1893,2.77-3.81 \mathrm{~mm}$. by 80μ).

In this specimen I have also found some large styles; these are shorter than the amphioxes and up to 90μ thick; they are not mentioned by Lambe.

The minute dermal amphioxes (Plate 36, figs. 10-12) are simply curved (Plate 36, fig. 10) or angularly bent (Plate 36, figs. 11, 12) and gradually attenuated towards the abruptly pointed ends. Examination with high powers shows that both ends of these spicules are usually somewhat drawn out to exceedingly sharp terminal spines. The angular bend is, when present, generally not in the middle of the spicule, but considerably nearer to one end than to the other. It amounts to about 25°, so that the angle which the two parts of the spicule enclose is usually about 165°. The minute dermal amphioxes are $280-$ 450μ long and 4.5-8.5 μ thick. The shorter ones, $280-365 \mu$ in length, are much more numerous than the longer ones, $366-450 \mu$ in length. In the specimen deseribed by Lambe these amphioxes are $340-440 \mu$ by $2-5 \mu$ (Lambe, 1893, 288 by 13μ, according to his figure 8.5μ).

The ortho- and plagio-triaenes (Plate 35, figs. 15-17) have a fairly straight rhabdome, $1.8-3.2 \mathrm{~mm}$. long and $90-130 \mu$ thick at the cladome. Usually the rhabdome is conical and sharp pointed, rarely rounded at the acladomal end.

One of these rhabdomes possessed several irregular thickenings near the rounded end, under which the axial thread passed smoothly without any thickening or other morlification. The elades are conical, pointed, and uniformly curved in their entire length, concave to the rhabdome. The degree of the curvature usually is, as in the two triaenes represented on Plate 35, figs. 15, 16, quite considerable, rarely so slight as in the long (left) clade of the triaene (Fig. 17). Occasionally triaenes with elades bent mueh more strongly than those represented in Figs. 15 and 16 have been observed. The elades are nearly always simple; very rarely one of them is bifureate. The elades of the same eladome are usually similar, irregular cladomes being exeeptional. The chords of the clades are $280-$ 500μ long and enclose angles of $94-108^{\circ}$, on an average 101.6°, with the axis of the rhablome. Of the seventeen triaenes the clade-angles of which were measured, four were orthotriaenes with clade-angles less than 100°, the other thirteen plagiotriacnes, with clade-angles 100° or more. In the specimen described by Lambe the plagio-orthotriaenes have rhabdomes $2.2-4.1 \mathrm{~mm}$. (Lambe, 1893, 2.4 mm .) by $60-105 \mu$, clades $340-680 \mu$ (Lambe, 1893, 700μ) long, and cladeangles of $97-113^{\circ}$.

The mesoprotriaenes (Plate 35, fig. 14) have a rhablome about 15μ thick at the cladome, an epirhabd $105, \mu$ long and clades, curved concave to the epirhabd, the chords of which are $115-130 \mu$ long and enelose angles of about 38° with the epirhabd-axis. In the specimen deseribed by Lambe the mesoprotriaenes have rhabdomes $7-11 \mathrm{~mm}$. (Lambe, 1893, 7.84 mm .) by $15-32 \mu$, elades $65-250 \mu$ (Lambe, $1893,95 \mu$) long, clade-angles of $20-44^{\circ}$, usually $32-44^{\circ}$, and an epirhabd $120-310 \mu$ long.

The large anatriaenes (Plate 35, figs. 5-7) have a nearly eylindrical rhabdome, $25-40 \mu$ thick in its cladomal part. I found no intact rhabdomes of these spicules: the fragments observed indicate that they attain a considerable length. The clades are slightly and uniformly eurved or somewhat angularly bent near the end, coneave to the rhabdome. They are remarkably thick at the base, and usually simple and quite sharply pointed, but anatriaenes with one elade bifurcate have also been observed oceasionally. The two terminal branches of such clades are nearly parallel and lie elose together. The chords of the elades are $60-115 \mu$ long and enclose angles of $50-65^{\circ}$, on an average 57.3°, with the axis of the rhabdome. In the speeimen deseribed by Lambe the large anatriaenes have a rhabdome $9-11 \mathrm{~mm}$. (Lambe, $1893,7.5 \mathrm{~mm}$.) by $2.5-37 \mu$, stout clades $47-82 \mu$ (Lambe, $1893,60 \mu$) long, and clade-angles of $52-63^{\circ}$.

In the specimen deseribed by Lambe a few anadiaenes similar to the ana-
triaenes but with longer clades (up to 110μ long) and smaller clade-angles (about 45°) were also observed.

The minute dermal anaclades (Plate 36, figs. 1-9) are triaenc, diaene, or monaene. The triaene forms are more numerous than the other two. Their rhabdomes are usually quite strongly and somewhat irregularly curved (Plate 36, figs. $2,4,6,8$), thickest about two thirds of their length from the cladome, and rounded at the acladomal end. They are $480-560 \mu$ long and at the cladome 2.5-4.5 μ thick. At their thickest point they are about twice as thick as at the cladome and here measure 58.6μ in transverse diameter. The rounded acladomal end is $3.4-7 \mu$ thick, slightly thicker than the cladomal end. The clades are conical and usually pointed and uniformly curved, concave to the rhabdome. In the triaene forms (Plate 36, figs. 1-5) the chords of the clades are $7-9 \mu$ long and enclose angles of $48-58^{\circ}$ with the axis of the rhabdome; in the diaene and monaene forms (Plate 36 , figs. 6-9) the chords of the clades are 11$12 \mu$ long and enclose angles of $42-46^{\circ}$ with the axis of the rhabdome. In young forms like the left one of the two represented in Plate 36 , fig. 1 , the clade-angles are larger. In the specimen described by Lambe the minute dermal anaclades (not mentioned by Lambe, 1893) are exceedingly abundant. Their rhabdome is $350-610$ by $1-3.5 \mu$ at the cladome, and $5-7 \mu$ at the thickest point below the middle; the clades are $2-12 \mu \mathrm{long}$, the clade-angles $42-60^{\circ}$. Some of the minute anaclades of this specimen have a straight, conic, apical ray, an epirhabd, $5-8 \mu$ long, and therefore appear as mesanaclades.

The thick-rayed oxyasters (Plate 35, figs. 18a, 19a, 22a, 24, 27) have five to twelve rays and a small centrum, the diameter of which is from two to three times as great as the basal thickness of the rays. The rays are usually simple, radial, and regularly distributed. Occasionally irregularities are observed due either to an irregular position or to a bifurcation of one or more of the rays. The two branches of the bifurcate rays are nearly parallel and lie close together. The rays are straight and conical, pointed, or blunt. Their proximal part is smooth, their distal part covered with rather large spines. The spines are not very numerous and rise vertically from the rays. Their ends appear to be curved backward towards the centre of the aster in a claw-shaped manner. The rays are (without the centrum) $7.5-11 \mu$ long and $1-2.2 \mu$ thick at the base, the total diameter of the oxyaster being $16-26.5 \mu$. A correlation (inverse proportion) between the size and the ray-number is observed in so far as the oxyasters with the most numerous (twelve) rays do not exceed 18.5μ in total diameter. In the specimen described by Lambe these asters have from five to nine rays $1.4-$
2.3μ thick, and are 1925μ (Lambe, 1893, 3-13, aceording to his figures 11-15 μ) in total diameter.

The rare thin-rayed oxyasters which, as above stated, may be foreign, have from nine to fourteen rays and no centrum. The rays are $3-11 \mu$ long, and very thin, only $0.25-0.7 \mu$ thick at the base. They are not very much attenuated towards the cud and bear spines which sometimes form terminal verticillate clusters, in which ease these asters appear as acanthtylasters. The total diameter of these asters is $7-23 \mu$. If they are not foreign, they may be young forms of the thick-rayed oxyasters described above.

The lurge oxysphaerasters (Plate 35, figs. 21e, 25, 26) have a spherical centrum, $7-9 \mu$ in diameter, from which from twenty-three to twenty-seven straight, conical, and sharp-pointed, usually regularly distributed rays arise radially. These rays are (without the centrum) $6-8 \mu$ long and $1-2.7 \mu$ thick at the base. They are covered with a greater or smaller number of good-sized spines. The rays of the oxysphaerasters with twenty-six or twenty-seven rays are basally only 1-2.2 μ, those of the oxysphaerasters with twenty-three or twenty-four rays basally $2.5-2.7 \mu$ thick. This indicates that there is an inverse proportion between the ray-number and the ray-thickness. The whole aster is $14-21.5 \mu$ in diameter. In the specimen described by Lambe these asters have up to thirty rays $1-1.7 \mu$ thick, the centre is $3-5.5 \mu$, the whole aster $12-18 \mu$, in diameter. They are not mentioned by Lambe (1893).

The small strongylosphaerasters (Plate 35, figs. S-13, 1S-22b) have a centrum $3-5.5 \mu$ in diameter and usually from thirtcen to twenty-one, very rarely only seven or three rays. The rays are generally radial and regularly distributed, rarely arranged irregularly. Such an irregularity is chiefly observed in the rare few-rayed forms which are evidently derivates of the ordinary many-rayed ones, produced by the suppression of a smaller or greater number of rays. The rays are cylindrical or cylindroconical and truncate or terminally rounded. Their hasal parts are smooth, their distal parts covered with a number of good-sized spines. The rays are $1 . S-5 \mu$ long and $0.6-1.7 \mu$ thick; the whole aster measures $7-12 \mu$ in diameter. A correlation between ray-number and spicule-size is not pronounced. In the specimen described by Lambe these asters have from fourteen to twenty-five rays, $0.5-1.2 \mu$ thick, the centre is $2-4 \mu$, the whole aster 6.9μ, in diameter. They are not mentioned by Lambe (1893).

The sterrasters (Plate 35, fig. 23) are flattened ellipsoids, 57-105 μ long, $80-98 \mu$ hroad, and $70-77 \mu$ thick. The proportion of length to breadth to thickness is on an average $100: 91: 74$. In the specimen described by Lambe the
sterrasters measure $84-97$ by $75-85$ by $55-70 \mu$ (Lambe, $1893,92 \mu$). In the centre of a young sterraster measuring $37 \mu \mathrm{I}$ observed one large granule, about 1μ in diameter, and severai quite small ones.

This sponge was dredged off southern California at Station 2894 on January 5,1889 , in $34^{\circ} 7^{\prime} \mathrm{N} .120^{\circ} 33^{\prime} 30^{\prime \prime} \mathrm{W}$.; depth 97 m . (53 f .) ; it grew on a bottom of sand and broken shells; the bottom temperature was 13.7° ($55.6^{\circ} \mathrm{F}$.). The specimen described by Lambe was obtained in the Strait of Georgia near Comox, Vancouver Island, depth 7 m . (4 f .).

Since this sponge is provided with sterrasters and regular triaenes and many of its cortical canals open out freely on the surface while others are provided with pore-sieves, it might be supposed to belong to Sidonops. Since, however, as stated above, a closer examination reveals remnants of poresieves at the mouths of the apparently freely opening canals, its sidonoptic appearance is probably deceptive. Believing that, in life, it had not only cribriporal afferents, but also cribriporal efferents, I place it in Ceodia. The species of Geodia and Sidonops most nearly allied to Geodia breviana are the sponges described by Dendy as Geodia ramodigitata Carter and G. areolata Carter, and those here described as G. mesotriacnella, G. mesotriaena, and G. agassizii. From all these it is distinguished by the stoutness of the clades of its large anatriaenes and the possession of minute dermal anaclades. From Geodia (Cydonium) muilleri, to which species Lambe assigned the specimen described by him in 1893, G. breviana differs by its sterrasters being larger and the clades of its large anatriaenes being much shorter, stouter, and less inclined to the rhabdome.

Geodia ovis, sp. nov.

Plate 40 , figs. 1-30; Plate 41 , figs. 1-20; Plate 42, figs. 1-40; Plate 43 , figs. 1-8.
I establish this species for a spirit specimen from the coast of southern California (Station 2975). It has an exceedingly dense and high spicule-fur which is somewhat woolly in character, and to this the specific name refers.

The specimen is a part of a larger sponge which appears to have been horizontally extended, cake shaped, and about 4 cm . thick. The specimen itself (Plate 40, fig. 28) is 127 mm . long, 50 mm . broad, and 27 mm . high. Its natural surface is somewhat undulating and covered with a woolly spicule-fur up to 20 mm . high (Plate 40, figs. 5, 2S).

The colour, in spirit, is light brown.
The superficial part of the body is differentiated to form a cortex (Plate 40,
figs. 5h, 2s; Plate 42, figs. $1 \mathrm{a}, \mathrm{h}, 2 \mathrm{a}, 8 \mathrm{a}, \mathrm{b}, 9 \mathrm{a}, \mathrm{b}$) composed of three layers: an outer dermal layer, 100200μ thick; a middle sterraster-armour layer, $150-300 \mu$ thick: and an inconspicuous, inner fibrous layer, not sharply defined from the choanosome.

C'anal-system. The parts of the surface which have lost their spicule-fur, and which are consequently exposed to view, are oceupied by pore-sieves (Plate 40 , fig. 25). The pores in these sieves are oval or, more rarely, circular, and measure 30 45 μ in maximum diameter. The strands of dermal tissue separating the pores are narrow, usually only $10-20 \mu$ broad. The pores lead into cavities excarated in the dermal layer. From the latter radial canals, penetrating the middle and inner layers of the cortex, arise. These radial canals are surrounded by chonal sphincters which protrude inwards $300-400 \mu$ beyond the sterraster-armour layer. The eylindrical chonal structures thus formed (Plate 42, figs. $1 \mathrm{~d}, ~ 8)$ usually are $150-200 \mu$ in transverse diameter. The chonal canal in the axis of these chones is cylindrical and usually open and up to 50μ wide. some of these eanals open out below with funnel-shaped extensions.

The choanosome is traversed by canals the widest of which are 2 mm . in diameter. Many of them are provided with membranous sphincters at very frequent intervals. The pore-sieves deseribed above I take to be afferent. I did not observe any that looked like efferents. To find these it would have been necessary to remove the spicule-fur, and this I did not want to do as it would have injured the umique and valuable specimen. From the general appearance of the sponge I am inclined to conclude that the efferents are, like the afferents, cribriporal.

The skeleton of the internal part of the choanosome consists of irregularly disposed large amphioxes, a few styles (tylostyles), not very numerous asters, mostly large thin-rayed oxyasters, some minute rhabds, and a few sterrasters. The distal part of the choanosome is traversed by radial bundles of large megascleres which abut vertically on the cortex. These bundles consist of numerous large amphioxes, a few styles (tylostyles) with the rounded end situated distally, and the rhablomes of orthotriaenes, anatriaenes, mesoproclades, a few proclades, and very few anamonaenes. The cladomes of most of the orthotriaenes and of some of the anaclades are situated in the level of the lower limit of the sterraster-armour layer. A few cladomes of these spicules and of the promeso(lates (proclades), chiefly young forms, also occur at lower levels. Between these spicule-bundles minute rhabds, large masses of asters, chiefly large thinrayed oxyasters, and a few sterrasters are met with. The asters are much more mumerous in this region than in the interior of the choanosome.

In the inner layer of the cortex, below the sterraster-armour, large thickrayed oxyasters and also smaller euasters occur. The sterraster-armour layer is occupied by sterrasters lying rather loosely and on an average four deep. It is traversed by large megascleres the proximal parts of which take part in the formation of the radial spicule-bundles above referred to, and the distal parts of which protrude freely beyond the surface. The proximal parts of the minute rhabds forming the dermal tufts are implanted in the sterraster-armour layer. Many of these spicules traverse nearly the entire thickuess of this layer and extend down to within a short distance of its lower limit; others quite reach that level, and some even protrude beyond it. The dermal layer is traversed by tuft-like groups of more or less radially disposed minute rhabds which diverge above (Plate 42, fig. 9). The proximal parts of these spicule-groups are, as stated above, firmly implanted in the sterraster-armour layer; their distal parts protrude freely beyond the surface for a distance of $100-300 \mu$, occasionally as much as 400μ, and form a sort of undergrowth at the base of the spicule-fur. In the lower parts of the dermal layer large thick-rayed oxyasters, similar to the subcortical ones, are met with. Its superficial part, that is, the dermal membrane, is occupied by dense masses of small asters, for the greater part strongylosphaerasters.

The spicule-fur (Plate 40, fig. 5a; Plate 42, fig. 2), which, as stated above, in places attains a height of 20 mm ., is composed chiefly of large amphioxes, mesoproclades, and anaclades. Tylostyles, proclade mesoproclade-derivates, and orthotriaenes also occur in it. Most of these spicules are implanted in the sponge with their proximal end, some appear to lie in it quite freely. The large amphioxes of the spicule-fur (Plate 42, fig. 2b) are fairly uniform in size and for the most part arranged radially. The mesoproclades and their procladederivates are more variable, particularly in regard to the shape of the cladome, but all of the same order of magnitude and mostly arranged in a fairly regular radial manner. The anaclades, which are nearly all anatriaenes, on the other hand, exhibit an extraordinary diversity in size. Besides large, radially disposed ones, numerous smaller and smallest anaclades are observed in the proximal part of the spicule-fur, particularly on the lower surface of the sponge. The rhabdomes of these small spicules are much and irregularly curved and although vertical to the surface of the sponge in their basal part, do not extend radially throughout their whole length. In places, particularly on the lower side, orthotriaenes (Plate 42, fig. 2d) similar to the subcortical ones take part in the formation of the proximal part of the spicule-fur.

The large amphiores (Plate 40, figs. 6-13, 27; Plate 42, fig. 2b) are slightly curved, not very sharply pointed, 49 , mostly $7-8 \mathrm{~mm}$. long, and in the middle $30-100 \mu$, the long ones $70-100 \mu$ thick. Their terminal parts (Plate 40 , fig. 27) are more rapidly attenuated towards the ends than is the central part. The two ends are usually slightly unequal. Two of these amphioxes measured:-

The rare large styles and tylostyles are of two different kinds. The one kind is short and stout, the other very long and slender. Those of the former are probably amphiox-derivates, those of the latter perhaps anaclade-derivates. The short and stout ones are true styles, or, if tyle, only slightly thickened at the rounded end, the tyle exceeding the adjacent parts of the spicule not more than 10% in transverse diameter. These styles (tylostyles) are 2.64 mm . long; the rounded end (tyle) is $85-116 \mu$ thick. The long and slender spicules of the latter kind are all tylostyles. Their length is considerable, but could not be exactly ascertained because all I olserved were broken off. These spicules are about 40μ thick; their elongated, oval tyle measures $60-65 \mu$ in transverse diameter.

The minute rhabds (Plate 42, figs. 3a, 4-7, 24a), which form the dermal tufts and also occur seattered in the choanosome, are mostly amphioxes. Many of them are distinctly amisoactine, and in some one end is rounded off. The latter appear as styles. These minute rhabds are much more varialle in length than in thickness. They are $270-440 \mu$, oceasionally as much as 550μ, long or cven longer, and S-13 μ thick.

In the minute dermal rhabds of several geodine sponges, and particularly frequently in those of the species under consideration, 1 have noticed a remarkable anisoactinity of the axial thread (axial canal), this being very much thicker (wider) at one end than at the other. One half of the axial thread (canal) is in these spicules normally developed and appears as a thin, cylindrical thread. The other half increases in thickness (widtl) from the centre of the spicule to the end in a funnel-shaped manner. The end of the spicule in which this distally widened half of the axial thread (canal) terminates, appears as a thinwalled tube. In the style-rhabds it is always the pointed end which contains
the distally thickened (widened) half of the axial thread (eanal). I am inelined to consider the minute rhabds with such anisoactine axial threads (canals) as young, not fully developed ones. If this assumption is correct it would follow that in these minute rhabds the centre of growth (silieification) is not situated in the centre but at one end. This seems to indieate that these spicules, although usually diactine (amphiox) in shape, are in reality monactine in character.

The orthotriaenes (and plagiotriuenes) (Plate 40, figs. 1-4, 19-23) have a rhabdome $5-8 \mathrm{~mm}$. long. At the cladome it is $7-100 \mu$ thick, farther down, it generally thickens to $\overline{7 \pi}-110 \mu$. At this its thickest point, which lies a short distance below the eladome, the rhalolome is usually 3-15 \% thicker than at the cladomal end. At the acladomal end it is in most eases attenuated to a fine, terminally pointed thread. The elades are eurved, concave to the rhabdome, either uniformly throughout (Plate 40, fig. 21) or, more frequently, less strongly towards the end of the clade than at the base (Plate 40, figs. 19, 20). Sometimes this distal decrease of curvature is so great that the end of the clade appears as a nearly straight cone or rod (Plate 40, fig. 22). Occasionally the end of one of the clades is bent down abruptly. This, however, is observed only in clades much reduced in length. Usually the clades are conieal and blunt pointed, less frequently eylindrical and rounded at the end. Such cylindrical clades may be short or long. The clades of the same cladome are fairly equal or, more rarely, very unequal. The longest clade of the cladome is $310-640 \mu$ long, the shortest often much shorter than 310μ. The chords of the elades enclose angles of $86-101^{\circ}$, on an average 94°, with the axis of the rhabdome. Nearly all the adult spicules of this kind observed were true orthotriaenes, plagiotriaene forms with clade-angles exceeding 100° being very rare among them. Small, young forms have clade-angles of 109° and more, and appear as plagiotriaenes.

I have observed two quite abnormal megaseleres. Both are partly broken. One (Plate 40, fig. 26) consists of a shaft, in the middle 80μ thick, and broken off at one end. From the other end, which is 55μ thick, one stout clade arises at a right angle. This is only $70 \mu \mathrm{long}$ and divides at the end into a bunch of small truncate axial threads radiating in all directions. All but one of these branches are broken off, the one intact measures $70 \times 15 \mu$. The other abnormal spicule is a hexactine with rays $40-55 \mu$ thick, two of which are broken off. Of the other four three are rounded and one pointed at the end. The longest of these rays is 900μ, the shortest only 75μ long. This spicule is particularly
interesting as hexactine abmormal megascleres are exceedingly rare in tetraxonid sponges.

The mesoproclades and their proclade derivates (Plate 43, figs. 1-8) have a rhabdome 6-17 mm. long and, at the cladome, 20-41 μ thick. At its thickest point, which lies a little above (nearer the cladome than) the middle of the length of the rhabdome, the rhabdome is from two to three times as thick as at the cladome. The cladomes of these spicules are very variable. Triaene forms greatly predominate. In the most regular mesoprotriaenes (Plate 43, figs. 3, 4) the clades are fairly equal, conic, blunt pointed, slightly curved, concave to the epirhabd, and $140-170 \mu$ long. Their chords enclose angles of a little over 45° with the axis of the epirhabd. The epirhabd is straight, conic, about 110μ long, and pointed at the end. Mesoprotriaenes with cladomes rendered irregular by the elades being of unequal length (Plate 43, figs. 6, 8) are very abundant. In these spicules one clade may be very much longer than the other two, which latter again may be fairly equal (Plate 43 , fig. 6) or very unequal (Plate 43 , fig. 8). In these irregular mesoprotriaenes the clades are $40-260 \mu$ and the epirhabd is $70-100 \mu$ long.

In some of the mesoproclades one or two clades are completely suppressed; these appear as mesoprodiaenes (Plate 43, fig. 1) and mesopromonaenes. The dimensions of the clades and epirhabds of these spicules are similar to those of the triaene forms. The clades of the mesoprodiaenes are not opposite each other but occupy the same positions - in planes passing through the rhabdome and enclosing an angle of 120° - as they would if the third clade were present.

Some of the teloclades observed I am inclined to consider as mesoprotriaenederivates in which the epirhabd has been suppressed. These spicules have a rhabolome as long and thick as or slightly thicker than the mesoproclades, and three more or less ascending clades, convex to the rhabdome, the chords of which are $100-360 \mu$ long and enclose angles of $31-76^{\circ}$ with the continuation of the rhabdome-axis. The large-angled forms of these spicules (Plate 43, fig. 2) appear as plagioclades, the small-angled ones (Plate 43, fig. 7) as proclades.

The anaclades (Plate 42, figs. 2c, 3b, 10, 11, 23b, 24b, 25-40) are nearly all anatriaenes. I have observed only one or two anamonaenes among them. The anaclades are remarkable for the great differences in their size. The small ones observed cannot be considered as the young of the large ones, because they are found in abundance, more or less extruded from the sponge, in the spiculefur, where they can hardly be expected to continue to grow.

I measured forty-nine cladomes of anaclades of this sponge and arranged these measurements in a series according to the thickness of the cladomal end of the rhabdome. Apart from a gap between thicknesses of $7-16 \mu$ this series is fairly continuous. Although the gap between $7-16 \mu$ could probably be filled if the search were continued long enough, it nevertheless indicates that anaclades of these dimensions are not nearly so numerous as larger and smaller ones, so that small and large anaclades can, to a certain extent, be distinguished. This distinction is, however, not nearly so clearly marked as in the other Pacific geodine sponges which possess small as well as large anaclades.

The small anatriaenes (Plate 42, figs. 3b, 10, 11, 23b, 24b, 25-27) have a rhabdome $670 \mu-2.5 \mathrm{~mm}$. long and, at the clactome, $2-7 \mu$ thick. In some of these spicules (Plate 42, fig. 3b) the rhabdome is nearly cylindrical and rounded at the acladomal end. In others (Plate 42, fig. 25) it is distinctly spindle shaped, thickest in the middle, and attenuated towards both the cladomal and the acladomal ends, the former being less than half as thick as the thickest, central part of the thabchome, and the latter pointed. The clades are slightly curved, concave to the rhabdome. They arise either terminally (Plate 42, figs. $3 \mathrm{~b}, 10,23 \mathrm{~b}, 25-27$) or a little below the end of the rhabdome. In the latter case a more (Plate 42 , fig. 11) or less (Plate 42 , fig. 24b) clearly pronounced protuberance arises from the apex of the cladome. The chords of the clades of these spicules are $6-43 \mu$ long and enclose angles of $41-65^{\circ}$ with the axis of the rhabdome.

The large anatriaenes (Plate 42, figs. 28-40) have a rhabdome up to 23 mm . long, which is, at the cladome, $17-45 \mu$ thick. The clades are usually equal in size. They arise nearly terminally, and there is only a slight protuberance on the apex of the cladome. The clades are conic, pointed or somewhat blunt, and curved, concave to the rhabdome. This curvature decreases distally, the ends of the clades usually being nearly straight. An abrupt bend is sometimes observed at the point where the more strongly curved basal part passes into the nearly straight distal part (Plate 42, figs. 31, 39). The chords of the clarles are $70-205 \mu$ long and enclose angles of $36-55^{\circ}$, on an average 42.5°, with the axis of the rhabdome.

Although the different kinds of euasters are connected by transitional forms to a much greater extent than in most of the other geodine sponges, three kinds can be fairly well distinguished. These are: 1. Large asters without centrum and with slender, conic, pointed rays, in which the length of the rays is more than five times as great as their basal thickness. These asters are here described
as large thin-rayed oxyasters. 2. Large asters, here deseribed as large thickrayed oxyasters, with very stout, conic, pointed rays, in which the length of the rays is less than five times as great as their basal thickness. 3. Smaller asters, here deseribed as small thick-rayed asters, with stout, truncate, bhunt or pointed rays.

The large thin-rayed oxyasters (Plate 41, figs. 3, 9b, 12, 15, 19; Plate 42, figs. 13b, 14b, 17b, 21b, 22b) are destitute of a central thickening and have from three to ten usually quite coneentric and simple, straight, conical, sharpor blunt-pointed rays. The proximal third of the rays is smooth, the distal two thirds are covered by spines which are usually large and conspicuous (Plate 41, figs. 15, 19), more rarely so small as merely to give to its distal part a slightly roughened appearance (Plate 41, fig. 3). The rays are 11-18 μ long and, at the base, $1-3.2 \mu$ thick, the total diameter of the aster being $20-34.5 \mu$.

The many-rayed large thick-rayed oxyasters (Plate 41, figs. 10b, 11b, 1618, 20: Plate 42 , figs. 12-15a, 20a, 21a) appear, in consequence of the concrescence of the basal parts of the exceedingly thick rays, as sphaerasters; in those with few rays, however, no trace of a central thickening can be detected. The rays of the many-rayed forms are fairly concentric and regularly distributed (Plate 41, fig. 16; Plate 42, figs. 12-15a, 20a, 21a), while those of the few-rayed forms are sometimes eccentric and, as a rule, not regularly distributed (Plate 41, figs, 10b, 11b). The rays are straight, conic, and usually very sharp pointed. Most of them are simple but in a good many of these asters one or even two of the rays are bifurcate (Plate 41, figs. 10b, 11b). The extreme tip and the basal portion of the rays are usually quite smooth, their remaining part covered with large, vertically arising, terminally recurved, elaw-like spines. In some of these asters the spines are quite numerous, in others rather scarce and restrieted to a verticillate belt situated some distance below the end. These asters have from four to nineteen rays, $14-24 \mu$ long and, at the base, $3-6.3 \mu$ thick. In some of the many-rayed forms the central thickening attains a diameter of 12μ. The total diameter of the aster is $28-45 \mu$

The small thick-rayed asters (Plate 41, figs. 1, 2, 4-8, 9a, 10a, 11a, 13, 14; Plate 42, figs. 16c, 21c) are without centrum or have a central thickening up to 6μ in diameter. They have from six to fifteen concentric, regularly distributed, and usually equal, more rarely unequal (Plate 41, figs. 13-14), truneate, blunt or pointed rays. The distal parts of the rays are densely covered with large spines which are not, as is the case in the large thick-rayed oxyasters, restricted to an intermediate zone but extend right up to the tip of the rays.

The spines arising from the terminal parts of the rays are directerl obliquely outward and upward. The rays are (without the centrum, when present) $5-12 \mu$ long and, at the base, $1-3.2 \mu$ thick. The total diameter of the aster is $11-24 \mu$.

The normal sterrasters (Plate 40, figs. 14-18, 24) are flattened ellipsoids, $82-92 \mu$ long, $70-83 \mu$ broad, and $54-61 \mu$ thick. The average proportion of length to breadth to thickness is $100: 87: 66$. The rays protruding beyond the surface are $3.5-4.5 \mu$ thick and have a terminal verticil of usually five to seven lateral spines. In the sterraster represented in Plate 40, figs. 17-18, the rays surrounding the umbilicus are hardly larger than the others. The umbilicus is $8-1.5 \mu$ broad and about 10μ deep.

Besides these normal sterrasters a few sterroid forms (Plate 40, fig. 29) of similar dimensions, but with protruding rays $\bar{i}-8 \mu$ broad, and prorided with a much larger number of lateral spines, are met with. I have also observed a larger sterraster with exceedingly thin protruding rays in one of the spiculepreparations, but this I believe to be a foreign spicule.

This sponge was trawled off southern California, at Station 2975 on February 12,1889 , in $34^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{N} ., 119^{\circ} 29^{\prime} \mathrm{W}$. ; depth 66 m . (36 f .) ; it grew on a bottom of gravel and broken shells; the bottom temperature was $13.9^{\circ}\left(57^{\circ} \mathrm{F}\right.$.). A label marked " 506 Tetractinellida" was also attached to it.

As the afferents and efferents are, with little doubt, cribriporal, and as the skeleton is geodine in character I place this sponge in Geodia.

Its nearest allies are Geodia kükenthali Thiele, G. (Cydonium) mülleri Fleming, and the sponge here described as G. mesotriaena.

Geodia kükenthali is distinguished from G. ovis by the very much smaller size of its megascleres, by the absence of small anatriaenes and a particularly well-developed spiculc-fur, by the smaller sterrasters, and by the cuasters, the largest of which have in G. kükentholi blunt rays while the apparently corresponding largest asters of G. ovis have markedly sharp-pointed rays.
G. mülleri has, when adult, extensive pracoscular and vestibular cavities, absent in G. ovis, and no such highly developed spicule-fur as the latter. Its megascleres are, although the largest specimens of G. mülleri examined were considerably larger than the specimen of G. ovis, very much shorter than those of the latter, and also its sterrasters somewhat smaller. The dermal asters of G. mülleri are strongylasters with cylindrieal rays and measure 4-10 μ in total diameter, while the superficial asters of G. ovis are $11-24 \mu$ in total diameter and many of them have more or less conical rays. The remarkably large oxyasters with stout, conic, sharp-pointed rays of G. ovis have not been observed
in (. mülleri, their place here being taken by strongylasters much smaller in size.

Apart from the minute anatriaenes the megaseleres of G. mesotriaena are in shape and size very similar to those of G. ovis. The former is, however, distinguished from the latter by the possession of pracoscular cavities, the lower spicule-fur, and the absence of minute anatriaenes. Its sterrasters are larger, its dermal asters much smaller, and the large oxyasters with stout, regularly conical, and sharp-pointed rays, so abundant in G. ovis, are wanting in G. mesotriaena.

Geodia micropora, sp. nov.
Plate 36, figs. 13-36; Plate 37, figs. 1-11.
I establish this species for a specimen from Duncan Island, Calapagos.
The radial cortical canals, buth the afferents and the efferents are very narrow and their entrances, although covered with pore-sieves, appear to the naked eye as very small, simple, open pores. To this the specifie name refers.

Shape and size. The specimen (Plate 36, fig. 32) appears as a part of a larger lobose mass, measures 63 mm . in maximum diameter, and is attached to some black pebbles and picees of coral. The surface is fairly smooth. On its protected parts remnants of a spicule-fur are observed. With the exception of a belt about 1.5 mm . broad, which extends for a considerable distance and in which there are only few minute pores, the whole of the surface is occupied by the small cribriporal entrances to the radial cortical canals. On one side of the belt the entrances to the cortical canals are $50-200 \mu$ wide and their centres on an average 350μ apart; on the other side they are $200-500 \mu$ wide and their centres on an average 600μ apart. The small canal-entrances on the one side of the belt I consider as afferents, the wider ones on the other side as efferents.

The colour, in spirit, is brownish white, somewhat lighter on the surface than in the interior.

The superficial part of the body forms a cortex (Plate 37, figs. 1a, 2a, 3) $450-600 \mu$ thick. This is composed of three layers, an outer dermal layer (Plate 37, fig. 3a) 60-101 μ thick, a middle sterraster-armour layer (Plate 37, fig. 3e) $300-420 \mu$ thick, and an inner fibrous layer $45-100 \mu$ thick. The latter is occupied by paratangential fibres and by cells strongly staining with haematoxylin. Most of these cells are elongated and extend paratangentially.

Canal-system. The afferent area of the surface is covered with pore-sieves
$170-330 \mu$ in diameter, the centres of which are on an average 350μ apart. The pores in these sieves (Plate 37 , figs. 8, 12) are very unequal, $30-130 \mu$ wide, and separated from each other by thin and narrow bands of dermal tissue. Each pore-sieve forms the roof of a cavity from which a radial afferent cortical canal, circular in transverse section and $50-200 \mu$ wide, arises. These afferent canals penetrate the sterraster-armour layer and open out into a subcortical cavity (Plate 37, figs. 1, 2, 3d). From the latter the narrow afferent choanosomal canals originate.

The flagellate chambers (Plate 37, fig. 14) appear to be sphacroidal, depressed in the direction of the oral axis, $20-26 \mu$ broad, and $12-17 \mu$ high.

The choanosomal efferents join to form wide canal-stems (Plate 37, fig. 2b) which extend radially towards the efferent area of the surface. Some distance below the cortex these canal-stems divide into branches leading up to the efferent radial cortical canals. The latter are $200-500 \mu$ wide and covered by sieves (Plate 37, figs. 9, 13), the pores of which are larger and more equal than the afferent pores, and usually $80-200 \mu$ wide.

The skeleton consists of large ehoanosomal amphioxes, small dermal rhabds, orthoplagiotriaenes, mesoproclades, large oxyasters, large oxysphaerasters, small strongylosphaerasters, and sterrasters. In the spicule-preparations I also found chelotrops, which, however, are probably foreign to the sponge. In the interior of the choanosome the large amphioxes are irregularly scattered. In its distal part they, together with the rhabdomes of the orthoplagiotriaenes, form radial bundles which abut vertically on the cortex (Plate 37, figs. 1, 2). The cladomes of the orthoplagiotriaenes lie in the level of the inner limit of the sterraster-armour layer. The rhabdomes of the mesoproclades are situated radially, their acladomal ends are implanted in the sterraster-armour layer, their cladomes protrude freely beyond the surface. The cladomal parts of these spicules appear to form the bulk of the spicule-fur. A few large, slender, radial amphioxes, however, are also found in it. Small dermal rhabds, mostly situated obliquely, occur in considerable numbers in the subcortical layer, which appears to be their place of origin (Plate 37, fig. 3e). From here they wander rapidly - few only are found en route in the middle layer of the cortex - up to the dermal layer, in which they take up their final position. Here they form tufts implanted in the sterraster-armour layer. The distal parts of these tufts protrude freely beyond the surface. These spicule-tufts occupy the tracts of poreless tissue intervening between the pore-sieves. The tufts next the poresieves are inclined towards their centre so as partly to shelter them. Most of
the proresieves are surrounded by a ring of five or six regularly distributed spicule-tufts: the intervals between these tufts are equal.

Hardly any cuasters are observed in the interior of the choanosome; distally large oxyasters are met with in small numbers. In the subcortieal layer and in the walls of the radial cortical canals large oxysphacrasters occur. The dermal membrane is occupied by small strongylosphaerasters. These are more numerous between the pore-sieves than in the narrow bands separating the individual pores from each other. A lurge number of sterrasters, ehiefly young forms, oceur in the interior of the choanosome. In its distal part there are only few sterrasters. In the proximal part of the sterraster-armour layer the sterrasters are quite far apart ; in its distal part they are closely packed together and form a dense mass (Plate 37 , fig. 3).

Some of the large amphioxes are simple, others centrotyle. Forms with a hardly perceptible central thickening connect the centrotyle forms with the simple ones. First I thought that the eentrotyle amphioxes were young stages of the others; since, however, centrotyles are found among the thickest of these amphioxes and simple, non centrotyle ones among the thinnest, I hardly think that this can be so. The large amphioxes are $1.2-1.6 \mathrm{~mm}$. long, in the middle $2(0) \mu$ thick, and usually slightly curved. The tyle is always situated in the thickest, eentral part of the spicule. The diameter of the properly developed eentral tyle is, as the following measurements show, 12 to 30% greater than the thickness of the adjacent parts of the spicule. The thickest tyle observed measured 31μ in transverse diameter.

The minute dermal rhabds (Plate 36, figs. 24a, 26a, 27a) are amphistrongyles attenuated towards both ends. They are generally isoactine, rarely anisoactine, usually slightly eurved, and $125-165 \mu$ long. In the middle they are $2-3.6 \mu$, at the ends $1.8-2 \mu$ thick, the thickness of the ends being on an average about 59% of the maximum thickness in the middle.

The orthoplagiotriaenes (Plate 37, figs. 4-7) have a fairly straight, conie rhabdome $1.1-1.45 \mathrm{~mm}$. long and, at the cladome, $28-47 \mu$ thick. The acladomal end is usually blunt pointed. Sometimes irregular rhabdomes (Plate 37, fig.
7) are observed. The clades are rather blunt, sometimes nearly truncate, and curved towards the rhabdome. In the basal part of the clade this curvature is very considerable; distally it decreases, and the ends of the clades are only slightly curved or even quite straight. The clades rise at rather large angles from the rhabdome, but, in consequence of their strong curvature, their chords enclose angles of only $97-112^{\circ}$, on an average 104.5°, with the axis of the rhabdome. The greater number of these spicules appear as plagiotriacnes (with clade-angles over 100°), about 20% of them as orthotriaenes (with clade-angles $90-100^{\circ}$). The chords of the clades are 175-240 μ long.

The cladomal end of the axial thread of the rhabdome is often varicose and in some of the young orthoplagiotriaenes a slight thickening of the rhabdome surrounds this part of the axial thread.

In the spicule-preparations I found scveral chelotrops (Plate 37, figs. 10, 11). These have conical, pointed, usually straight, more rarely angularly bent rays, 195-260 μ long and, at the base, $21-27 \mu$ thick. I have not found any of these spicules in situ in the sections. Although they coincide in their dimensions with the orthoplagiotriaenes, I think it probable that they are forcign to the sponge.

The mesoproclades (Plate 36, figs. 13-17) have a rhabdome about 1.7 mm . long and, at the cladome, $4-9 \mu$ thick. In its central part the rhabdome is about 20% thicker than at the cladome. The shape of the cladome is very variable. The epirhabd is usually well developed, straight, conical, pointed, and $25-43 \mu$ long. Sometimes it is quite short, reluced to a mere knob. Of clades there may be three (Plate 36, fig. 13), two (Plate 36, fig. 16), or one (Plate 36, fig. 17). In the monaene forms knob-shaped rudiments of one or two other clades, usually situated at different levels, are often present (Plate 36, fig. 14). The clades are conic pointed or blunt, and curved, concave to the epirhabd. Their chords are $10-30 \mu \mathrm{long}$ and enclose angles of $32-64^{\circ}$, on an average 51°, with the epirhabd.

The large oxyasters (Plate 36, figs. 24-26d, 34b) are without central thickening and have from six to nine, most frequently seven, concentric, regularly distributed rays. The rays are straight, conic, $S-12 \mu \mathrm{long}$, and very slender, at the base, only $0.4-0.9 \mu$, usually $0.6-0.7 \mu$ thick. Everywhere, except at the base, they bear small spines. Towards the end the ray proper becomes excecdingly thin; the spines, however, which are here particularly dense, make its terminal part appear thicker and its end somewhat blunt. The total diameter of the oxyasters is $14-20 \mu$, usually $16-17 \mu$.

The large oxysphaerasters (Plate 36, figs. 18b, 19b, 26c, 33b) have a spherical
centrum, 46μ, about a quarter to a third of the whole aster, in diameter, from which from sixteen to twenty-two concentric, regularly distributed rays arise radially. The rays are straight, conical, sharp pointed, without the centrum $6-7.5 \mu \mathrm{long}$ and, at the base, $1-1.6 \mu$ thick. The rays bear small spines. The latter are sometimes so minute as to be hardly discernible as such. Often somewhat larger spines form a verticillate belt some distance below the end of the ray. The total diameter of the oxysphaerasters is $14-20 \mu$.

The small strongylosphaerasters (Plate 36, figs. 18a, 19a, 20, 24b, 26b, 28, 33a, 3 ta) have a centrum $2-3 \mu$, a third to a half of the whole aster, in diameter, from which from cight to fifteen, most frequently twelve, rays arise. These are generally regularly arranged, concentric, radial, and equal, rarely irregular. The rays are crlindrical or eylindroconical, truncate, and often provided with a terminal spine. They are $2-3 \mu \mathrm{long}$, at the base $0.6-1.3 \mu$ thick, and bear rather large spines, some of which often form a verticil some distance below the end of the ray. The total diameter of the small strongylosphaerasters is $6-9.2 \mu$, usually 6-S μ.

Besides these I have observed similar but smaller strongylosphaerasters, down to 3.4μ in total diameter, which 1 take to be young forms of the ones described above.

The sterrasters (Plate 36, figs. 21-23, 30, 31, 35, 36) are broad, flattened ellipsoids $72-76 \mu$, rarely as much as $\$ 2 \mu \mathrm{long}, 6574 \mu$ broad, and $55-62 \mu$ thick. The average proportion of length to breadth to thickness is $100: 95: S 5$. In the centre of the sterraster there is a cluster, $2.5-5 \mu$ in diameter, of small granules. The umbilicus is a conic pit, 11-15 μ (leep. Seen in profile the sides of this pit appear somewhat concave. Its entrance is usually irregular in shape, often considerably elongated, and measures 11-18 μ in maximum diameter. The freely protruding rays which surround the umbilicus have a transverse section elongated in a direction radial to the centre of the umbilicus, which measures $22.5 \mu \times 4 \mu$. These rays bear as many as $S-12$ lateral and several terminal spines. The other protruding rays, away from the umbilicus, have more or less circular transverse sections, which are 2.5-3.4 μ in diameter. These rays usually bear from 5-7 lateral spines. In sterrasters not quite fully developed the spines are slender (Plate 36, figs. 35, 36), in the fully developed ones they are stout (Plate 36, figs. 30, 31).

This sponge was collected on April 13, 1888, at Duncan Island, Galapagos. It was labeled F. C. 1354 and 539 Tetractinellida.

The structure of the skeleton and the cribriporal character of the afferents
and efferents show that this sponge belongs to Geodia. Its nearest allies appear to be Gcodia paupera Bowerbank, G. (Pachymatisma) inconspicua Bowerbank, and G. (Cydonium) cooksoni Sollas.

The locality of Geodia paupera is unknown and the locality given of G. inconspicua, "South Seas" is hardly definite enough to be of value. Both these species have smaller sterrasters, no mesoproclades, and no centrotyle amphioxes. The choanosomal asters of G. puupera are strongylasters and not oxyasters as in G. micropora, and the megaseleres of G. inconspicua much larger than those of G. micropora. I do not doubt, therefore, that these sponges are distinet from Geodia micropora.

I found it much more difficult to decide the question whether or not this species is specifically identical with Geodia (Cydonium) cooksoni Sollas, which in many respects resembles it and which also comes from the Galapagos (Charles Island). The description given by Sollas ${ }^{1}$ is exceedingly meagre and unaccompanied by illustrations. I therefore asked my friend Mr. Kirkpatrick of the British Museum to send me a part of the type specimen of this species for examination and he had the kindness to accede to my request. I find that the sterrasters of G. cooksoni have nearly the same size, but are relatively thinner, than those of G. micropora, and that the dimensions of the other spicules are larger. This difference in size is particularly marked in the choanosomal asters, the largest of which are in the type of Gcodia (Cydonium) cooksoni fully twice as large as the largest of G. micropora. It is for these reasons and also because the mesoproclades have smaller clade-angles (average in G. micropora 51°, in G. cooksoni 44°) and the large euasters relatively much larger centra in Gcodia (Cydonium) cooksoni than in G. micropora that I describe the latter as a new species.

Geodia amphistrongyla, sp. nov.
Plate 20, figs. 1-41.
I establish this species for two fragments from Easter Island which may be parts of the same specimen. Its choanosomal rhabds are not, as is the rule in geodine sponges, chiefly amphioxes, but chiefly amphistrongyles, amphioxes being absent altogether. To this remarkable peculiarity the name selected for the species refers.

Shape and size. The larger fragment is an irregular, somewhat flattened mass (Plate 20, fig. 31) 31 mm . long, 18 mm . broad, and 12 mm . thick. The other, considerably smaller fragment is similar in shape. The surface is un-
dulating and not perforated by larger openings visible to the unaided eye. To parts of it shells, sand, and other foreign bodies are attached. It appears to be covered throughout with shallow pits, the centres of which are about 1 mm . apart. There is hardly a trace of a spicule-fur, but the numerous slender spicules broken off at the surface, seen in sections, indicate that protruding spieules were present in the living sponge.

The colour, in spirit, is light brown on the surface and quite dark brown in the interior.

The superficial part of the borly forms a cortex composed of a thin outer dermal membrane, thickened in the pits; a stout central sterraster-armour layer (1'late 20, figs. 33a, 39a) about 1 mm . thick; and an inner fibrous layer, exeavated by subeortical cavities. A thin euticular membrane was observed on parts of the surface. Whether this belongs to the sponge or whether it was formed by some symbiont growing on it, I cannot state with certaint y.

Canal-system. Below the centre of each pit a radial cortical canal, penetrating the sterraster-armour, is situated. Above, these eanals widen out to form subdermal cavities which are covered by pore-sieves, the pores of which are rircular or broad-oval, $17-45 \mu$ wide, and separated by quite broad strands of tissue. Below, the eortical canals are restricted by chonal sphincters (Plate 20 , fig. 331) which protrude proximally beyond the lower limit of the sterrasterarmon layer. The chonal canals passing through the sphincters, which in my preparations are strongly contracted and often quite closed, open out into the subcortieal cavities (Plate 20, fig. 33e). From the latter the choanosomal canals arise.

Skelctor. Numerous slender strands of amphistrongyles and a few styles traverse the interior in a rather irregular manner. Towards the surface these strands assume a radial direction and become consolidated to form bundles, which penetrate the cortex and abut vertically on the surface. Here, in the distal part of the choanosome and in the cortex, rhabdomes of telo-and mesoclades are found in the bundles besides the amphistrongyles and styles. These telo- and mesoclades are plagiotriaenes, anatriaenes, mesotriaenes, and a few diame, monarne, and other derivates of these spicules. The eladomes of some, rhiefly young, forms of these spicules are found in small numbers at various levels. The cladomes of nearly all the adult plagiotriaenes and their diaene and monaene derivates lie above the sterraster-armour, just below or in the dermal membrane. Here also the cladomes of a few, apparently adult mesoproclades, anatriaenes, and anatriaene-derivates are found. The slender spicules travers-
ing the cortex radially and broken off at the surface; are probably the proximal parts of rhabdomes of these anatriaenes and mesoelades, which composed the spicule-fur in the living sponge.

The microseleres are oxyasters, oxysphaerasters, small strongylosphaerasters, and sterrasters. The oxyasters are confined to the choanosome and are not numerous; the oxysphaerasters occur chiefly in the walls of the cortieal canals and in the roofs of the subcortical cavities. The small strongylosphaerasters form a dense layer on the outer surface. The sterrasters oceupy the sterraster-armour layer of the cortex in dense masses and are scattered also in large numbers throughout the whole of the choanosome (Plate 20, figs. 33, 39). The choanosomal sterrasters are mostly young forms.

The large amphistrongyles (Plate 20, figs. 1-3, 17-19) are slightly or considerably (Plate 20, figs. 2, 3) curved, 0.5-2.3 mm. long, and, in the middle, 18-32 μ thick. Their thickness is by no means in proportion to their length, the shortest amphistrongyles being quite as thick as or thicker than the longest. The long amphistrongyles (Plate 20, figs. 1-3) usually taper from the centre towards both the rounded ends, the thickness of the latter being $40-75 \%$ of the thickness of the former. This attenuation may be equal at both ends - then amphistrongyles appear as isoactines; or it may be unequal - then the amphistrongyles appear as anisoactines. The shorter the spieules are, the less marked is the attenuation towards their ends. The spicule represented on Plate 20, fig. 19, which is 1.05 mm . long, is at the ends 17μ and 20μ, only in the middle 22μ thick. Still shorter amphistrongyles are, if isoactine, regularly cylindrical or slightly thiekened at the ends, or, if anisoactine, club shaped, like the spicule represented on Plate 20, fig. 18, in which the thickest part is situated at one end. Slender amphistrongyles with knob-shaped thickenings (Plate 20, fig. 17), which may be young forms, have been observed occasionally. It is certain that the short, stout amphistrongyles do not develop into the long, slender ones. That the former are cylindrical and often more or less thickened at the ends, while the latter are never thicker and usually more slender and attenuated towards the ends, leads me to suppose that the silicoblasts, which build up the ends of these spicules, wander, while they perform their allotted task, either slowly or rapidly in a distal direction. In the first case short, thick, and more cylindrieal, in the sceond case long and relatively slender amphistrongyles, attenuated towards the ends, are produced.

The rare large styles (Plate 20, figs. 20, 21) have similar dimensions as the amphistrongyles above described and may be considered as derivates of aniso-
actine forms of suel, in which the thinner end has become attenuated to a fine point.

The plagiotriaenes (Plate 20, figs. 22, 25) have conical, usually quite straight rhabdomes, 1.82 .2 mm . long and $22-32 \mu$ thick at the cladomal end. The acladomal end is usnally simply rounded off and $3-10 \mu$ thick, rarely slightly thickened. The clades are slightly curved, concave to the rhabdome, conical, usually regularly arranged, with angles of 120° between them, and, in the same cladome, of equal size and in nearly the same position to the rhabdome. The clades are $155-190 \mu$ long and enclose angles of $103-120^{\circ}$, most frequently about 109°, with the rhatdome. Rarely the clade-rhabdome angles of the same rhabdome are very dissimilar. In one plagiotriaene-cladome of this kind one of the three clades was nearly upright, resembling in its position an epirhabd. This sword-like spicule might be termed a mesorthodiane.

Among these plagiotriaenes similar forms with reduced cladomes, which appear as plagiodiaenes or plagiomonaenes occur. The monaene forms are more frequent than the diaene. The eladome of a normal monaene of this kind is shown in Plate 20, fig. 23. Very rarely the rhabdeme is reduced in length and in that ease eylindrical and slightly thickened at the aclatomal end. One of these spicules (Plate 20, fig. 24) has a rhabdome, only 285μ long, and a single, bifureate clade, arising at an angle of hardly more than 90° from the rhabdiome. This spicule is an orthodichomonaene. Dichoclade forms of this or any other description are, however, exceedingly rare.

Owing to the loss of nearly the whole of the spicule-fur I found but few mesoprocludes (Plate 20, figs. 7, 8), which presumably form the greater part of this fur. None of them had an intact rhabdome, so that I cannot give its length. Nust of the mesoproclades olserved were triaene, but monaene forms (Plate 20, fig. 7) have also been met with. The rhabdomes of these spicules are, at the cladome, $3-5 \mu$ thick; the epirhabds are straight, conical, sharp pointed, and 16-22 μ long; the elades are concave to the epirhabd, usually rather blunt, and $40-60 \mu$ long. The clade-epirhabd angles of the intact cladomes observed were $36-41^{\circ}$, but some broken mesoprotriaene cladomes seen indicate that occasionally this angle is considerably larger.

The anatriaenes (Plate 20 , figs. $5,6,10,11$) are, like the mesoproclades, searce in the preparations, and probably for the same reason. Anatriaenes with intact rhaldomes were not observed. Their rhabdomes are $1.5-4 \mu$ thick at the cladomal end, the clades are conical and sharp pointed, more (Plate $\mathbf{2 0}$, figs. 5, 10) or less (Plate 20, figs. 6, 11) curved, concave to the rhabdome in their
proximal portion and straight in their distal portion. Their chords are $26-50 \mu$ long and enclose angles of $25-41^{\circ}$ with the rhabdome.

I found one remarkable anatriaene-derivate (Plate 20, fig. 4) which possesses, besides the three recurved anatriaene-clades and the rhabdome, a fifth ray, directed obliquely upwards. This spicule appears as a mesanatriaene with oblique epirbabd.

The choonosomal oxyusters (Plate 20, figs. 12-16, 26-30a) have no central thickening or a hardly perceptible one, and usually straight and simple, equally distributed rays. Very rarely one or more rays are either curved (Plate 20, figs. 13) or bifurcate. The rays are conical, smooth at the base, and spined in their distal part. In the thin-rayed, probably young, oxyasters the spines are so small as merely to give to the rays, when examined with the highest powers, a slightly rough appearance. In the thick-rayed, presumably adult, forms the spines are usually large, sometimes nearly 1μ long. They arise vertically or slightly obliquely from the rays, and are in the latter case directed upwards, towards the tip of the ray. All the spines which were large enough to be distinctly made out, were straight. Recurved, claw-like spines were not met with. Sometimes (Plate 20, figs. 13, 16 right upper corner) the spines are massed at the tip of the ray, more frequently (Plate 20 , figs. $14,15,16$ middle, left) they are sparsely seattered over its distal two thirds. The ends of stout rays are often erowned by one particularly large, terminal spine. These oxyasters have from five to nine rays and measure $20-30 \mu$ in total diameter. The rays are $10-15 \mu$ long and at the base $0.8-2.1 \mu$, usually $1.5-1.8 \mu$ thick. A correlation between the number of the rays and the dimensions of the aster is not noticeable.

The oxysphaerasters (Plate 20, figs. 26b, 27b, 30l)) have a spherical centrum $6-7 \mu$ in diameter, from which from fourteen to eighteen stout, straight, conical, and sharp-pointed, equally distributed rays arise radially. The rays are 6-11 μ long and, at the base, $2-2.8 \mu$ thick. From their distal part spines, which are usually quite large, arise. The base of the ray is always free from spines. A rather regular verticil of particularly large spines, situated some distance below the end of the ray, is sometimes observed. The total diameter of these spicules is 19-28 μ. A correlation between the number of their rays and the dimensions of the aster is not discernible.

The small strongylosphaerasters (Plate 20, figs. 28e, 29c, 34-36) consist of a spherical or somewhat irregular centrum, $2.2-3 \mu$, rarely as much as 4μ in diameter, from which from seven to twelve rays arise. These are regularly distributed and in the same aster equal in size, or, more rarely, unequal in position and
dimensions. The rays are cylindrical or slightly thickened distally and have a flat or convex terminal face from which a bunch of stout spines arises. The spines forming this bunch are sometimes nearly parallel to each other and to the axis of the ray, sometimes they diverge, occasionally so much so that the outermost ones become nearly vertical to the axis of the ray. Generally the sides of the rays are quite smootl. Sometimes, however, I have observed small spines on them. The rays are $1-2 \mu$ long and $0.8-1.8 \mu$, usually about 1μ thick. The total diameter of the strongylosphacrasters is $4.8-8 \mu$, usually $5-6.5 \mu$. The strongylosphaerasters with numerous rays are on the whole smaller than those with few rays. Thus those with ten or more rays measured were $4.8-6.5 \mu$, those with from seven to nine rays $6-8 \mu$, in diameter.

Besides these normal strongylosphaerasters I found a few sphacrasters similar in size, with mueh more numerous (from fourteen to nineteen) and more slender, conical rays. Perhaps these were foreign, or - which, however, does not seem very probable - young forms of the oxysphacrasters.

The sterrusters (Plate 20, figs. 9, 28d, 30d, 32, 37, 38, 40, 41) are flattened ellipsoids and measure $100-110 \mu$ in length, $87-94 \mu$ in breadth, and $72-78 \mu$ in thickness. The average proportion of length to breadth and to thickness is $100: 87: 74$. The young forms, which are very abundant in the choanosome, are enclosed in endothetial capsules (Plate 20, fig. 9) and composed, as usual, of slender rays the proximal parts of which coalesce to form a solid mass (Plate 20 , figs. $9,28 \mathrm{l}, 30 \mathrm{l})$. In the centre of this a few irregularly distributed granules are observed. The distal parts of the rays projecting freely over the surface of the adult sterrasters (Plate 20, figs. $37,38,40,41$) are everywhere, except close to the umbilicus, $3-3.5 \mu$ thick and provided with terminal verticils of from three to five stout, conical, and straight lateral spines, $1.5-2 \mu$ long and at the base 1.5μ thiek. The rays surrounding the umbilicus have a transverse section, elongated in a direction radial to the centre of the umbilicus, which measures $3-3.5 \mu$ in breadth and $4-4.5 \mu$ in length. These rays are provided with a greater number, some with as many as nine, terminal, lateral spines. The spines of these rays pointing inwards, towards the umbilicus, are larger than the others, up to 2.5μ long, and more or less curved.

This sponge was collected on the shore at Easter Island on December 20, 1904.

On account of its cribriform pores and its spiculation this sponge must be placed in Geodia. I have compared it with the known species of Geodia and of sidonops. The only species of these genera with similar sterrasters, in which
the choanosomal rhabds are not, as usual, for the most part amphioxes, but, as in Geodia amphistrongyla for the most part amphistrongyles, is Sidonops (Geodia) femingii (Bowerbank). ${ }^{1}$ This species resembles Geodia amphistrongyla not only in respect to the rhabds and sterrasters, but also in respect to the euasters. Since, however, in Gcodia amphistrongyla the plagioclades (orthoclades) are simple triaenes and the anatriaene-eladomes very small, while in Sidonops (Geodia) flemingii the former are dichotriaenes and the latter quite large; since there appears to be a difference in the efferent pores which necessitates the placing of the two in two distinct genera; and since the one comes from the south coast of Australia and the other from Easter Island, there can, I think, be no doubt that they should be kept specifically distinct.

Geodia lophotriaena, sp. nov.
Plate 47, figs. 9-36; Plate 48, figs. 1-34.
I establish this species for seven spirit specimens which came probably from New Zealand. They possess, besides ordinary dichotriaenes, a good many lophotriaenes with more than two end clades on one or two or all three main clades and to this the name refers.

The seven specimens are all cushion shaped and eut off from the surface on which they grew and to which they appear to have been attached by broad bases. Their upper surface is convex, their contour irregularly circular, rounded polygonal, or elongated. The smallest of them is 7 mm . long, 6 mm . broad, and 2.5 mm . high; the largest, which is penetrated in the middle (Plate 47, fig. 22), 15.5 mm . long, 11 mm . broad, and 3 mm . high. The surface is entirely destitute of a spicule-fur and appears, when viewed with a lens, shagreened. It is quite continuous, neither depressions nor apertures, visible with the unaided eye, occur in it.

The colour, in spirit, is brownish, lighter on the surface than in the interior.
The superficial part of the body is differentiated to form a cortex (Plate 47, fig. 24a), in which an outer dermal layer (Plate 47, fig. 23a), free from sterrasters, rich in sphaerasters, and $30-6.5 \mu$ thick, and an inner sterrasterarmour layer (Plate 47, fig. 23b) 60-125 μ thick, can be distinguished.

The cortex is penetrated by numerous radial canals which are $150-250 \mu$ apart. Those observed were strongly contracted, only $5-15 \mu$ wide. These

[^10]canals are smrounded by mantles of tissue, about $20-30 \mu$ thick, which are free from sterrasters.

Skeleton. In the internal (basal) part of the choanosome loose, irregular strands of amphioxes oceur. These mostly extend more or less paratangentially. In this region also large, smonth oxyasters and smaller, spined sphaerasters, mostly strongylospharasters, are met with. The distal, subeortical part of the chomosome is traversed by radial bundles composed of amphoxes and the rhabolomes of plagiotriaenes, dichotriaenes, other lophotriaenes, anatriaenes, and mesoprotriacnes. Asters, similar to those of the interior, and mimute, radially arranged, mostly amphiox-rhabds also occur in this region. The sterraster-amour is ocmpied by not very elosely packed sterrasters lying from three to five deep. In the dermal later large masses of sphaerasters, which are particularly densely packed just below the surface, in the demal membrane, are met with. More or less radially arranged minute dermal rhabrls, for the most part amphioxes, are implanted in the cortex. Many of these spicules traverse the whole of it, their proximal ends being imbedded in the distal part of the ehoanosome and their distal ends protruding freely beyond the surface. I few minute dermal anatriaenes also oceur in this region. The cladomes of the plagiotriaenes, the dichotriaenes, and the other lophotriaenes lie just below the sterraster-armour (Plate 47, fig. 23). At a slightly lower level a good many anatriaene-cladomes and a few mesoprotriaene-cladomes are met with. The relative frequency of the plagiotriacnes and the dichotriaenes (hophotriaenes) is different in different specimens. In some the simple plagiotriaenes, in others the dichotriaenes (lophotriaenes), appear to form the majority.

Nost of the large choanosomal amphioxes (Plate 48, figs. 3-6) are quite stout, $1.2-1.8 \mathrm{~mm}$. long and $25-42 \mu$ thick. The great majority of those thinner than 25μ are shorter than 1.2 mm . and appear as young forms of the stout amphioxes. Occasionally, however, long and very thin amphioxes (Plate 48, fig. 7) are met with, which can hardly be considered as young stages of the stout ones. One of these slender spicules was 2 mm . long and only 10μ thick.

Most of the minute dermal rhabds (Plate 48, figs. S, 9, 10a) are rather blunt pointed, fairly isoactine amphioxes, but anisoactine forms, with one end more slender and more sharply pointed than the other, also occur. In some of these spicules (Plate 48, fig. 10a) the axial thread (eanal) is greatly widened towards the thicker end. The minute dermal rhabds are $110-200 \mu$ long and usually 3-6 μ thick.

The plagiotriaenes (Plate 47, figs. 17, 21) usually have a conical rhabdome
pointed at the cladomal end (Plate 47, fig. 17), $0.6-1.2 \mathrm{~mm}$. long and, at the cladome, $25-35 \mu$ thick. In some the rhabdome is greatly reduced in length, cylindrical, and terminally rounded. A spicule of this kind (Plate 47, fig. 21) has a rhabdome only 0.2 mm . in length. The clades are usually fairly equal, conical, pointed, curved, concave to the rhabdome throughout their entire length, and $140-195 \mu$ long. Rarely one clade is reduced in length and terminally rounded. The eladome has a breadth of $240-370 \mu$. The chords of the clades enclose angles of $102-114^{\circ}$, on an average 107.4°, with the axis of the rhabdome.

The dichotriaenes and the other lophotrinenes (Plate 47, figs. 9-16, 18-20, $25-33$) usually have a simple, fairly straight rhabdome the cladomal half of which is nearly cylindrical, the acladomal half conical and sharp pointed. Just below the cladome the rhabdome is often slightly constricted. Very rarely a downwardly directed branch-ray arises from the central part of the rhabdome (Plate 47, fig. 20). The rhabdome is $0.8-1.2 \mathrm{~mm}$. long and, at the cladome, $35-59 \mu$ thick. The three main clades of the same cladome are usually equal, straight, eylindrical, and $70-140 \mu$ long. They enclose, with the thabrome, angles of $105-130^{\circ}$, on an average 120.5°. The end clades are conical and blunt pointed. When, as is the case in the dichotriaenes, there are only two end clades on one main clade, the end clades are eurved more or less, concave towards each other (Plate 47, figs. 25-29). When, as is the case in the other lophotriaenes, there are more than two end elades on one main clade, one end clade, or rarely two (Plate 47, fig. 31) are straight and appear as continuations of the main clade, the other end clades being curved more or less, concave towards these (Plate 47, figs. $30-33$). The end clades of the same cladome are usually unequal. The true dichotriaenes are much more numerous than the other lophotriaenes. In the latter one (Plate 47, figs. 30, 33), two (Plate 47, fig. 31), or, more rarely, all three (Plate 47, fig. 32) main clades bear from three to five, instead of only two, end clades. In the most regular dichotriaenes the end clades extend in a plane nearly vertical to the rhabdome or are directed obliquely upwards (Plate 47, figs. $9,10,13,18$). In other dichotriaenes and in most of the other lophotriaenes not all of the end clades are in this position, some being directed downward (Plate 47, figs. 11, 12, 14, 19, 20). The length of the end clades is $70-180 \mu$, the breadth of the whole cladome $300-500 \mu$. The axial threads of the end clades of the dichotriaenes arise nearly at right angles from the end of the axial thread of the main clade and then bend outward to assume the direction of the end clade.

The mesoprotriaenes (Plate 47, fig. 34) have a fairly straight rhabdome, about 1.3 mm . long and, at the cladome, $4-9 \mu$ thick; in its thickest part, near the middle of its length, it measures $7-11 \mu$ in transverse diameter. The elades are failly equal, slender, conical, pointed, and curved, coneave to the epirhabd. Their chords are $44-80 \mu$ long and enclose angles of $32-41^{\circ}$, on an average 35°, with the axis of the epirhabd. The epirhabd is straight, conical, and 38-60 μ long.

The large anatriaenes (Plate 47, figs. 35, 36). I found no large anatriaenes with the rhabdome intact, so that I am unable to give its length. At the cladome the rhabdone is $\mathrm{S}-13 \mu$ thick. The cladome is without apical protuberance. The clades are fairly equal, slender, conical, and sharp pointed. Their proximal parts are quite strongly curved, concave to the rhabdome, their distal parts straight. The chords of the clades are $60-85 \mu$ long and enclose angles of $41-50^{\circ}$, on an average 4.55°, with the axis of the rhabdome.

The minute dermal anatriaenes have a fairly straight rhabdome, 170-210 μ long. At the cladome the rhabdome is $1-3 \mu$, at its thickest point, near the middle, $2-4 \mu$ thick. The acladomal end is pointed. The fairly equal clades are conical, blunt, and not very strongly curved, concave to the rhabdome. Their ehords are $4-9 \mu$ long and enclose angles of $49-67^{\circ}$, on an average 56°, with the axis of the rhabdome.

The large oxyasters (Plate 48, figs. 1, 2, 11, 12b, 16-18, 21, 32b) are either without a central thickening or have a small centrum up to 4μ, that is, one eighth to one tenth of the whole aster in diameter. There are from four to eleven, rather regularly distributed and usually equal, straight, conical, sharp pointed rays. The rays are perfeetly smooth, $8-22 \mu$ long and, at the base, $1-2.2 \mu$ thick. Very rarely one or two of the rays are reduced in length and terminally rounded. The total diameter of the aster is $15-41 \mu$. A correlation (inverse proportion) between ray-number and total diameter is indieated, the oxyasters with from four to seven rays being $23-41 \mu$, those with from eight to eleven rays only 15 - 30μ, in diameter.

The sphaerasters (Plate 48, figs. 10b, 12a, 13-15, 19, 20, 22-26, 32a) have a centrum $2-8 \mu$, from one sixth to nearly one half of the whole aster, in diameter. From this from seven to twenty-two, rarely as many as twenty-eight, quite regularly distributed rays arise radially. The rays are usually eylindroconieal, and attenuated more (Plate 48, figs. 23-26) or less (Plate 48, figs. 20, 22, 23) towards their ends, the end itself being truncate or rounded and crowned by a terminal spine; much more rarely the rays are conical and pointed (Plate 48,
fig. 19). The rays are as a rule covered with spines which increase in size towards the end of the ray, the largest often forming a verticil at or just below its end; smooth rays (Plate 48, fig. 19) are exceedingly rare. The rays are, without the centrum, 3-8 μ long, and, at the base, $0.8-2.4 \mu$ thick. The dianteter of the whole aster is $7-22 \mu$. The few-rayed of these asters are larger, have smaller centra, and more slender rays than the many-rayed. In the centrifugal spicule-preparations I have found a few smaller strongylosphaerasters, the total diameter of which was only 4.5μ. These rare asters may be young forms of the ones described above, or foreign.

The sterrasters (Plate 47, fig. 23; Plate 48, figs. 27-31, 33, 34) are sphaeroids or relatively very broad flattened ellipsoids. They usually measure $30-45 \mu$ in length, $30-44 \mu$ in breadth, and $27-35 \mu$ in thickness. Often the sterraster has, when viewed from above (with the umbilicus in the centre), a regularly circular outline, but even when this outline is oval the differences between the two axes is quite insignificant. The average proportion of length to breadth to thickness of the sterrasters is $100: 99: 87$. In the spicule-preparations I found, besides these sterrasters, a few larger ones, similar in shape, but 57-58 μ long (Plate 48, fig. 2§). These may, very likely, be foreign spicules.

The umbilicus is $6-9 \mu$ broad and about 6μ deep. The rays away from it are about 2μ thick and have circular or polygonal transverse sections (Plate 48 , figs. 33,34); the rays surrounding the umbilicus are $3-5 \mu$ thick and have transverse sections more or less elongated in a direction radial to the umbilicus (Plate 48, figs. 30, 31). The ends of the rays bear from seven to eleven small spines. From one to three of these arise from the terminal face, the others are vertical to the axis of the ray and form a verticil round its end.

The seven specimens of this sponge are labeled 6312. In the list of the specimens sent, 6312 does not occur, nor, except 6311 , any number near it. There is therefore some probability that 6312 should be 6311 , the locality of which is New Zealand, so that New Zealand may be the habitat of these sponges.

Although I have not been able to make out quite clearly the nature of the entrances and exits of the canal-system, I think there can be little doubt that both are cribriporal. For this reason and because the skeleton is distinctly geodine in character, I place these sponges in Geodia. The sponges described by Kieschnick ${ }^{1}$ as Cydonium sphaeroides, by Lindgren ${ }^{2}$ as Geodia arripiens, and

[^11]by Thicke ${ }^{1}$ as G. sphacroides seem to be allied to them. These sponges I consider ${ }^{2}$ one species, Geodia sphacroides.

The chief characters of Georlia sphacroides and r. lophotriuena are tabulated below.

	Geodia sphaeroides	Geodia tophotriaena
shape	small, massive, oval or spherieal; in one ease at least with praeosenlar cavity.	small, inerusting, eushion shaped; without praeoseular eavity.
Cortex	$720-900$ u thick.	90-190 \% thick.
Large ehoanosomal amphioxes	2.2 or 2.1 mm . by 36 or 10 m	up to 1.8 mm . by 12μ and 2 mm . by 10 cm
Minute dermal amphioxes	230 by 5 m	up to 200 by 6μ
Plagiotritenes	not mentioned.	always present, in some specimens more numerous than the dichotriaenes; rhatrdome up to 1.2 mm . by 35μ; elades up to 195μ.
Diehotriames (lophotriaenes)	rlathome 2.35 or 3 mm . by 60 or T0 2 ; main clades 120 or 220; always two cond edales 150 or 150 g.	rhabdome up to 1.2 mm . by 59μ; main clades up to 140μ; two or more end clades up to 180μ.
Proclades	protriaenes; rhatrlome 2.5 or 3 mm. by 16 or 20μ; dades stout, frequently irregular, 70 or 80μ.	mesoprotriaenes; rhabdome 1.3 nm. by up to 9 (11) μ; elades slender, regular, up to 30 n ; epirhabd up to 60μ
Lurge anatriaenes	rhabdome up to 3.3 or 3.5 mm . by is or 20μ; elades stout, 50 or 60μ.	rhabetome up to 13μ thiek; elades slender, up to $8.5 k$.
Simall dermal or subcortical anatriacnes	rhabriome 310 or 360 by $2-3 \mathrm{k}$; clatesis $s t$.	rhabotome up to 210 by 3 (4) μ; elades up to 9μ.
Large oxyasters (oxysphacrasters)	36 or 50μ in diameter; with large centrum (6 or 15μ); rays spined.	15-41 μ in diameter; without centrum or with small centrum, not more than fif;rays perfectly smooth.
Sinall sphaerasters (mostly strougylosphacrasters)	$s-15 \%$ in dimmeter.	7-22 μ in diameter.
Sterrasters	85 or $88 \mu \mathrm{long}$.	30- 45μ, exceptionally perhaps up to 58μ long.
1labitat	Cochin China; Ternate.	probably New Zealand.

${ }^{1} J$. Thiele. Kieselsebwämme von Ternate I. Abhandl. Senckenb. gesellseh., 1900, 25, p. 41, plate 2 , fig. 14.
${ }^{2}$ R. v. Lendenfeld. Tetraxonia. Tierreich, 1903, 19, p. 110.

This table shows that these two species, although very similar in many respects, differ considerably in others. The difference in the shape of the body, the thickness of the cortex, and the length of some of the megascleres might be considered as due to differences of age or to differences in individual adaptation. That plagiotriaenes are present in G. lophotriaena and not mentioned as occurring in G. sphaeroides would, in itself, also hardly be sufficient for systematic distinction, because their relative abundance varies in the different specimens of G. lophotriaena and because according to Topsent ${ }^{1}$ only ortho- plagio-triaenes or only dichotriaenes or both these kinds of spicules may be present in another species of Geodia, G. conchilega. That Thiele and Lindgren deseribe the proclades of G. sphaeroides (G. arripiens) as protriaenes, while they are mesoprotriaenes in G. lophotriaena, is also of but little importance, since it is known that mesoprotriaenes have often been described as protriaenes. That lophotriaenes with more than two end clades occur in G. lophotriaena, besides the ordinary dichotriaenes, while only true dichotriaenes with two end clades have been observed in G. sphueroides, might be a more important difference, if one could only be convinced, as I am not, that such lophotriaenes are really altogether absent in the latter. Greater importance than to this is, in my opinion, to be attached to the differences in the clades of the mesoprotriaenes (protriaenes) and anatriacnes, which are very stout and, in the mesoprotriaenes (protriaenes), often partly reduced in length and irregular in G. sphueroides, but regularly developed to their full length and slender in G. lophotriacna. Still more important than these differences are those of the sterrasters and large euasters. The sterrasters are in G. sphaeroides twice as large as in G. lophotriaena, while there is no corresponding difference in the size of the other spicules and the whole body. The large euasters are in G. sphaeroides oxysphaerasters, $36-50 \mu$ in diameter, with a large centrum and stout, spined rays; in G. lophotriaena oxyasters, $15-41 \mu$ in diameter, with a very small centrum or no central thickening at all, and perfectly smooth, slender rays. These differences, particularly the last named, appear to be germinal in nature and, particularly when taken together with the others, in themselves unimportant, quite sufficient for specific distinction.

[^12]I establish this species for five spirit specimens from the coast of Lower California (Station 2829). The choanosomal asters are chiefly acanthtylasters and to this the name refers.

Apart from differences in age which find their expression in differences of size, the five specimens are identical in structure. They are (Plate 45, figs. 16, 29) irregularly spherical, oval, or tuberous, the smaller ones being more regular than the larger. The smallest specimen measures 10 by 8 mm ., the largest 20 by 13 mm . In sheltered places, chiefly in the vicinity of the base of attachment, remnants of a spicule-fur are observed. The surface is minutely pitted. The pits, which mark the positions of the entrances to the radial cortical canals, appear in some specimens to be uniformly distributed and everywhere a little under 0.5 mm . apart. In other specimens the pits are larger and more distant, in one or two restricted areas on an average 1 mm . apart. Larger apertures, visible to the unaided cye, do not occur on the surface. One of the specimens is partly overgrown by a thin crust of a monaxonid sponge.

The colour, in spirit, is brownish white.
The superficial part of the body is differentiated to form a cortex (Plate 45, fig. 16). This is composed of three layers: a dermal layer (Plate 45, fig. 39a; Plate 46, fig. 20b) 40-160 μ thick; a middle sterraster-armour layer (Plate 45, fig. 39b; Plate 46, fig. 20c) 150-350 $1 /$ thick; and a fibrous inner layer. This inner layer is very thin and quite inconspicuous. In many places the chamberbearing choanosome extends right up to the sterraster-armour; in these the inner layer cannot be made out at all.

Canal-system. The dermal membrane is perforated by groups of pores. These pore-groups occupy the pits mentioned above. The pores themselves are oval, in some places $10-40 \mu$, in others (Plate 46, fig. 21) $20-70 \mu$ wide. The smaller appear to be the afferent, the wider the efferent pores.

The pores of each group lead into a system of wide, lacunose canals (Plate 45, fig. 39d) excavated in the dermal layer, which converge and join to form a radial cortical canal. The radial cortical canals observed were all either strongly contracted or quite closed.

The flagellate chambers (Plate 45, fig. 28b) appear oval in sections and have a maximum diameter of $20-25 \mu$. Numerous rather wide canals traverse the choanosome (Plate 45, fig. 16).

Skeleton. In the inner proximal part of the choanosome rather irregularly disposed amphioxes, sterrasters, and acanthtylasters occur. In the distal part of the choanosome and the inner layer of the cortex similar amphioxes and the rhabdones of plagio-, mesopro- and ana-triaenes form loose radial bundles. The cladomes of the plagiotriaenes and of many of the anatriaenes lic just below the sterraster-armour. Most of the mesoprotriaenes observed penetrate the cortex, their cladomes protruding freely beyond the surface (Plate 46, fig. 20d). Minute dermal rhabds, mostly disposed radially, small strongylosphaerasters, and large oxysphaerasters are also found in this region besides acanthtylasters and sterrasters similar to those of the interior. The sterrasters are not nearly so abundant here as in the proximal part of the choanosome (Plate 46, fig. 20). The sterraster-armour layer is occupied by sterrasters not very closely packed, a few small strongylosphaerasters, radial minute dermal rhabds, and the parts of the rhabdomes of the mesoprotriaenes which penetrate the cortex. In the walls of the radial cortical canals, which traverse this layer, large oxysphaerasters are met with. The dermal layer is occupied by groups of more or less radially disposed, minute dermal rhabds, which are nearly all amphiox. The proximal ends of these spicules are deeply implanted in the sterraster-armour; their distal ends protrude freely beyond the surface (Plate 45, fig. 39e; Plate 46, fig. 20a). The superficial part of the dermal layer, that is to say, the dermal membrane, is occupied by a thin but dense layer of small strongylosphaerasters. Similar spicules are also found in small numbers in the walls of the dermal canals.

The spicules to which the following descriptions refer were taken from the largest specimen.

The choanosomal amphioxes (Plate 45, figs. 17-19a) are slightly curved in a simple or irregular manner, 0.7-2.2 mm. long, and $14-40 \mu$ thick. A smaller and a larger kind of amphiox, which are connected by relatively few transitions can be distinguished. The smaller ones measure $0.7-1.4$ by $14-25 \mu$, the larger $1.5-2.2 \mathrm{~mm}$. by $23-40 \mu$.

The minute dermal rhabds (Plate 45, figs. 20-22, 39c) are nearly all amphioxes. Styles have also been observed among them, but they are exceedingly rare. The minute dermal amphioxes are $150-300 \mu$ long and $3-15 \mu$, usually S-13 μ thick. The thickness is usually proportional to the length. Those over 265μ long are $12-15 \mu$ thick, while those less than 200μ long are less than 7.5μ thick. Among those intermediate in length both thick and thin ones were observed. Styles, although, as mentioned, very rare, were observed both among the thick and the thin rhabds. They are about 250μ long and $4-10 \mu$ thick.

In the centrifugal spicule-preparations I found some very minute amphioxes $41-5.3 \mu$ long and 1-1.2 μ thick. These may belong to the sponge, but it is more probable that they are foreign.

The plugiotriaenes (Plate 45, figs. 18b, 19b, 30-35, 38) have a fairly straight rhabiome. Its cladomal half is usually nearly cylindrical, its acladomal half conic and pointed (llate 45, figs. 18b, 19b, 31-33). Rarely the rhabdome is nearly cylindrical throughout and rounded at the acladomal end (Plate 45, fig. 38). Ther rhableme is $1.2-2.5 \mathrm{~mm}$., in fully developed plagiotriaenes usually about 2.1 mm . long and, at the cladome, $40-77 \mu$ thick. The cladome is usually simple and composed of three fairly equal stout, conic, and blunt-pointed clades, curved, concave to the rhabdome quite strongly in their proximal part. The distat part of the clades is slightly curved in the same direction, or straight (Plate 45 , figs. 18b, 19b, 30-32, 34, 35, 38). The clades of these regular plagiotriaenes are $160-200 \% \mathrm{long}$, their chords enclosing angles of $100-116^{\circ}$, on an average 106°, with the axis of the rhabdome. Besides these spicules, which form the great majority, similar ones with irregular cladomes have heen observed in small numbers. In these spicules either a fourth clade, situated some distance below the cladome, is added to the three ordinary terminal ones, or one (Plate 45, fig. 33) or more clades are bifureate or provided with a short, irregular, upward-directed hranch. In the spicule-preparations also some true dichotriaenes (Plate 45, figs. 36, 37), with shorter rhabdomes and smaller clade-angles thin those of the regular plagiotriaenes were seen. As, however, I failed to find regular dichot rianes in the sections they may very likely not belong to the sponge.

The mesoprotriuenes (Plate 45, figs. 1-7; Plate 46, fig. 20d) have a straight or slightly curved rhabdome, 2.3 .3 .3 mm . long. At the cladome it is $13-22 \mu$, farther down, at its thickest point near the middle, 21-31 μ, usually not quite half again as thick as at the cladomal end. This thickening towards the middle is exemplified by the following measurements of five mesoprotriane-rhabdomes: -

THCKNESS OF THE RHABDOME.

At the cladome	At its thickest point near the middle μ
13	21
14	22
17	20
20	27
22	31

The clades are conic, pointed or blunt, and slightly curved, concave to the epirhabd. They are fairly equal (Plate $\mathbf{4 5}$, figs. 1,3) or considerably unequal (Plate 45, figs. 2, 6) in length. The longest clade of the cladome is $55-130 \mu$ long. The chords of the clades enclose angles of $31-53^{\circ}$, on an average 39°, with the axis of the epirhabd. The epirhabd is straight, conic, and $30-8.5 \mu$ long. Its length usually is from a third to a half of the length of the longest clade.

The anatriaenes (Plate 45, figs. 8-15, 19c) have a rhabdome 3-5.4 mm., mostly about 4.7 mm . long and, at the cladome, 1825μ thick. The cladome is without an apical protuberance. The clades are stout, fairly equal, conic, considerably curved, concave to the rhabdome, in their proximal part, and slightly curved in the same direction or straight in their distal part. Their chords are 50-110 μ long and enclose angles of $38-56^{\circ}$, on an average 45.3°, with the axis of the rhabdome. In the small, probably young, anatriaenes, in which the rhabdome is, at the eladome, only 5-13 μ thick and the clades only $30-46 \mu$ long, the cladeangles are much larger, $52-58^{\circ}$ wide (Plate 45, fig. 9).

Besides the microseleres mentioned above which have been observed in situ in the sections, oxyasters and a large strongylosphacraster were found in the centrifugal spicule-preparations. These, particularly the large strongylosphaeraster, may be foreign to the sponge, but since this is doubtful I think it better to deseribe them here, together with the asters, which undoubtedly form part of the skelcton proper.

The oxyasters are of two kinds, smaller and larger ones. The smaller oxyasters, which are, in the centrifugal spicule-preparations, relatively much more numerous than the larger ones, are without centrum and have from five to ten straight, conic rays, $12-15 \mu \mathrm{long}$ and, at the base, $0.7-3 \mu$ thick. The distal two thirds of the rays are covered with spines. The total diameter of these asters is $22-29 \mu$. The larger oxyasters are similar to the small ones, have six or seven rays, about 20μ long and 3μ thick at the base, and measure $36-38 \mu$ in total diameter.

The large oxysphaerasters (Plate 46, figs. 10-13) are connected with the small strongylosphaerasters by transitional forms. Some might also be considered as transitions between the oxysphaerasters and the oxyasters described above. Before dealing with these transitional forms I will describe the true oxysphaerasters (Plate 46, figs. 10-13). These have a spherical centrum, 3.5$5 \mu$, from a quarter to a third of the whole aster, in diameter. From this from twelve to twenty-six, rather regularly distributed concentric rays arise radially. The rays are straight, conic, sharp pointed, without centrum, 3.7-7 $\mu \mathrm{long}$, and,
at the base, $1-2.2 \mu$ thick. The distal parts of the rays bear a few rather large, vertically arising spines, which usually form, some distance below the end, a more or less pronounced rerticil. Besides the spines forming this verticil, others, situated more proximally, are not infrequently observed. The total diameter of the oxysphaerasters is $12-16.5 \mu$. A correlation between size and raynumber could not be detected.

The oxysphaerasters which I consider as transitions to the small strongylosphaerasters are similar to the true ones described above, have from ten to twentyfive rays, and measure 6-9.5 μ in total diameter. Their centrum is $2-3 \mu$, about a third of the whole aster, in diameter. The conic, spined, and pointed rays are, without the centrum, 1.5-3 μ long and, at the base, $0.6-1.3 \mu$ thick.

The oxysphaerasters which might be considered as transitions to the oxyasters are also similar to the true ones, have from sixteen to twenty rays, measure about $2 S \mu$ in total diameter and have a centrum $5-6 \mu$, from a sixth to a fifth of the whole aster, in cliameter.

The acanthtylasters which are the chief choanosomal microseleres (Plate 45, figs. 23-27a; Plate 47, figs. 1, 2, 3b, 4-6, 7b, 8) have from four to twelve regularly distributed rays and usually a central thickening $1.7-3 \mu$ in diameter. The rays are straight, cylindroconical, attenuated distally, and, at the base, 0.5-1.3 μ thick. Rays over 1μ thick are found only in the larger, few-rayed acanthtylasters. The rays are truncate; often a small and slender terminal spine arises from their terminal face. The rays bear a terminal verticil of protuberances, which together form a conspicuous tyle $0.9-1.6 \mu$ in transverse diameter. The individual protuberances forming this tyle, are so minute that it is difficult to make out their shape. They are always more or less recurved in a claw-shaped manner. Sometimes they appear as rounded knobs, sometimes as stout-pointed spines and sometimes as more slender and longer branches, strongly curved backward like the clades of anatriaenes. A few protuberances (spines) similar to those forming the terminal verticil (acanthtyl) are often observed farther down on the rays. The total diameter of the acanthtylasters is $11-22 \mu$. It is in inverse proportion to the number of the rays. Four- to five-rayed acanthtylasters are $15-22 \mu$, six- to seven-rayed $13.5-20.5 \mu$, eight- to nine-rayed 11.5^{-} 18 μ, and ten- to twelve-rayed $10.5-15 \mu$ in diameter.

The small strongylosphaerasters (Plate 45, figs. 24b, 25b, 27b; Plate 46, figs. 1-7; Plate 47, figs. 3a, 7a) have a spherical centrum $1.5-2.7 \mu$, rarely as much as 3.4μ, from about one third to two fifths, seldom as much as one half of the whole aster, in diameter. From this from fourteen to twenty-two quite
regularly distributed rays arise radially. The rays are cylindrical or, more rarely, conical, truncate, without the centrum $1-2 \mu$ long, and $0.3-0.6$, rarely up to 0.8μ thick. Their distal part is covered with minute spines. These may either all be so small as merely to render the ray rough in appearance, or some of them, which usually form a verticil at or just below the end of the ray, may be larger and clearly distinguishable as spines. Sometimes the ray appears terminally thickened. Such asters have a somewhat acanthtyl appearance and may, if large, be considered as transitional to the acanthtylasters described above. The total diameter of the small strongylosphaerasters is $4.3-6.1 \mu$, usually 56μ.

The large strongylosphaeraster found in a centrifugal spicule-preparation, which is probably a forcign spicule, has seventeen conic, truncate rays, at the base 5μ thick. The centrum is 13μ, the whole aster 23μ in diameter. The convex terminal faces of the rays are densely covered with small spines. All the other parts of the aster are smooth.

The sterrasters (Plate 45, figs. 2Sa, 39b; Plate 46, figs. 8, 9, 14-19) are flattened ellipsoids, $65-76 \mu \mathrm{long}, 55-68 \mu$ broad, and $42-46 \mu$ thick. The average proportion of length to breadth to thickness is $100: 85: 64$.

In young sterrasters of a certain developmental stage, in which the rays are still terminally rounded, from two to five small rudiments of spines, standing close together, arise from the summit of each ray. In the adult sterrasters the protruding rays away from the umbilicus are $2.5-3 \mu$ thick and bear terminal verticils of usually five or six lateral spines, which are about $1.5 \mu \mathrm{long}$ and remarkably stout. The transverse sections of the rays surrouncling the umbilicus are only slightly elongated in a direction radial to the umbilicus, and measure about 3 by 4.5μ. These rays usually bear from six to eight spines. The spines directed towards the umbilicus are considerably larger than the others.

The surface of the umbilical pit is uneven and often covered with numerous conspicuous protuberances (Plate 46, fig. 19).

The five specimens of this species were caught with the tangles at Station 2829 on May 1, 188S, off Lower California, in $22^{\circ} 52^{\prime} \mathrm{N} ., 109^{\circ} 55^{\prime} \mathrm{W}$.; depth 56 $\mathrm{m} .(31 \mathrm{f}$.$) ; they grew on a rocky bottom; the bottom temperature was 23.4^{\circ}$ ($74.1^{\circ} \mathrm{F}$.). They were labeled F. C. 1342.

The cribriporal nature of the afferents and efferents and the character of the skeleton show that these sponges belong to Ceodia. The spiculation differs from all the other species of this genus as well as from those of sidonops to such an extent that a new species had to be established for it.

Geodia media Bowerbink.

Plate 16, figs. 1-21; Plate 17, figs. 1-22.
Proe. Zool. soe. London, 1573 , p. 13, pl. 2, figs. 2t-29.
Signops (?) media hollets, Rept. voy. "('halienger," 1858, 25, p. 266.
N゙ahunops media (Kowerhank) Lendenfeld, Tierreich, 1903, 19, p. 103.
There are in the "Albatross" collection cight specimens in spirit from Panama, which, as a comparison with a part of the type of Geodia media Bowerbank in the British Museum, kindly placed at my disposal for examination by Mr. Kirkpatrick, shows, belong to this species.

One of the eight "Albatross" specimens is digitate, the others are, like Bowerbank's type, irregularly massive. The former differs slightly in regard to the dimensions of its spicules and the character of its canal-system from the latter. As will be seen from the deseription given below, these differences are not suflicient, however, for the establishment of subspecies or varieties I eonsider them as two different forms of one species.

Shape and size. Of the seven specimens of the massive form one, the largest, is fairly complete, the other six are more or less fragmentary. The complete massive specimen (Plate $\mathbf{1 6}$, fig. 16) is an irregular mass 8.5 mm . long, 41 mm . broad, and 29 mm . high. It is attached at several points. Between these points of attachment the lower surface is considerably raised, and thus forms the roof of rather high tumnels which undermine the sponge. On the upper side flat-bottomed depressions, irregular in outline and $9-21 \mathrm{~mm}$. in diameter, are observed. These are surrounded by conspicuous elevated borders, which here and there rise to form higher, rounded protuberances. The surfaces of the depressions are occupied by small, shallow pits, the centres of which are about 1 mm . apart. These pits are separated from each other by minute ridges which form a network. The convex parts of the upper side and the unattached parts of the lower side are smonth. Here and there a few spicules protrude beyond the surface, but there is nowhere a trace of a true spieule-fur. Larger openings, oscula or openings of uniporal cortical eanals, are absent. The smaller, fragmentary massive specimens are quite similar to the large one. They measure $26-38 \mathrm{~mm}$. in maximum diameter. One has depressed pit-bearing areas, up to 35 mm . long.

The single specimen of the digitate form (Plate 16, fig. 17) is a curved irregular cylinder, 65 mm . long, $6-12 \mathrm{~mm}$. thiek, and attached at several points along one side. Its transverse section is throughout more or less circular. The surface is smooth, slightly undulating, and destitute of a spicule-fur. There
are no clearly circumscribed pit-bearing areas as in the massive form, but pits similar to those of the latter, are found singly and in groups, scattered irregularly over the concave parts of the surface. Oscules or uniporal openings of cortical canals are absent.

The colour of the massive form is, in spirit, brownish white. Bowerbank's dry specimen was pale buff-yellow. The surface of the elevations and the lower side are lighter in colour than the depressed pit-bearing areas and the interior. The digitate form is dirty white, a little darker in the interior.

Various space-symbionts, some specimens of Donatia, a desmacidonid sponge with exotyle spicules, Serpulae, and small composite ascidians, are attached to the specimens of the massive form.

The superficial part of the body forms a cortex composed of three layers: an outer dermal layer (Plate 17, fig. 21a), a middle sterraster-armour layer (Plate 17, figs. 21c, 22c), and an inner fibrous layer (Plate 17, fig. 22e). The dermal layer is free from sterrasters. In the pits above described it attains a considerable thickness and here it is excavated by extensive dermal lacunose canals. Everywhere else it is but a thin membrane. The sterraster-armour layer, which forms the largest part of the whole cortex, is filled with sterrasters. The inner fibrous layer is thin and consists chiefly of paratangential fibres. It contains only a few scattered sterrasters. The thickness of the cortex is very different under different parts of the surface. In the pit-bearing depressions of the massive form it is $0.5-1 \mathrm{~mm}$., on the convex parts of the upper side about 1.5 mm . thick. On the lower side it is much thinner. It attains the greatest thickness in the elevated borders surrounding the pit-bearing depressions, and is in some parts of these 2.3 mm . thick, a great part of the whole border consisting of cortical tissue. In the digitate form the cortex is 0.5 mm . (under the concave parts of the surface), 1.2 mm . (under the convex parts of the surface) thick.

Canal-system. The pits congregated in the depressed areas of the surface of the massive form and scattered over the concave parts of the surface of the digitate form are covered by pore-sieves, which appear as nets of slender strands with broad oval meshes (pores). In many places these pore-sieves (nets) consist of a primary network of stouter, pigmented strands, in the meshes of which a secondary network of more slender, mostly unpigmented strands is spread out. The meshes of the primary network are $50-100 \mu$, those of the secondary network, the pores proper, $15-30 \mu$ wide. Where primary and secondary nets cannot be distinguished the pores are also $15-30 \mu$ wide. In the depressed areas of the
massive form the pits are so close together and the pore-sieves covering them so extensive that the latter often come in direct contact with each other, so that these depressions appear covered throughout by a nearly continuous pore-sieve. In the digitate form such a junction of pore-sieves has not been observed. The pores of these sieves lead into cavities up to 100μ wide, excavated in the dermal tissue occupying the pits. The cavities of each pit join to form a radial cortical canal about 250μ wide, which penetrates the sterraster-armour and opens out below into a subcortical cavity. These cavities are mostly $300-500 \mu$ in radial diameter. The proximal opening of each cortical canal is restrieted by a ringshaped chonal sphincter, composed of an amular strand of contractile tissue about 90μ thick, which protrudes into the subeortical cavity. In the sections studied nearly all these chonal sphincters were more or less dilated, the himen of some being as much as 140μ wide. The cortical canals leading down from the scattered pits of the digitate form are similar. As one radial cortical canal belongs to cach pit, these canals are in the depressions of the massive form about 1 mm ., in the digitate form farther apart.

The elevated borders surrounding the depressions of the massive form, and parts of the convex portions of the surface of the digitate form appear to be entirely destitute of pores. On other convex portions of the surface both of the massive and the digitate form, pores, arranged in groups and forming poresieves, are met with. These pore-sieves are much less extensive than the ones covering the pits, never composed of a primary and secondary network, and piered by much larger holes. The latter are circular or oval and measure 30$70 \mu$ in diameter. The pores (holes) of each group lead into cavities, joining to form a canal $200-300 \mu$ wide, which traverses the cortex radially and is constricted below by a chonal sphincter. In some places these radial cortical canals are quite close together, their centres being only 1 mm . apart, in other places they are much farther apart.

In the basal part of the massive form very large canals, some as much as 6 mm . wide, are observed just below the cortex. In the digitate form I have not met with any wide canals of this kind. In the choanosomal canals leading up to the pit-bearing parts of the surface transverse sphincter-membranes are spread out at frequent intervals.

The chonal sphincters of the cortical canals leading down from the pits being wide open, the choanosomal canals leading up to them being traversed by sphincter-membranes, and the pits themselves being situated on concave (depressed) parts of the surface, one would suppose that the pores in the sieves
covering the pits are the efferents. The fact that the pores in these sieves are smaller than those on the smooth convex parts of the surface is on the other hand in favour of the view that they are the afferents.

The skeleton of the interior consists chiefly of amphioxes and large asters (oxyasters and a few strongylasters). Besides these spicules also styles, various angularly bent or branched amphiox- and style-derivates, and sterrasters occur in small numbers. The amphioxes, styles, amphiox- and style-derivates are arranged rather irregularly in the interior, but assume a regular radial arrangement towards the surface. Here, just below the cortex, plagiotriaenes, mesoclades (mesomonaenes), and a few slender, amphiox-like mesoclade-derivates are added to these megascleres. The clades of the plagiotriaenes lie at the limit between the middle and inner layers of the cortex, the sterraster-armour resting, as it were, on the plagiotriaene-cladomes. Just below the cortex small oxysphaerasters, which are very numerous in some places, to a great extent replace the large asters of the interior, and here also seattered sterrasters and small dermal styles occur. The latter are situated radially,obliquely, or paratangentially (Plate 17, fig. 22 d). The whole of the cortex, with the exception of the dermal layer, contains sterrasters. These are seattered in small numbers in the thin, innermost, fibrous layer, and form a dense mass in the thick middle (sterraster-armour) layer. Between the sterrasters a few small sphaerasters, dermal styles, and protruding spicules occur. Small sphaerasters form a dense and continuous layer on the outer surface of the dermal layer. Over the pits, where the latter is greatly thickened (Plate 17, fig. 21), these sphaerasters are not confined to the surface but are very numerous also for some distance below it. Tufts of small dermal styles are met with on all parts of the surface. These styles are more numerous in the thickened parts of the dermal membrane in the pits (Plate 17, fig. 21b) than elsewhere. They are situated radially or obliquely; their rounded ends lie proximally and are deeply imbedded in the sponge, their pointed ends abut on the surface or protrude more or less beyond it (Plate 17, fig. 21). The fact that these styles are abundant on the surface and rather plentiful also in the subcortical layer, but comparatively rare in the sterraster-armour layer, indicates that they move up from the distal parts of the choanosome, where they are formed, to the surface, at first, till they reach the cortex, slowly, and then, when they reach the sterraster-armour, rapidly, traversing the latter at such a rate that at any time only a few are found in the act of passing through it.

Besides the spicules above described several other forms, not met with in
silu in the sections, have been observed in the spieule-preparations. One of these, an anatriaene, is, in all probability, proper to the sponge.

Among the large choanosomal amphioxes, two forms, a slender and a stout one, can be distinguished. These are, it is true, eonnected by transitions, but as the latter are not at all numerous and as the slender amphioxes are longer than most of the stout ones, and therefore eannot be eonsidered as young forms of the latter, I am inclined to consider the slender and the stout amphoxes as distinet forms.

The slender, chounosomal amphioxes (Plate 16, figs. 3-5a) are quite frequent in the digitate form but rare in the massive form. They are slightly furved, fairly isoactine, not very sharp pointed, $1.3-1.5 \mathrm{~mm}$. long, and $23-30 \mu$ thick.

The stout choanosomal amphioxes (Plate 16, figs. $1-5 \mathrm{~b}, 6 \mathrm{z}, \mathrm{Sb}, \mathrm{z}, 11 \mathrm{z}$) are very numerous in both forms. They are slightly curved, fairly isoactine, and gradually attenuated to the not very sharp-pointed ends. In the digitate form they are $1.2-1.55 \mathrm{~mm}$. long and $33-51 \mu$ thick, in the massive form $1.3-1.7 \mathrm{~mm}$. lonig and $3 \overline{0}-51 \mu$ thick.

In Bowerbank's type, reexamined by me, I found choanosomal amphioxes $1-1.5 \mathrm{~mm}$. by $18-50 \mu$. Sollas gives their dimensions as 1.51 mm . by 32μ.

The large choanosomal styles (Plate 16, figs. 11f, 13f) are not numerous. They are relatively more frequent in the massive than in the digitate form. These styles are 0.9-1.3 mm. long and $30-50 \mu$ thick. Some are for the greater part of their length eylindrical, and simply rounded off at one end, others somewhat attenuated towards, others again slightly thickened at, the rounded end. In four styles of the massive form the thickness was: -

	"	cent				"	،	"	13
	"	"	43	"	"	،	"	/	50
	"					${ }^{\prime}$		"	

These spicules are not mentioned by Sollas; I found a good many, however, in Bowerbank's type.

Both the digitate and the massive forms are exceedingly rieh in irregular, angularly bent or branched derivates of the amphioxes and styles deseribed above. In their dimensions these spieules agree with the regular forms from which they are derived. The simplest form of amphiox-derivate is an amphiox very slightly angularly bent near one end. This bend may be in the same direction as the eurvature of the spieule (Plate 16, fig. 1y), or in a direetion opposite to it (Plate 16 , fig. 9 y). In other amphiox-derivates of this kind the angular bend is mueh more pronounced, the angle between its two limbs being smaller. Suel a spicule is represented on Plate 16, fig. 9c.

Derivates of styles, angularly bent in such a manner, are also met with (Plate 16, fig. 13g). Occasionally amphioxes angularly bent at two places have been observed (Plate 16, fig. 9 w). In the simplest forms of the branched amphiox- and style-derivates a small straight branch is observed arising near one end of the spicule. This branch is generally directed upwards and encloses, with the epirhabll-like continuation of the shaft of the spicule, a smaller (Plate 16, figs. 10d, 13h) or a larger (Plate 16, fig. 10x) angle. Rarely it is directed downwards (backwards) (Plate 16, fig. 11h). Generally there is only one branch, but spicules with a cluster of two or more branches have also been observed (Plate 16, fig. 13i). Some of these derivates are both branched and angularly bent. Such forms have been found among the style-derivates (Plate 16, fig. 13k) as well as among the amphiox-derivates (Plate 16, fig. 2j). Oceasionally I have observed spicules thickened and rounded at both ends which can be considered as amphityle derivates of amphioxes or styles. These spicules have not been mentioned by Bowerbank and Sollas, and in the former's type they are indeed very scarce.

The small dermal styles (Plate 17, figs. 21b, 22d) are straight or slightly curved and taper towards the distal pointed, and also towards the proxinal rounded end. The transverse diameter of the rounded end is a little more than half the transverse diameter of the thickest central part, the average ratio between these two dimensions being about $10: 6$. In the digitate form these styles are $140-190 \mu$, usually $180-190 \mu$ long and $2-5 \mu$, usually about 4μ thick. In the massive form they are slightly larger, $150-265 \mu$ long and 36μ thick. These spicules are not mentioned cither by Bowerbank or by Sollas, but they are very abundant in the former's type, and there measure $150-200$ by $2-4 \mu$.

Among the plagiotriaenes, as anong the amphioxes, two forms, a slender and a stout one, can be distinguished. As the intermediate forms connecting these are not numerous and as the slender plagiotriaenes have longer clades than most of the stout ones, showing that the former cannot be young forms of the latter, I consider them as two distinct kinds of spicules. Buth these types of plagiotriaenes have been found also in Bowerbank's type.

The slender plagiotriuenes (Plate 16, figs. 1q, 5r, 12q, 14q), are met with in both forms but are not very numerous in either. Their rhabdome is straight or slightly curved, conie, pointed, $1-1.6 \mathrm{~mm}$. long and $17-30 \mu$ thick at the cladomal end. The clades are generally considerably curved, concave to the rhabdome, particularly in their distal part, and $160-260 \mu$ long. The chords of the clades enclose angles of $107-114^{\circ}$ with the axis of the rhabdome. Similar slender triaenes were also found by me in Bowerbank's type.

The stout plagiotriacnes (llate 16 , figs. $1-6 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}$) oceur in large numbers in both forms. Their rhabdome is straight or very slightly eurved, and usually pointed, rarely rounded at the acladomal end. It is either regularly conical throughout or slightly constricted just below the eladome. The rhabiomes of five of the plagiotriacnes of the massive form thus constricted, whieh I measured, were:-

(i0) ${ }^{\circ}$	"	"	"	"	,	*	(6) "	"	"	"	"	"	,	"	"	.
60 -	"	-	.	"	"	"	(i) ${ }^{\prime}$	"	"	"	"	"	"	"	"	"
6.5 "	"	"	"	"	"	"	(5) "	"	"	"	"	"	"	"	"	"
65°	"	"	"	"	"	"	70^{\prime}	"	"	"	"	"	"	"	-	

In observing a thim transverse splinter of a plagiotriacne-rhabolome with a high power I found its axial rod to be triangular in transverse section.

In the digitate form the rhabdomes of the stout plagiotriaenes are 0.8-1.4 mm. long and $30-65 \mu$, usually $50-60 \mu$ thick at the cladomal end. The clates are only shightly curved, coneave to the rhabdome, conical, not sharp pointed, and $110-260 \mu$ long. Their chords enclose angles of $107-118^{\circ}$ with the axis of the rhabdome. The stout plagiotriacnes of the massive form are similar in shape hut considerably larger. Their rhablomes are $0.9-1.7 \mathrm{~mm}$. long and at the eladomal end $30-80 \mu$, usually $50-70 \mu$ thick. Their elades are $160-310 \mu \mathrm{long}$ and the chords of their elades enclose angles of $105-120^{\circ}$ with the axis of the rhabelome. The length of the rhabdome and the clades is not in proportion to their thickness, the very thick ones having by no means particularly long rhabromes or clades.

In Bowerbank's type, examined by me, the dimensions of the stout plagiotriaenes are: rhalodome $0.8-1.2 \mathrm{~mm}$. by $40-60 \mu$, clades $200-260 \mu$ long, cladeangles $105-120^{\circ}$. Sollas gives their measurements as follows: rhabdome 1.12 mm . by 450 (printers error for 45) μ, clades 254μ long, clade-angles (according to the relation of the clade-length to the transverse diameter of the cladome, 320μ, given by him) large.

Besides the regular plagiotriaenes deseribed above a few irregular derivates of them oceur. In some of these the clades are reduced in length and rounded at the end; in others two of the clades are single and one bifureate (Plate 16, fig. 12t); in others again the clades are curved convex to the rhabdome (Plate 16, fig. 3 u). I have also observed a few mesoclade plagiotriaene-derivates in which the rhabdome is much shortened, rounded at the end, and continued beyond the cladome in the shape of a long conical epirhabd (Plate 16, fig. 1v).

The mesomonaenes (Plate 16, fig. 7 m , n, o, p; Plate 17, figs. S-12), which
occur in both forms but are numerous in neither, have more or less curved rhabdomes $1.7-2.5 \mathrm{~mm}$. long and 4-10 μ thick at the eladomal end. The epirhabd is $40-75 \mu$ long, while the clade attains a length of $17-50 \mu$. The latter encloses an angle of $32-89^{\circ}$ with the epirhabd. Those in which this angle is small appear as mesopromonaenes, those in which it is large as mesorthomonaenes, while the intermediate forms are mesoplagiomonaenes. The clades are generally rounded off terminally, more rarely pointed. The axial thread of the rhabdome and cpirhabd bears at the point of origin of the clade, besides the axial thread of the clade itself, a number of small, rudimentary branchlets, resembling the structures observed by me in the anaclades of Thenea valdiviae. ${ }^{1}$ The axial thread of the clade is rounded off at the end and often shows indications of being split up terminally into small branches. Neither Bowerbank nor Sollas mentions these spicules. I found several, however, in the former's type similar in every respeet, to those deseribed above.

I have found a few long and slender amphioxes of dimensions similar to those of the rhabdomes (and epirlabds) of the mesomonaenes. In some of these spicules (Plate 17, fig. 7) a slight thickening near one end, enclosing a few rudimentary branchlets of the axial thread, indicates clearly that they are mesoclade-derivates, while in a few others hardly any trace of such a thiekening, or no thickening at all, can be detected. Although these spicules appear as true amphioxes I am inclined to consider them as mesoclade-derivates. Such spicules are not mentioned either by Bowerbank or by Sollas. I found several, however, in the former's type.

The scarce anatriaenes have a long rhabdome, at the cladome about 12μ thick, and clades about 23μ long and curved concave towards the rhabdome throughout their whole length. The clade-angle is about 44°. Bowerbank says that there are "very slight indications of the presence of recurvo-spicula," Sollas, however, does not mention anatriaenes. In the spicule-preparations of Bowerbank's type, I observed a good many anatriaenes with rhabdomes $10-15 \mu$ thick, clades $25-35 \mu$ long, and clade-angles of $50-52^{\circ}$. I found in it also a mesanatriaene with similar clades, an epirhabd 165μ long, and a shortened, terminally thickened, chub-shaped rhabdome, 0.8 mm . long and, at the thickened, acladomal end, 27μ thick.

The large oxyasters and strongylasters (Plate 17, figs. 4 6b, 15b, 18b, 19b, 20) are destitute of a central thickening and have from four to eleven, most fre-

[^13]quently six rays. The rays are straight, and in the many-rayed forms concentric and farly regularly distributed. In the few-rayed forms the rays are frequently not uniformly distributed and sometimes not quite concentric; many of these spicules have a somewhat metastrose character accordingly. The rays are conic and fairly pointed, or cylindroconical and blunt, or cylindrical and truncate. The asters with rays of the latter kind which appear as true strongylasters, are however rare. Quite at the base the rays are, for a short distance, smooth. Apart from this they are wholly covered with spines standing rather elose together. In size the spines are subject to considerable variation, but they are never very minute. In some asters with partieularly large spines I noticed that the spines are directed backwards, towards the centre of the spicule. The bhut, eylindroconic rays usually bear a terminal spine. In the digitate form these asters are 21-41 μ, in the massive form 21-45 μ, in total diameter. The basal thichness of the rays is in the former $1-2.5 \mu$, in the latter $1-3.5 \mu$. An inverse proportion between the size and ray-number is clearly expressed in regard to the thickness of the rays but not so well marked in regard to the total diameter of the spieule. In Bowerbank's type, these asters have from four to seven rays, $1.22 .3 \mu$ thick, and measure $20-37 \mu$ in total diameter. Sollas gives their diameter as 26μ.

The subcortical oxysphaerasters have a spherical centrum $3-4.5 \mu$ in diameter, from which from fifteen to twenty rays arise radially. These are regularly distributed, $4-9 \mu$ long, straight, conic, sharp pointed, and $0.8-1.7 \mu$ thick at the base. A verticil of large vertically arising spines is observed some distance below the end of each ray. Besides these large verticil-spines smaller ones, distributed irregularly over the distal part of the ray, are often present. The total diameter of these oxysphaerasters is $9-18 \mu$. I have found similar spicules in Bowerbank's type, and he appears to have observed them, but they are not mentioned by Sollas. In the centrifugal spicule-preparations I have met with a few spineless oxysphaerasters with only six rays, about the size of the largest spined oxysphaerasters. It seems to me doubtful whether these spineless oxysphaerasters, which I have not ohserved in situ in the sections are proper to the sponge.

The small dermal sphaerasters (Plate 17, figs. 1-3, 4-6a, 13, 14, 16, 17, 18a, 19a) have a spherical centrum $1.7-5 \mu$ in (liameter, from which from seven to eighteen rays arise radially. These rays are quite regularly distributed $1.3-$ 3.5μ long and $0.8-1.6 \mu$ thick at the base. The total diameter of these asters is $4.6-8$, usually $5.5-6.5 \mu$. The shape of the rays and the relative size of the
centrum are subject to great variations. In the dermal sphacrasters most frequent in the digitate form the diameter of the centrum is always more than half and usually less than two thirds of the diameter of the whole aster. The rays of these asters are eylindrical or cylindroconical, truncate or rounded off at the end, and covered with spines, chiefly in their distal portions. The size of the spines is proportional to the thickness of the rays. In the dermal sphacrasters most frequent in the massive form the centrum is relatively a little smaller, its diameter in not a few being less than one third of the total diameter of the spicule. The rays of these asters are conical or cylindroconical, rounded off or, more rarely, pointed at the end (Plate 17, figs. 1-3, 13, 14, 16, 17), and covered with spines, chiefly in their distal parts. Of course both the oxyastrose and the strongylastrose kinds of dermal sphaerasters oceur in both forms. The difference lies in the fact that the strongylastrose forms are much more prevalent in the digitate than in the massive form. In Bowerbank's type, these spicules have from six to eighteen rays, which seem, on the whole, somewhat stouter than those of the small strongylosphaerasters of the "Albatross" specimens. The total diameter of the aster is $5.5-8 \mu$, that of the centrum $2-3.5 \mu$. Sollas gives their diameter as 6μ.

Besides these a few other forms of asters, which may be considered as sphaeraster-derivates, are found in the dermal membrane. One of these asterforms has a very large centrum and exceedingly short and thick rays, the latter appearing as rounded knobs on the surface of the relatively overgrown centrum. In another form the centrum is very much reduced and there are only five or six cylindrical rays thickened at the end. The basal and central, cylindrical parts of the rays of these asters are smooth, their terminal thickening covered with numerous spines. Finally, there are sphaerasters the rays of which are not concentric. These appear as metasters or ataxasters.

The normal sterrasters (Plate 16, figs. 15, 18, 19; Plate 17, figs. 21c, 22c) are flattened ellipsoids, broad oval, sometimes nearly circular, in outline. The sterrasters of the digitate form are $84-98 \mu$ long, $73-86 \mu$ broad, and $60-65 \mu$ thick; those of the massive form larger, $89-105 \mu$ long, $83-90 \mu$ broad, and about 62μ thick. The proportion of the length to the breadth to the thickness is in both on an average about 10:9:7. With the exception of those surrounding the umbilicus, the rays protruding over the surface of the sterrasters are $2.5-3 \mu$ thick and about 2μ apart. They bear terminal verticils of usually from four to six stout lateral spines, many of which are curved. The rays surrounding the umbilicus (Plate 16, fig. 15) have a somewhat oval transverse section
2.53μ broad and $4.5 \mu \mathrm{long}$, the longer diameter being situated radially to the umbilicus. These perimmbilical rays bear from seven to ten lateral and usually also sume terminal spines. In Bowerbank's type the sterrasters measure 100110 by S2 94 by $70-74 \mu$. Sollas gives their dimensions as 110 by 80μ.

Abnormal sterrasters, sterroids, with fewer and more distant protruding rays are met with quite frequently. In these spicules (Plate 16, figs. 20, 21) the parts of the surface destitute of rays hear spines similar to those forming the verticils on the rays of the normal sterrasters. Some of these spines are scattered singly, others arranged in rusette-like groups. The protruding rays of the sterroids attain a thickness of $12-15 \mu$ and a length of $10-12 \mu$. Their sides are quite smontli; the rounded end is densely spined.

All the cight sperimens of this species were collected on October 26, 1904, in the Gulf of Panama, off Panama, on the shore of the islands of the Station Parific Mail Steamship Company or of the Taboga Islands. Bowerbank states that his specimen came from "Mexico." Thinking that the Gulf of Mexico must be meant, when the locality of a marine organism was given as Mexico, in 1903 I gave the Gulf as its locality. Now that this species has been found in the Gulf of Panama, it seems much more probable that Bowerbank's type cane from the Parific coast of Mexico and not from the Gulf of that name.

Whichever of the two kinds of dermal apertures are the afferents and which the efferents, there can be no doubt, that both are cribriporal. For this reason I now place these sponges in Creodia and not in Sidonops as, following Sollas's suggestion, I formerly (1903) did.

Without regular triaenes. The tetraxon megascleres are monaene or diaene teloclades with reduced clades, and occur not only in the superficial part of the sponge but also in the interior.

There are in the "Albatross" collection four specimens of Gcodinella. These belong to one new species, which is divided into three varieties.

Geodinella robusta, sp. nov.
megasterra, var. nov.
Plate 1, figs. 1-4, 16. 18-24; Plate 2, figs. 1, 3 ; Plate 3, figs. $3,4,7,9$; Plate 4 , figs. $1,47,13,21,22$.
carolae, var. nov.
Plate 1, figs. 5-12, 17; Plate 2, figs. 4-7, 9-11; Plate 3, fig. 1; Plate 4, figs. 2, 3, 8-12, 14-20.
megaclada, var. nov.
Plate 1, figs. 13-15; Plate 2, figs. 2, s; Plate 3, figs. 2, 5, 6, 8; Plate 4, figs. 23-25.
I establish this species for four spirit specimens, three fairly complete, one fragmentary, collected at Stations 2946, 4199, and 4228 on the Pacific slope of North America. On aecount of their having larger spicules than the only other known species of this genus 1 have named the species robusta. Although these sponges are similar enough to be considered as representatives of the same species, only two are really systematically identical, while the other two differ to some extent from these two and also from each other. It therefore seems advisable to consider these four sponges as three separate varieties. The most conspicuous differences between them are found in the shape and size of their sterrasters and the clades of their teloclades. In two specimens, one taken in Charlotte Sound, Vancouver Island, the other in Naha Bay, Behm Canal, S. E. Alaska (Stations 4199, 4228), the teloclades have short clades and the sterrasters are smaller and nearly always regularly ellipsoidal. In the other two specimens the sterrasters are larger and more diversified in shape, three-lobed ones not infrequently occurring besides the ellipsoidal ones. The variety I establish for the specimens from Stations 4199 and 422 with short clades and small sterrasters, I name var. carolae after the locality, Queen Charlotte Sound, where one of them was found. In one of the two remaining specimens the sterrasters are not so large and the clades of the teloclades considerably longer then in the other; the variety with longer clades which was also found at Station 4228 I name var. megaclada. The third variety, from Station 2946, the sterrasters of which are larger than those of the other two, larger in fact than those of any sponge in the collection, I name var. megasterra.

The specimens of var. carolae (Plate 1, figs. 12, 17) are both incrusting cushion shaped and nearly of the same size, about 45 mm . long, 30 mm . broad, and 15 mm . high. From the margin of the base of the specimen from Naha Bay (Plate 1, fig. 12) several processes arise. One is large and digitate, 23 mm . long and 7 mm . thick at the base; the others are small. The surface is slightly uneven, covered with low rounded elevations. On the summit of some of the more pronounced elevations a circular aperture, up to 700μ in diameter, is observed. This leads into a rather wide cavity, constricted below by a ehonal sphincter. The appearance of some of the elevations, not thus provided with an apical vent indicates that these also possessed sueh an aperture which has, however, been quite elosed by contraction. The specimen of var. megasterra (Plate 1, fig. 16) is somewhat irregularly finger shaped, slightly bent, and 43 mm . long. It is at the base 16 mm . thick; towards its upper end it tapers to a diametcr of 10 mm . The surface has the same character as that of the specimens of var. carolue, the only difference being that the apertures on the elevations attain a larger size, the widest measuring as much as 1.5 mm . in diameter. The specimen of var. megaclada is 13 mm . in diameter and appears to be a fragment (the tip) of a finger-shaped sponge like the speeimen of var. megasterra. The largest apertures on its surface are 300μ wide. The specimens of var. megasterra and of var. carolae from Naha Bay are partly covered by thin crusts of a monaxonid sponge. In both these varieties examination of the surface with a lens shows here and there indications of hirsute spicules, broken off short; sinee, however, I have been unable to find in the sections any spicules penctrating the cortex, it is doubtful whether these broken, apparently hirsute, spieules are proper to the sponge.

The colour is white or white with a brownish tinge on the surface and dirty white or brownish in the interior. The surface of the two specimens from Nahat Bay is partially eovered with a darker brown coating which may be foreign to the sponge.

A hard cortical layer, composed of dense masses of sterrasters, a sterrasterarmour (Plate 1, figs. 21a, 24a; Plate 2, fig. 6a), surrounds the choanosome. This cortex is 1-2 mm. thick in var. megaclada on the whole somewhat thicker than in the other two varieties.

Canal-system. The sterraster-armour (cortex) is perforated by round or oval holes $300 \mu-1.5 \mathrm{~mm}$. wide. Each perforation is traversed by a radial canal situated centrally. This eanal may be wide and extend nearly to the sterrasters surrounding the perforation through which it passes, or it may be contracted,
narrow, or altogether closed, and separated from the nearest sterrasters by a thick intervening layer of soft tissue. The canals passing through the large perforations of the sterraster-armour are usually dilated and open out on the surface of the sponge with a wide aperture. These apertures are the vents, which as stated above, crown the summits of some of the elevations. The canals passing through the smaller perforations are usually contractech. On account of the hardness of the cortex and also beeause I wished to preserve such valuable material, I have not been able to asceptain exactly how these narrow radial canals open out on the surface. So far as I could make out they divide distally into several oblique nearly paratangential canals, which lead to small groups of round pores, $50-80 \mu$ wide, above the perforation of the armour through which the radial canal passes. Below, these radial canals are provided with chones composed of brownish tissue. These chones are about 200μ broad and protrude to a distance of 400μ into the choanosome.

The choanosome (Plate 1, figs. 21b, 24b; Plate 2, fig. 6b) is remarkably soft and traversed by numerous wicke canals up to 1.5 mm . in diameter. The widest of these canals usually extend paratangentially just below the surface (Plate 1, figs. 21, 24). From the canal-walls numerous low transverse ridges protrude into the interior, partially dividing the canal-lumina into rows of chambers. Such ridges occur not only in the wide, but also in the narrow canals. The flagellate chambers (Plate 2, figs. 4b, 11a) are longitudinally compressed, the length of the main axis, passing through the chamber-mouth, usually being only from two thirds to three fourths of the length of the transverse diameter. In the specimen of var. carolue from Charlotte Sound, which is better preserved than the others, the flagellate chambers are $20-35 \mu$ long and $30-45 \mu$ broad.

In the characters of their canal-system these sponges appear on the whole to approach rather closely the species of Sidonops.

Ifistological structure. Many of the flagellate chambers have lost their collarcells altogether, in others collar-cells are present, but they are never numerous (Plate 2, figs. 4, 11). Whether this sparseness of the collar-cells is due to some having dropped off post mortem, or whether it is a natural condition of the living sponge, I cannot say. "Sollas's membranes" about 9μ distant from the chamber-walls are frequently observed. The nuclei of the collar-cells are about 2μ in diameter. The dermal membrane is thin and composed of stout, spindleshaped elements, extending paratangentially. The proximal part of the cortical tissue, just below the sterraster-armour, contains coarse paratangential fibres and granular oval or spherical cells, $15-30 \mu$ in diameter. In the walls
of the canals stout bands of longitudinal, spindle-shaped, finely granular elements, $3-5 \mu$ thick in the centre, are met with. Oceasionally more or less isolated, spindle-slatped elements, attaining a maximum transverse diameter of 10μ, are seen in the sections. I have often noticed that the substance composing these elements differs from the surrounding tissue, not only by being less stainable, but also by having a higher refractive index, so that it to a certain extent resembles the spongin of the fibres of horny sponges. In sections of the ehoanosome of var. curolue I have obscrved groups of highly stainable, oval cells 20$30 \mu$ long and $12-17 \%$ broad (Plate 2, fig. 7a). These cetls are imbedded in an alveolar tissue, composed of a mesh-work of clongated elements (Plate 2, fig. 7b), and free from flagellate chambers. I am inclined to consider these large cells as young ova.
skelton. The sterraster-armour and the mieroseleres generally are well developed, the megascleres somewhat rudimentary; not the megaseleres of the choanosome, but the hard sterraster-armour of the cortex, forms the main support of the sponge.

The megascleres are rhabds, simple teloclades, and a few multieladomal aud mesoclade derivates of the latter. The rhabds are for the most part blunt, spinclle-shaped, isonctine amphioxes. These pass on the one hand into pointed amphioxes, on the other into eylindrical amphistrongyles or even amphityles. Anisoactine blunt or pointed diactines and occasionally also styles and tylostyles are met with likewise. Some rhabds are rendered irregular by the presence of small protubcrances. Most of the teloclades are monaenes. Besides these monaenes some diaenes oceur in var. carolae. These are more numerous in the specimen from Charlotte Sound than in the specimen from Naha Bay. In var. magaclada and var. megasterva monaenes only, the elades of whieh are much longer in var. meguclada than in var. megasterra, are met with. Most of these spicules are plagioclade, some orthoclade.

These teloclades (teloclade-derivates) and rhabds are met with in all parts of the choanosome. In its central parts the teloclades are relatively less numerous than in its superficial parts. In the axial part of the choanosome of the finger-shaped var. megasterra these spicules form a rather loose longitudinal column or strand (Plate 1, fig. 21), from which single spicules and small spieulebundles extend towards the surface. These are arranged in a somewhat plumose manner, abut obliquely on the sterraster-armour, and extend distally to the limit between the cortex and the choanosome, or a little beyond it, in which case they penctrate the proximal part of the sterraster-armour and terminate within it.

In the spicule-preparations I have seen a few fragments which appeared to be parts of spicules much thinner and longer than the rhabds and the thabolomes of the ordinary teloclades. It has been stated above that on the surface indications of hirsute spicules, broken off short, are observed. It is possible that these slender spieule-fragments are parts of those hypothetical hirsute spicules. If hirsute spieules are really present they are probably teloelades with long and slender cladomes. Since, however, I have not been able to find a single cladome of sueh a spicule in all the numerous preparations made, I doubt whether the sponge possesses any teloclades of this kind and rather incline to the view that these fragments are parts of foreign spicules.

The microscleres are larger oxyasters passing into smaller oxysphaerasters, small strongylosphaerasters, and sterrasters. The strongylosphaerasters are very numerous on the outer surface and also oceur in small numbers in the walls of the cortieal and choanosomal canals. The oxyasters (and oxysphaerasters) are quite numerous in the choanosome, chiefly in the canal-walls; a few also occur in the cortex. The sterrasters are densely packed in the sterrasterarmour and are, in radial sections, frequently also found seattered in the choanosome. Whether they naturally oecur there, or whether those observed there have been brought to this position in cutting, I cannot say. Among the ordinary sterrasters a few sterrasters with abnormal (hypertrophic) rays, sterroids oecur. These appear to be irregularly seattered among the others.

The isouctine rhabds (Plate 1, figs. 22, 23; Plate 4, figs. S, 9, 11, 12, 16, 24) are usually straight or slightly curved and spindle shaped, tapering towards the ends; more rarely shortened and cylindrical. The ends of the spindleshaped ones are usually blunt, less frequently sharp pointed; the ends of the cylindrical ones simply rounded off or slightly thickened. All these forms, the spindle-shaped, sharp-pointed, and blunt amphioxes, and the shortened eylindrical, simple amphistrongylcs, and terminally thickened amphityles are connected by transitional forms to such an extent that it appears advisable to deseribe them together. These spicules attain a maximum length of 2.8 mm . Within this limit their longitudinal dimension is variable, particularly so in the speeimen of var. carolae from Charlotte Sound, where a good many of the isoactine rhabds are very much reduced in length. In this speeimen the isoactine rhabds are $0.37-2.5 \mathrm{~mm}$., usually $1.6-2.2 \mathrm{~mm}$. long and $40-65 \mu$ thick. As will be seen from the measurements tabulated below the thickness is not in proportion to the length, the shortest spieules being nearly, if not quite, as thick as the longest.

DIMENSIONK OF L゙OAOTINE RHABES OF VAR. CAROLAE FROM CHARLOTTE soUND.

Length	Thickness in the middle
0.37 mm.	48μ
$0.43 "$	47μ
$1.2 "$	47μ
$1 . s "$	45μ
$2.0 ~ "$	50μ
$2.2 "$	52μ

There is, however, a correlation between the length and the shape of these spieutes, the long thabds being spindle shaped, the short ones eytindrieal and usually thickened at the ends, amphityle in character. The terminal thickenings of these amphityles are more or less spherical. One of the short amphityles is represented on Plate 4 , fig. 16 . This spicule is 0.4 mm . long and 65μ thick in the middle. Its terminal thickenings measure 80μ in diameter. In other amphityles this terminal thickening is still more pronounced. In one such, 0.42 mm. long and 56μ thick, the terminal thickenings measured 73μ. In these shortened amphityle spicules the axial thread terminates in the centres of the spherical terminal thickenings. I think that these short amphityles may have been produced by some cause preventing the axial thread from attaining its full length, but not proportionately reducing the vital energy of the silicoblasts which deposit the silica, intended, as it were, for enclosing the (missing) terminal parts of the axial thread, at the ends of the (short) axial thread present. The influences regulating the production (growth) of the axial threads seem accordingly to be distinct from, and to a certain extent independent of, those regulating the action of the silicoblasts. In var. megasterre and var. megaelada the isoactine rhabds are as a rule spindle shaped, $1.6-2.8 \mathrm{~mm}$., mostly $1.9-2.3 \mathrm{~mm}$. long, and 33-60 μ, mostly 40-55 μ thick. Cylindrical rhabds reduced in length and thickened at the ends, like those deseribed above from var. carolae, are execedingly rare in var. megasterre and seem to be absent altogether in var. megaelada. As will be seen from the measurements of these spicules of var. megusterre tabulated below, the terminal attenuation is very variable, and the thickness of the ends correlated to the length and the thickness in the middle only in sof far as the two longest spicules in the list both have slender pointed ends.

ISOACTINE RHABDS (AMPHIONES) OF VAR. MEGASTERRA.

End	Thickness 40μ below eaeh end	Thickness in the middle	Length
pointed	15μ	57μ	1.5 mm .
،	17 "	$45^{\text {c }}$	2.7 "
"	17 "	55 "	2.6 "
rounded off	22 "	40 "	2.2 "
" "	22 "	53 "	2.1 "
" "	23 "	$45^{\prime \prime}$	1.8 "
" "	28 "	53 "	2.2 "
" "	32 "	57 "	2.2 "

The anisoactine rhabds (amphioxes and amphistrongyles) and the true styles (Plate 4, fig. 17) are slightly shorter and (at the stouter end) a trifle thicker than the isoactines. They measure $1.1-2.3 \mathrm{~mm}$. in length and $40-80 \mu$ in thickness. In the true styles, which represent, as it were, the end of the series of increasingly anisoactine rhabds, the thickness of the rounded end is generally speaking in inverse proportion to the length of the spicule. Some of the styles of both the specimens " var. carolae are somewhat thickened at the end and appear as subtylostyles

Irregular rhabds (Plate 4, figs. 6, 7, 10). Not a few of the thabds of var. carolae have a slightly undulating surface which renders their contour perceptibly wavy. Other rhabds, both of this variety and of var. megasterra, possess on one side a small, rounded, well-defined protuberance $5-10 \mu$ high, which is usually nearer to one of the ends than to the centre of the spicule. Below the protuberance the silica-layers forming the spicule conform to the outer surface, this disturbance (upheaval) reaching right down to the axial thread and thus showing that the cause of the formation of the protuberance acted before the silica-layers were produced. Sometimes more than one such protuberance is observed on a rhabd. In the spicule of var. megasterra (Plate 4, figs. 6-7) quite a cluster of such protuberances rises from each end of the spicule. In some cases the protuberance is not, as in the spicules deseribed above, confined to one side but goes nearly or quite round it, forming a more or less complete annular thickening. Among the irregular, blunt amphioxes of var. megasterra I have observed some with an annular thickening of this kind below each of the ends. One of these spicules was 1.7 mm . long and 60μ thick in the middle. The two rounded ends were respectively 30 and 36μ thick. One of the annular thickenings was quite complete and situated 230μ below the more slencler end; the other was not quite complete and situated 90μ below the stouter end of the spicule. The
former had a diameter of 50μ and the part of the spicule from which it arose Was 42μ thick. The latter had a diameter of 43μ and the part of the spicule from which it arose was 40μ thick. Oceasionally, but very rarely, rhabds with a clacle-shaped protuberance, resembling anamonaenes (Plate 4, fig. 10) occur.

In the rhabls with undulating surface the irregularity is probably caused by some inequality in the action of the silicoblasts during growth. The monaenelike forms just referred to are altogether abnormal, probably pathological. The rhabls with the rounded and annular protuberances I am inclined to consider as spicules transitional between regular rhable and teloclades.

The tcloclades and teloclade-derivates (Plate 1, figs. 1-11, 13-15, 18-20; Plate 4, figs. 23, 25). The cladome of the teloclades is always reduced. This reduction is different in degree and in kind in the three varieties. In var. carolue the teloclades have entirely lost one or two of the triaene-clades; in the two others invariably two. In var. megaclada the single remaining clade is often quite long. In the two other varieties the clades are always very short. Thus var. carolae possesses some diaenes besides the monaenes, both with short clades, var. megaclada only monaenes, many of which have a rather long clate, and var. megasterra only monaenes, which alway's have a short clade. In all three the cladome is usually simple and situated at or near the cladomal end of the rhabolome. Besides these ordinary teloelades, teloclade-derivates with more cladomes than one, and with clades arising some distance from the end or reduced to insignificant protuberances, are met with.

The diaenes and monaenes of var. carolae (Plate 1, figs. 5-11) have the same dimeusions. The monaenes (Figs. 6, 9-11) are much more numerous than the diaenes (Figs. 5, 7, 8), particularly in the specimen from Naha Bay. The rhabdome is $1.1-1.7 \mathrm{~mm}$. long and at the cladomal end $26-40 \mu$ thick; it is generally straight or slightly curved, rarely (Fig. 6) angularly bent, and usually attenuated towards the acladomal, blunt or, more rarely, pointed end. Sometimes (Fig. 5) this attenuation is so slight that the rhabdome appears nearly cylindrical. In such spicules it is simply rounded off at the end. The cladome is generally quite terminal (Figs. 5-9, 11), rarely situated a little below the end of the rhabiome (Fig. 10). The clades are 30-70 μ, usually $40-55 \mu \mathrm{long}$, generally quite straight, irregularly conical, and pointed (Figs. 5, 6, 8-10), or, more rarely, cylindrical and rounded terminally (Fig. 11). In the diaenes a pointed clade may be associated with a rounded one (Fig. 7). The clades enclose angles of $93-130^{\circ}$ with the rhabdome, so that some of these spicules appear as orthodiaenes or orthomonaenes (Fig. 10), others as plagio- or pro-diaenes
or plagio- or pro-monaenes (Figs. 5-9, 11). The latter are much more numerous than the former. The monaenes of var. megasterra (Figs. 1-4, 18-20) are in every respect similar to those of var. earolae, the only difference being that their rhabdomes, which measure $1.4-2.1 \mathrm{~mm}$. in length, are on an average slightly longer. The monaenes of var. megaclada (Plate 1, figs. 13, 14; Plate 4, fig. 23) have rhabdomes similar to those of the monaenes of var. megasterra but thicker, sometimes attaining a thickness of 42μ. The clade which is terminal (Plate 1 , fig. 14), or, more rarely, situated a little below the end of the rhabdome (Plate 1, fig. 13; Plate 4, fig. 23), is conic, pointed, $80-105 \mu$ long, and straight or slightly bent upwards at the end. It encloses an angle of $57-135^{\circ}$ with the rhabdome.

The teloelade-derivates (Plate 1, fig. 15; Plate 4, fig. 25). The telocladederivates with more than one cladome are rare. I have observed them only among the monaenes, and they never seem to have more than one secondary cladome. The primary (terminal) clade is similar to that of ordinary monaenes, the secondary clade is situated a considerable distance below the cladomal end and smaller than the primary clade (Plate 1, fig. 15). The mesoclades are likewise rare. They are always monoclade and appear as rhabds, attenuated towards both ends or towards one end only with a short and stout clade arising a considerable distance from either end (Plate 4, fig. 25). The teloclades with terminal clades reduced to mere rounded protuberances pass, by further cladome-reduction, into tylostyles and styles. They appear as transitional forms connecting the teloclades with the rhabds. In the telocladederivate tylostyles the tyle is often irregular and the axial thread of the rhabdome becomes tortuous on entering the tyle. In one of these spicules I noticed that the short, tortuous part of the axial thread lying in the tyle was not connected with the axial thread of the rhabrlome. Mesoclade and multicladomal teloclarle-derivates with clades further reduced are rare. They pass into the rhabds with one or more protuberances or annular thickenings (Plate 4, figs. 6,7). These resemble the rhabds proper so closely, that I have thought it better to describe them above together with the regular rhabds.

The shape, size, and arrangement of the megascleres of these sponges and the closeness of their connection by transitional forms lead to the conclusion that the rhabds are more elosely related to the teloclades than is generally assumed.

The fragments of long and slender spicules, which, as stated above, are met with occasionally in the spicule-preparations, are $S-12 \mu$ thick. The longest one observed was over 2 mm . in length. Most of them are broken off at both
encls. In a few one end was intact and pointed. Their slenderness would incline me to believe that they are parts of rhabdomes of teloclades, but the fact that, in spite of the most careful seareh, I have failed to find any cladomes belonging to them, is against this view. As stated above, these spicules may be foreign to the sponge.

The large oxyasters and small oxysphaerasters (Plate 2, figs. 3a, 10a, b; Plate 4, figs. 1-5, 21, 22) are so closely connected by transitional forms that it is advisable to describe them together. In var. carolae these spicules are $11-36 \mu$ in cliameter and have from six to cighteen rays. In many a central thickening $2-8 \mu$ in diameter is clearly distinguishable, others are without such a centrum. The rays are straight, conic, $1-3.5 \mu$ thick at the base, and (without the central thickening) $3-17 \mu$ long. They are usually simple, but oceasionally such asters are obscrved in which one.or more of the rays are bifurcate, the two branches extending in a nearly parallel direction and lying close together. The rays are pointed (Plate 4, fig. 3) or, rarely, somewhat blunt (Plate 4, fig. 2). Their distal part is covered with spines, the size, number, and arrangement of which are variable. In some (Plate 4, fig. 2) the spines are so small that even with the $280 \mu \mu$ light no distinct image of them can be procured; as a rule, however, they are large enough to be clearly shadowed on the photographic plate by these u. v. rays (Plate 4, fig. 3). The number of rays and the development of the central thickening are, roughly speaking, in inverse proportion to the size of the spicule. Oxyasters (oxysphacrasters) under 20μ in diameter have from ten to eighteen rays and a well-developed central thickening, the diameter of which is from one fifth to nearly one half of the diameter of the whole spicule. Oxyasters (oxysphaerasters) over 20μ in diameter usually have only from six to nine rays, and either no central thickening at all, or only a small one, never more than a quarter of the whole spicule in size. Also in the spines a certain (inverse) proportion between size and number is discernible; when the spines are numerous, they are very small, and the smaller their number is the larger they become. When, as is most frequently the case, the spines are few in number and large in size, some, generally the longest, form a verticil a little below the end of the ray, so that the spicule becomes somewhat acanthtylaster in character (Plate 4, fig. 3). The oxyasters and oxysphaerasters of var. megasterra are similar to those of var. carolae. They measure $9-38 \mu$ in diameter and have from six to seventeen rays (without the central thickening) $2.5-21 \mu$ long, and $0.6-4 \mu$ thick at the basc. The central thickening is small, never over 5μ in diameter. In many of these spicules (Plate 4, fig. 4) the spines of the rays
are particularly large, and very regularly arranged in verticils. These large spines arise vertically from the ray and often appear to be bent down at the end so that they become claw shaped. Also in the oxyasters and oxysphaceasters of this variety an inverse relation between the number of rays and the size of the spicule is discernible; the asters under 20μ in diameter having from nine to seventeen, the asters over 20μ in diameter, from six to eleven rays. The oxyasters and oxysphacrasters of var. megaclada are smaller than those of var. megasterra, only $11-30 \mu$ in diameter, and have on an average more rays, the small ones (under 20μ in diameter) up to twenty, the large ones (over 20μ in diameter) eleven to fifteen.

The strongylosphaerasters (Plate 2, figs. 3b, S, 9, 10c; Plate 4, figs. 18-20) of var. carolae consist of a spherical, central thickening, from which from eleven to twenty-seven radial rays arise. The whole aster is $7-12 \mu$ in diameter. The diameter of the central thickening is usually from one half to two thirds of the diameter of the whole spicule and measures $3.5-7 \mu$. The rays are cylindrical and arise from the central thickening with trumpet-shaped basal extensions. They are $2-3 \mu$ long, $1-1.7 \mu$ thick, and terminally rounded. The distal parts of the rays are covered with small spines which often form a conspicuous terminal verticil (Plate 4, fig. 19). A correlation between the size of the spicule and the number of rays is not discernible. In var. megaclada the maximum dimensions of these spicules are similar, but the minimum dimensions greater. The strongylosphaeraster of this variety measured were 10-12 μ in diameter, and had from nineteen to twenty-five rays and a central thickening 57μ in diameter. Among the strongylosphacrasters of this variety I have observed many in which the verticillate arrangement of the ray-spines was particularly well marked, and I noticed that in many of these the spines of the verticils are recurved. The rays of these spicules, particularly when viewed from above, closely resemble sterraster-rays. In var. megasterra the strongylosphaerasters are also similar, but here they attain a somewhat larger size, measure $8-13 \mu$ in diameter, and have fewer, only from twelve to nineteen, rays; the central thickening is $3.5-7 \mu$ in diameter.

Sometimes sphaerasters, similar to these strongylosphacrasters, but with rays distinetly tapering towards the distal end, are observed. These spicules are transitional to the small oxysphaerasters. I have noticed such sphaerasters particularly in var. carolae.

The normal sterrasters (Plate 2, figs. 1, 2, 5; Plate 3, figs. 1-3, 7, 9; Plate 4, fig. 13). As stated above the size and shape of the normal sterrasters are
different in the three varieties, var. earolac having the smallest, and var. megasterra the largest; var. megacluda being in this respect intermediate between the other two. In var. carolac all or nearly all the sterrasters are flattened ellipsoids, the proportion between the three axes being about 5:7:9 (Plate 2, fig. 5). In the other two varieties most of the sterrasters have a similar shape (Plate 2, figs. la, 2a, e); but we find in these, among the ordinary, ellipsoidal sterrasters, also a good many flattened, three-lobed ones (Plate 2, figs. 1b, 2b). The cllipsoidal sterrasters are in var. carolae $180-195 \mu \mathrm{long}, 130-160 \mu$ broad, and $\delta(0-115 \mu$ thick; in var. megaclade 190-217 μ long, $160-190 \mu$ broad, and $105-125 \mu$ thick; in var. megasterra $220-237 \mu$ long, $165-200 \mu$ broad, and $120-$ 130μ thick. The three nearly equal maximum diameters of the three-lobed sterrasters of the two last-named varieties are nearly or quite as long as the longest diameter of their ellipsoidal sterrasters. In the specimen of var. carolae from Naha Bay I found two tetra-lobed sterrasters.

The centre of the sterraster is, as Thiele has already noticed in another species, Gcodinella (Gcodia (?)) cylindrica, ${ }^{1}$ surrounded by granules the refractive index of which differs from that of the silica in which they are imbedded. These granules form a hollow, spherical cluster 6-8 μ in diameter (Plate 3, figs. 7a, 9a). Rather to my surprise I found that in the three-lobed sterrasters the position of these pericentric granules is the same as in the ellipsoidal ones. The siliceous substance surrounding this cluster of granules shows the usual radial structure. The individual granules often appear to be onion shaped and produced distally in a radial process, forming one of the radial lines which give the radially striated appearance to the siliceous substance of the sterraster. Seetions, optical and other, through the sterrasters show that many of them are not only radially striated but also paratangentially stratified, one or two, very conspicuous limits (Plate 3, figs. 7,9b) between the superposed zones being distinetly visible. These limits are coneentric and parallel to the outer surface. The radial striations pass continuously through them.

The umbilicus (Plate 3, figs. 1-3, 7e, 9c; Plate 4, fig. 13a) lies in the centre of one of the broad faces of the sterraster. It is generally a caliculate pit $15-25 \mu$ leep; its circumference (mouth) is oval, $17-20 \mu$ broad and $23-30 \mu$ long. Proximal continuations of the rays surrounding the umbilicus project into the umbilical pit and form longitudinal (radial) ridges on its flanks. The bottom of the pit appears rough. The remainder of the surface of the sterraster is covered by freely projecting rays (Plate 2, figs. 1, 2, 5; Plate 3, figs. 1-3, 7, 9;

Plate 4, fig. 13). These rays are cylindrical, 3μ long and about as broad, and rather uniformly distributed over the surface, their axes being 5μ apart. Those portions of the surface of the central mass of the sterraster which lie between the rays are more or less roughened. At the end each ray bears a verticil of stout, conic, lateral spines, $1-2 \mu$ long and broad, the axes of which are vertical to the axis of the ray. The average number of the spines in a verticil is six; but there may be as few as one or two or as many as eight or ten.

Among these ordinary sterrasters, forming, as stated, the great majority in all the three varieties, a few sterroids occur, which are similar to these in shape and size, but have different rays. Two kinds of sterroids can be distinguishect.

In the one, which is observed more frequently, the rays are, as in the normal sterrasters, quite uniformly distributed and close together, but wholly or in part much larger and erowned with a much greater number of spines. In these sterroids (Plate 3, figs. 4, 6; Plate 4, figs. 14, 15) the rays attain a thickness of $7-10 \mu$, the spine-vertieils are composed of $15-20$ spines, and the convex apical ends of the rays also bear several, usually $4-8$, spines equalling in size the verticil-spines (Plate 4, figs. 14, 15). In these sterroids the verticil-spines are usually directed slightly downwards, the whole verticil appearing as the serrated and somewhat reeurved margin of a terminal, shield-like expansion of the ray, from the distal face of which several spines arise.

The other hind of sterroid (Plate 3, figs. 5, 8), which is very rare, consists of a central mass of the usual eltipsoidal or a more spherieal shape, from which rather sparse and irregularly clistributed rays arise. These rays are eylindroconical, $22-27 \mu$ long, $11-17 \mu$ thick at the base, and covered with numerous small spines; on the parts of the surface of the central mass free from rays such spines also occur. On the rays the spines form extensive patehes within which they stand quite close together. On the central sphere they are for the most part farther apart and irregularly seattered. Here and there well marked, smooth, channel-like zones separate adjacent spine-patches.

The four specimens of this species were obtained on the Pacific slope of North America. One specimen of var. carolae was trawled at Station 4199 on June 25, 1903, in Queen Charlotte Sound off Fort Rupert, Vancouver Island, B. C.; centre of Round Island S. $46^{\circ} \mathrm{W} ., 11.5 \mathrm{~km}$. (6.2 miles), drift S. 85° E.; depth $124-196 \mathrm{~m}$. (68-107 f.); it grew on a bottom of soft green mud and volcanic sand; the bottom temperature was $7.7^{\circ}\left(45.9^{\circ} \mathrm{F}\right.$.). The specimen of var. megaelada and one specimen of var. carolae were trawled at Station 4228 on July 7, 1903, in the vicinity of Naha Bay, Behm Canal, S. E. Alaska; Indian Point, N.
15° E., 1.7 km. (0.9 miles); drift N. 2° W.; depth $75-245 \mathrm{~m}$. ($42-134 \mathrm{f}$.); they grew on a bottom of gravel and sponge spicules; the bottom temperature was $8.5^{\circ}\left(47.5^{\circ} \mathrm{F}\right.$.). The specimen of var. megasterra was trawled at Station 2946 on February 6,1859 , off southern California, in $33^{\circ} 58^{\prime} \mathrm{N} ., 119^{\circ} 30^{\prime} 45^{\prime \prime} \mathrm{W}$. ; depth $\because 2411 \mathrm{l}$. (150 f .) ; it grew on a bottom of coase gray sand; the bottom temperature was $13.6^{\circ}\left(56.5^{\circ} \mathrm{F}\right.$.).
T.ABLE SHOWING TIIE VARIETAL DIFFERENCES IN GEODINELLA ROBUSTA.

Varieties	carolae	megaclada	megasterra
Shape	incrusting, cushion shaped.	finger shaped.	finger shaped.
Rhabds.	amphioxes; amphistrongyles; amphityles; styles; subtylostyles; 0.37-2.5 mun. long, 10 (6.) μ thick.	amphioxes, $1.6-2.8 \mathrm{~mm}$. long, 33-60 μ thick.	amphioxes, $1.6-2.8 \mathrm{~mm}$. long, 33-60 μ thick.
Tcloclades.	monaenes and occasionally dianenes; rhabdome 1.1-1.7 mm. long, 26$40 t$ thick; elades 30 70μ long; cladal angles $93-130^{\circ}$.	monaenes only; rhabdome $1.1-2 \mathrm{~mm}$. long, 25-12 μ thick; clates 80-150 μ long; elaulal angle $85-135^{\circ}$.	monames only; rhablome 1.4-2.1 mm. long, $26-40 \mu$ thick; clarles 30-70 n long; eladal angles $93-103^{\circ}$.
Oxyanters and oxysphacrasters.	11-36 μ in diameter; with 6-1s rays; central thickening usually well developed.	11-30 n in diameter; with $11-20$ rays; central thiekening usually small or absent.	9-38 μ in diameter: with 6-17 rays; central thickening usually small or absent.
Sirongylosphacrasters.	7-12 n in diameter; with 11-27 rays; central thickening 3.5-7 m in diameter.	10-12 /f in diameter; with 19-25 rays; central thickening $5-7 \mu$ in diameter.	8-13 μ in diameter; with 12-19 rays; central thickening 3.5-7 μ in diameter.
Nicrrasters.	ellipsoidal; 180-195 n long, 130-160 n broad, s0-115 μ thick.	ellipsoidal or, more rarely, three-lobed: the cllipsoidal ones 190-217 μ long, 160-190 μ broad, $105-125 f^{t}$ thick.	cllipsoidal or, more rarely, three-lobed; the ellipsoitlal ones 2:0$237 \mu$ long, $165-200 \mu$ broad, $103-120 \mu$ thick.

In 1898 Thicle (Zoulogica, 24, p. 12) deseribed a geodid sponge with reduced and irregularly arranged, partly axially situated teloclades and large ellipsoidal sterrasters from the northwestern Pacific (Japan). As the specimen at his disposal was merely a small fragment, he, although convinced that it did not belong to any of the geodid genera then known, refrained from establishing a new genus for it, and named it Geodia (?) cylindrica.

When I was preparing the systematic account of the Tetraxonia for the

Tierreich I found it quite impossible to place this sponge in any of the then existing genera, and, carrying out Thiele's suggestion, established the new genus Geodinella for it. ${ }^{1}$

There can be no doubt that the sponges above described belong to this genus. From the only species of it hitherto known, Geodinella (Geodia ?) cylindrica, they differ in having a much stouter body, megascleres twice as large, and different euasters. Geodia cylindrica has oxysphaerasters (pyenasters) 7-8 μ in diameter only; in G. robusta besides the strongylosphaerasters $7-13 \mu$ in diameter, which appear to correspond to the pyenasters of G. cylindrica, oxyasters attaining a diameter of $30-38 \mu$ are present in large numbers. Geodia cylindrica has been found only in Japan, G. robusta on the Pacific coast of North America.
${ }^{1}$ R. v. Lendenfeld. Tierreich, 1903, 19, p. 117.

I11. GENERAL SYSTEMATIC ACCOUNT OF THE GENERA, SPECIES, AND VARIETIEA OF GEODID.IE FROM TIIE P.ACIFIC OCEAN.

Geodidae.

Tetraxonia with rhabd, teloclate and usually also mesoclade megaseleres, and a superficial armour composed of massive, spheroidal, or ellipsoidal sterrasters. Euasters are always, ataxasters or microrhabds sometimes, present. Without desme megascleres and without thin, dise-shaped sterrasters.

This family, as now limited, comprises the genera Caminella Lendenfeld, lachymatisma Johnston, Caminus O. Schmidt, Isops Sollas, Sidonops Sollas, Geodia Lamarek, and Geodinella Lendenfeld.

All of these, with the exception of Pachymatisma, oceur in the Pacific Ocean.
Ninety-four species of Geodidae are known; forty-six oceur in the Pacific Ocean, and five of the Pacifie species are further divided into fifteen varieties.

CAMINELLA Lendenfeld.

Among the megaseleres are regular triaenes. The tetraxon megaseleres are confined to the superficial part of the sponge and arranged radially. The dermal microscleres are asters. The afferents are miporal; the efferents larger oscula.

Two species are known; one of which, C. nigra (Lintgren), oceurs in the l'acific Ocean.

Caminella nigra (Lindgren).
Leadenfeld, Tierrmich, 1903,19 , p. 90.
Isops nigra Lindgren, Zool. anz., 1897, 20, p. 486. Zonl. jahrb. Syst., 1898, 11, p. 352, plate 18, fig. 11, plate 20 , fig. $7 \mathrm{a}-\mathrm{e}$.

Ellipsoidal. Black.
Large amphioxes: 900 by 20μ. Minute amphioxes: 72 by 2μ. Plagioprotriaenes: rhabdome 960 by 20μ; clades 96μ long; cladome 180μ broad and 60μ high; clade-angles about 135°.

Choonosomal oxyasters: Rays not numerous, smooth, pointed; centrum small; total diameter 24μ. Oxysphaerasters: numerous conical rays; centrum very large: total diameter 20μ. Sterrasters: 62μ long and broad, 52μ thick.

Western Pacific. Java Sea; Gaspar Strait.
CAMINUS O. Sсhm.
Among the megaseleres are regular triaenes. The tetraxon megascleres are confined to the superficial part of the sponge and arranged radially. The dermal microseleres are asters. The afferents are cribriporal, the efferents larger oscula.

Four species are known, one of which, C. chinensis Lindgren, oecurs in the Pacific Ocean.

Caminus chinensis Linderen.
Zool. anz., 1897, 20. p. 485 . Zool. jahrl. Syst., 1895, 11, p. 339, plate 17, fig. 16, plate 20, figs. 2a-e, c. Lendenfeld, Tierteich, 1903, 19. p. 92.

Spherieal or ellipsoidal, erect. Brown. Cortex very hard.
Amphistrongyles: 720 by 24μ. Orthotriaenes: rhabdome $460-600$ by 36μ, blunt; elades 325-540 μ long; clade-angles, aceording to the figure $90-100^{\circ}$.

Oxyasters: centrum small; total diameter $24-32 \mu$. Sphueres: $2-5 \mu$ in diameter. Sterrasters: 136 by 108 by 90μ.

Northwestern Pacific. China Sea; Strait of Formosa.

ISOPS Sollas.
Among the megaseleres are regular triaenes. The tetraxon megascleres are eonfined to the superficial part of the sponge and arranged radially. The dermal mieroscleres are asters. The afferents are uniporal; the efferents uniporal.

Of the seventeen species known four occur in the Paeific Ocean.
Isops contorta (Bowerbank).
Sollas, Rept. voy. "Challenger," 1489, 25, p. 271. Lendenfeld, Tierreich, 1903, 19, p. 97.
Pachymastina contorta Bowerbank, Proc. Zool. soc. London, 1873, p. 327, plate 31, figs. 7-11.
Branching, branches anastomosing. Dry: light brown.
Large amphioxes: 1.838 mm . by 35μ. Small amphioxes: about 0.5 mm . long. Styles: 1.3 mm . long. Triaenes: rare.

Oxyasters: total diameter 32μ. Small sphaerasters: rays eonical; total diameter 70μ. Sterrasters flattened, ellipsoidal, 160μ long.

Western Pacific. Fiji Islands.

```
Isops imperfecta (Bowerbank).
```

Sinllis, Rept. voy. "Challenger," 1855, 25, p. 269. Lendenfeld, Tierreich, 1903, 19, p. 97. Geohlia imperfecla Bowerbink, Proc. Zool. soc. London, 1874, p. 299, plate 46, figs. 6-13.

Massive tuberous. Dry: white.
Amphioxes and amphistrongyles: 1.75 mm . by 39μ. Teloclades: triaene, diacne, or monaene; elades usually rounded terminally.

Sphaerasters: rays slender, eylindrical, truncate; centrum small; total diameter 21μ. Dermal sphaerasters: rays terminally divided into numerous spines; eentrum large; total diameter 12-19 μ. Sterrasters: ellipsoidal, depressed, or cylindrical, 110 by $\mathrm{S} 0 \mu$.
? Southern Pacific. South Sca.

Isops obscura Thiele.
Zoologica, 1895, 24, p. 6, plate 2, fig. 2; plate 6, figs. 2a-k. Lendenfeld, Tierreich, 1903, 19, p. 96.
Irregularly massive. Dark brown.
Amphioxes: $1.2-1.6 \mathrm{~mm}$. by 15-40 μ. Plagiotriaenes: rhabdome curved, 1.25 mm . long; clades stout, $80-120 \mu$ long; clade-angles large.

Large thin-rayed oxyasters: rays slender, 20μ long. Small thick-rayed oxyasters: total diameter 75μ. Oxysphaerasters: diameter the same as in the oxyasters. Sterrasters: spherical, 60μ in diameter. Sterroids: rare, similar to the sterrasters but with much thicker rays.

Northwestern Pacific. Japan.

Isops sollasi Lendenfeld.
Deseriptive catalogue sponges Australian museum, 18S8, p. 34. Tierreich, 1903, 19, p. 97.
Cup shaped, peduncular, or lamellar. Brown.
Choanosomal rhabds: 800 by 16μ. Plagiotriaenes: rhabdome 1 mm . by 25μ; clades blunt 260μ long.

Euasters: 16-30 μ in diameter; smaller many-rayed and larger few-rayed to be distinguished. Sterrasters: 48μ in diameter.

Southwestern Pacific. East coast of Australia; Port Jackson.

SIDONOPS Sollas.

Among the megascleres are regular triacnes. The tetraxon megascleres are confined to the superficial part of the sponge and arranged radially. The dermal microscleres are asters. The afferents are cribriporal; the efferents uniporal.

Twenty species are known; nine occur in the Pacific Ocean.
The species with anatriaenes found in the Paeific Ocean are S. lindgreni Ldf., S. pieteti (Tops.), S. ealifornica Ldf., S. alba (Kieschnick), S. angulata Ldf. (var. megana Ldf., var. microana Ldf., var. orthotriaena Ldf.), S. oxyastra Ldf., S. reticulata (Bwk.); those without anatriaenes are S. bieolor Ldf., S. nitida (Soll.).

Sidonops lindgreni Lendenfeld.

Tierreich, 1903, 19, p. 102.
Silonops pícteti Linegren (non Topsent 1897), Zool. anz., 1897, 20, p. 486. Zool. jahrb. Syst., 1898, 11, p. 349, plate 18, figs. 17, a, b, plate 20, fig. 6, a-h, $c^{\prime}-c^{\prime \prime}$, d^{\prime}. Kirkpatrick, Proc. Zcol. soc. London, 1900, p. 130.

Massive irregular, sometimes with digitate processes. Cortex brown, choanosome grayish.

Large ehoanosomal amphioxes: 2.5 mm . by 40μ. Ninute dermal styles: 240 by 5μ. Orthotriuenes: rhabdome 2.4 mm . by 54μ; clades slender, strongly coneave to the rhabdome, 756μ long. Proelades (mesoproelades): triacne, diaene, or monaene; rhabdome 4.6 mm . by 24μ; clades 100μ long; cladome 140μ broad and 70μ high. Anatriaenes: rhabdome 3 mm . by 12μ; clades stout, 68μ long; eladome 80μ broad and 60μ high.

Choanosomal oxyasters: rays rough, pointed, very numerous; centrum small; total diameter 20-48 μ. Small strongylosphaerasters: centrum large; total diameter 4μ. Sterrasters: 160 by 120μ.
? Western Pacific. Java.

Sidonops picteti Topsent.

Revue Suisse zool., 1897, 4, p. 431, plate 18, fig. 2. Lendenfeld, Tierreich, 1903, 19, p. 103.
Massive tuberous, elongated. In spirit: reddish gray.
Amphioxes: $500-600$ by 30μ. Orthotriuenes; rhabdome of similar dimensions as the amphioxes; elades slender, 90μ long; eladome 185μ broad. Protriuenes (? mesoprotriaenes): rhabdome 10μ thick; elades 70μ long. Anatriaenes: rhabdome 10μ thick; cladume 70μ broad and 53μ high.

Oxyasters: usually from seven to twelve slender, spined, conical rays, 2μ thick; centrum small; total diameter $35-40 \mu$. Strongylosphaerasters: centrum large; total diameter $4-6 \mu$. Sterrasters: 97 by 85μ.

Topsent, 1897, states that in another specimen the sterrasters measured 140 by 115μ. I should say that this sponge probably belongs to another species.

Western Pacific. Bay of Amboyna.

Ante, P. 18.
Elongate, tuberons. In spirit: yellowish white.
Large choanosomal amphioxes: $1.2-2 \mathrm{~mm}$. by $30-4 \mathrm{~S} \mu$. Large styles: rare; 55μ thick. Vimute dermal styles: 175-290 by 3-7 μ. Very minute amphioxes: 50) by 1μ, possibly foreign. Orthoplagiotriaenes: rhabdome $0.9-1.45 \mathrm{~mm}$. by $20-$-i μ; clades concave to the rhabdome, $160-400 \mu$ long; clade-angles 104 120°. Mesoplagiocludes: thabdome 6-15 μ thick; from one to three clades, 20 42μ long; clade-angles $102-115^{\circ}$. Anatrituenes: rhabdome $10-17 \mu$ thick; clades stout, $22-45 \mu \mathrm{long}$, clade-angles $45-66^{\circ}$. Anadiaenes and anamonaenes: of similar dimensions; rare.

Larye chomosomal oxyasters: six to fourtenn rays, $1.7-3 \mu$ thick, covered everywhere, except at the base with spines; total diameter $22-48 \mu$; size in inverse proportion to ray-number. Small oxysphaerasters: 7-9 μ in diameter. Small strongylosphacrusters: from six to seventeen spined rays, rounded terminally and $0.8-1.5 \mu$ thick; centrum 2-3.5 μ, whole aster $4.5-9 \mu$, in diameter. Sterrasters: 116-130 by $97-105$ by $70-90 \mu$

Eastern Pacific. West coast of North America; $22^{\circ} 52^{\prime} \mathrm{N}$. "Albatross" Station 2829.

```
Sidonops alba (Kieachnick).
```

1.endenfeld, Tierreich, 1903,19 , p. 100.

Synops alba Kísenchnick, Zool. anz., 1896, 19, p. 529.
Siglonops albu (Kieschnick) Thiele, Abhandl. Senckenb, gesellsch., 1900, 25, p. 46, plate 2, fig. 16a-h.
Irregular, depressed, with attached foreign bodies. Dirty brownish white.
Large chounosomal amphioxes: 2.5 mm . by 30μ. Large styles: rare, of similar timensions as the large amphioxes. Winute dermal styles: 250 by 5) μ. Plagiotriaenes: rhabdome 2 mm . long; dades $450 \mu \mathrm{long}$. Mesoprocladederivetes: monaene or diacne; clades reduced, short; total length of spicule 3 mm .; its thickness 14μ; epirhabd 80μ long. Large anatriaenes: rhabdome 2.5 mm . by 14μ; clades, strongly recurved, about 20μ long. Minute dermal rnacludes (Thiele, 1900, exotyles): triaene, or, more rarely, diaene or monaene; rhabolome 170μ long and about as thick as the minute dermal styles.

Oryasters: a smaller kind with numerous rays, not quite up to 15μ long; and a larger kind with few, rough rays, up to 30μ long. Small strongylosphaerasters: rays short and stout; centrum large; total diameter about $S \mu$. Sterrasters: 11090μ.

Western Pacific. Temate.

Sidonops angulata Lendenfecd.
Ante, p. 24.
Massive, irregularly spherical or lobose. In spirit: yellowish in the interior and white to reddish or purplish brown on the surface.

Stout chaonosomal amphioxes: straight, slightly curved or angularly bent: $1.6-3.7 \mathrm{~mm}$. by $20-72 \mu$. Styles and style-derivates: rare; $2.1-2.5 \mathrm{~mm}$. by $60-$ 110μ; the derivates with a branch-ray. Slender dermal amphioxes: slightly curved or angularly bent; 2.9-9.5 mm. by $5-34 \mu$. Orthoplagiotriaenes: rhabdome 1.5-2.8 by $47-82 \mu$, rarely shortened and thickened, up to 105μ thick; clades concave to the rhabdome, curvature increasing distally, $330-700 \mu \mathrm{long}$, clade-angles $89-112^{\circ}$. Anaclades: mostly triaene, sometimes diacne; rhabdome up to more than 9 mm . in length and $7-39 \mu$ thick; clades 30210μ long; clade-angles $27-66^{\circ}$.

Oxyasters and oxysphaerasters: one to twenty-three perfectly smooth, conic rays $1.6-5 \mu$ thick; centrum, when present, up to 12μ in diameter; total diameter 11-64 μ; size on the whole in inverse proportion to the ray-number. Strongylosphaerasters: from ten to twenty, equal or, more rarely, unequal, truncate, distally spined rays, $2-6 \mu$ thick; centrum $7-14 ; 1$, whole aster $16 \div 8$ μ in diameter. Sterrasters: 85-122 by 75-113 by $57-86 \mu$.

Northeastern Pacific. West coast of North America; off southern Califormia. "Albatross" Stations 2945, 2975, 4417.

Sidonops angulata var. megana Lendenfeld.

Ante, p. 24.
Stout choanosomal amphioxes up to 72μ thick. Slender dermal amphioxes, not numerous, up to 34μ thick. Anaclades, triaene, rhabdome up to 39μ thick, clades up to 210μ long. Strongylosphaerasters with nearly cylindrical rays. Sterrasters up to 122μ long, all ellipsoidal.

Northeastern Pacific. West coast of North America; 34 $1^{\circ} 30^{\prime \prime} \mathrm{N}$. "Albatross" Station 2975.

Sidonops angulata var. microana Lendenfeld.
Ante, p. 24.
Stout ehoanosomal amphioxes up to 52μ thick. Slender dermal amphioxes, very abundant, up to 22μ thick. Anaelades, triaene and, less frequently, diaene, rhabdome up to 18μ thick, clackes up to 50μ long. Strongylosphaerasters with conical rays. Sterrasters up to 97μ long, all ellipsoidad.

Northeastern Pacific. West coast of North Ameriea; near Santa Barbara 1slands. "Albatross" station 4417.

Sidonops angulata var. orthotriaena Lendenfeld.

 Ante, p. 24.Stout choanosomal amphioxes up to 70μ thick. Slender dermal amphioxes, not numerous, up to 17μ thick. Anaclades, triaene, rhablome up to 18 μ thick, clades up to $\$ 0 \mu$ long. Strongylosphaerasters with nearly cylindrieal rays. Sterrasters up to 111μ long; besides the ellipsoidal also thomboidal ones occur.

Northeastern Pacific. West coast of North America: $34^{\circ} \mathrm{N}$. "Albatross" Station 2945.

Sidonops oxyastra Lendenferd.

Ante, p. 40.
Lobose. In spirit: brownish white to purplish brown.
Large choomosomal amphioxes: 1.1-1.55 by $10-32 \mu$. Large amphistrongyies: $0.8-1 \mathrm{~mm}$. by 1823μ. Large styles: rare, 850 by 38μ. M mute dermal styles: 130230 by $3-5.5 \mu$. Plagiotriaenes: rhabdome 1-1.65 by $24-40 \mu$; clades equal, or some of them reduced, concave to the rhabdome, the distal part of long ones often eurved in the opposite direction, when fully developed, 250-285 μ long; clacle-angles $100-118^{\circ}$. Anaclades: mostly triaene, sometimes diaene or monaene, rhabdome over 1 mm . long, $5-12 \mu$ thick; a protuberance on the apex of the cladome, sometimes elongated to form an epirhabd 56-75 long; clades $15-30 \mu$ long; elade-angles $40-65^{\circ}$.

Large chounosomal oxyasters: from four to ten, usually seven rays, $0.5-$ 2 : thick and coverel everywhere, except quite at the base, with spines; centrum very small; total diameter $18-45 \mu$. Large subcortical oxysphaerasters: from sixteen to twenty-three conical, spined rays $1.1-1.4 \mu$ thick; centrum 4.2-6.5 μ, whole aster $16-22 \mu$, in diameter. Small dermal oxyasters and oxysphuerasters: nine to eighteen spined rays, $0.7-1.5 \mu$ thick, eentrum, when present, up to a third or more, of the whole aster in diameter; total diameter $6-13.5 \mu$. Sterrasters $76-55$ by $66-73$ by $50-64 \mu$.

Eastern Pacifie. Galapagos; Duncan Island.

Sidonops reticulata (Bowerbank).
Lendenfeld, Tierreich, 1903, 19, p. 102.
Georia reticulata Bowerbank, Proc. Zool. soc. London, 1874, p. 300, plate 46, figs. 14-20. Sollas, Rept. voy. "Challenger," 1858,25, p. 253.

Massive. Dry: white.
Amphioxes: 1.75 mm . by 19μ. Orthoplagiotriaenes: rhabdome 2 mm . by 31.2μ; clades 237.5μ long; cladome 450μ broad. Protriaenes: (mesoprotriaenes ?): clades 250μ long; cladome 120μ broad and 206μ high. Anatricenes: clades 144μ long; cladome 150μ broad and 125μ high.

Oxyasters: no centrum; total diameter 25.4 μ. Small strongylasters: total diameter 8.5μ. Sterrasters: spherical, small.
? Eastern Pacific. Mexico.

Irregularly tuberous, elongated or flattened. In spirit: whitish to reddish or purple-brown, some parts of the surface usually much darker than others.

Stout amphioxes: rather blunt; 2.3-5.6 mm. by $36-105 \mu$. Stout styles: rare, not in all specimens; 4 mm . by $100-200 \mu$. Slender amphioxes: $3.5-9 \mathrm{~mm}$. by $15-40 \mu$. Plagiotriaenes: rhabdome usually $2.1-4 \mathrm{~mm}$. by $82-110 \mu$ at the cladome, and $3-10 \mu$ more a little below, at the thickest point; sometimes reduced in length, cylindrical and rounded; clades, concave to the rhabdome, nearly straight, or concave to the rhabdome proximally and convex to it distally, blunt, $280-700 \mu$ long; clade-angles 103-122.

Large choanosomal oxyasters: from one to twelve, most frequently from seven to nine, distally spined rays, $1-2.8 \mu$ thick; centrum $2.8-6 \mu$, whole aster 19-34 μ, in diameter. Oxysphaerasters: from twelve to twenty-five distally spined rays, $0.7-2.5 \mu$ thick; centrum $4-10 \mu$, whole aster $10-23 \mu$, in diameter. Strongylosphaerasters: usually from nine to thirty, very rarely only one, distally spined rays, $0.7-3.5 \mu$ thick; centrum 4-12 μ, whole aster $9-21 \mu$, in diameter. Sterrasters: $130-170$ by $100-133$ by $77-97 \mu$.

Northeastern Pacific. West coast of North America; from $33^{\circ} 18^{\prime} \mathrm{N}$. to Monterey Bay. "Albatross" Stations 2958, 2981, 3168, 4420, 4531, 4551.

Proc. Roy. Dublin soc., 1499, 6, p. 27. Lendenfeld, Tierreich, 19i33, 19, p. 104.
 plate 22, figs. 1-18.

Lamellar, attemated towards the margin. In spirit: faint brownish white.
Amphioxes: 1.25 mm . by 26 . . Orthoplagiotriaenes: rhabeme 1.07 mm . by $28 . \overline{\text { i }} \mu$; dades 183μ long; cladome 358μ broad, 50μ high.
('hoanosomul oxyasters: usually about seven, sometimes as few as two, stout bhant rays with large spines; centrum small; total diameter, 43.4μ. Strongylusphaerasters: rays thick, terminally rounded; total diameter 13.5 f . Stemasters: spherical, 51.6μ in diameter.

Southwestern Pacifie. East coast of Australia; Port Jackson.

geodia Lamarck.

Among the megaseleres are regular triacnes. The tetraxon megaseleres are confined to the superficial part of the sponge and arranged radially. The dermal microscleres are asters. The afferents are eribriporal, the efferents aribriporal.

Forty-four species are known, twenty-nine of which oceur in the Pacific Orean.

```
GUMMARY OF THE SPECIES FOUND IN TIE P.CIFIC OCEAN.
```

A_{1} Fully developed triaene mesoproclades (proclades) present.
λ_{2} The large choanosomal asters are oxyasters, rarely strongylasters, never acanthtylasters.
λ_{3} With sphacrasters up to 90μ in diameter.
G. nux (Selenka).
B_{3} The largest sphacrasters under 60μ in diameter.
A_{4} With sphaerasters up to 31μ in diameter, with very large centrum and numerous very short and thick rays.
Λ_{5} The rays of the sphaerasters with large centrum are conic.
(i. cosaster (Sollas). G. globostella Lendenfedd.
B_{5} The rays of the sphaerasters with large centrum are cylindrical, truncate, and bear terminal spines.
G. distineta Lindgren.
B_{4} Without large sphacrasters with very large centrum and very short rays.
A_{5} The dermal asters small, usually 5 -6, the largest never over 8.3μ in cliameter. Regular or irregular (ataxastrose).
G. erinaceus (Lendenfeld). G. variospiculosa Thiele. var. typica Lendenfeld var. clavigera Thicle. var. intermedia Lendenfeld. var. micraster Lendenfeld. G. reniformis Thiele. G. japonica (Sollas). G. cooksoni (Sollas). G. hilgendorfi Thicle. var. typica Lendenfeld var. granosa Thiele. G. ataxastra Lendenfell.
B_{5} The dermal asters large, usually 8-12, the largest never under 8μ in diameter. Usually regular.
A_{6} Sterrasters over 300μ long. G. hirsuta (Sollas).
B_{6} Sterrasters up to $70-125 \mu$ long.
A_{7} The large choanosomal rhabds are chiefly amphioxes.
G. mesotriaena Lendenfeld. var. pachana Lendenfeld. var. megana Lendenfekl. var. microana Lendenfeld. G. agassizii Lendenfeld. G. mesotriaenella Lendenfeld. G. breviana Lendenfeld. G. ovis Lendenfeld. G. sphaeroides (Kieschnick). G. mieropora Lendenfeld. G. berryi (Sollas). G. kükenthali Thiele.
B_{7} The large choanosomal rhabds are chiefly amphistrongyles.
G. amphistrongyla Lendenfeld.
C_{6} Sterrasters under 60μ long.
G. lophotriaena Lendenfeld.
B_{2} The large choanosomal asters are acanthtylasters.
G. acanthtylastra Lendenfeld.
B_{1} Regularly triaene promesoclades (proclades) absent. Promesoclades (proclades) with more or less reduced cladomes (only two or one clades) sometimes present.
G. nigra Lendenfeld. G. media Bowerbank. (i. magellani (Sollas). G. exigua Thiele. (i. inconspieua (Bowerbank).

Geodia nux（太EleNkA）

 Cydonium nux solias．，Rept．voy．＂Challenger，＂ 1 Nss，25，p． 269.

Spherical with wart－shaped protuberances．In spirit：brown on the surface， yellowish in the interior．

Lmphistrongyles： 1.83 mm ．by 38.7μ ．Dichotriaenes：（Sollas，1SSS）． Playiotriacues（Nelenka，1867）clades short．

Large orysphaerasters：rays numerous，conical smooth；centrum 51.6μ ， whole aster 96μ in diameter．Small tylosphueraster（Sollas，188S）：total diameter 16μ ．Sterrasters（Sollas， 1 SSS ）： 90 by $\mathbf{7} 7.4 \mu$ ．

This is a very doubtful species．Ridley ${ }^{1}$ was inclined to consider it as a monaxonid（Tethya，that is，Donatia），while I did not include it in my synopsis of the Tetraxonia（Tierreich，1903，19）．Of course，if all the spicules found by Sollas in the spicule－preparation examined by him，really belong to it，it is a geodine tetraxonid，but as one frequently finds foreign spicules in such prepa－ rations，and as Selenka himself does not mention sterrasters，the status of this sponge must remain doubtful．I therefore place Geodia nux here with all reserve．

Western Pacific．Samoa Islands．

Geodia eosaster（Sollas）．

Lfadenfeld，Tierreich，1903，19，p．I10．
「＇ydomium rosaster Sollas，Jept．voy．＂Challenger，＂1888，25，p．225，plate 20，fig．22，plate 21，figs．15－29． Non Geolia cosaster Tupsent， 1904.

Spherical．In spirit：yellowish white．
Large choanosomal amphioxes：＇2．856 mm．by 32μ ．Ninute dermal am－ phioxes： $250-300$ by 3.5μ ．Dichotriacnes：rhabdome 3.57 mm ．by 47μ ；main clades 110μ ，end clades 210μ long．Protritenes（？mesoprotriaenes）：rhabdome 5 mm ．by 19μ at the cladome，and 26μ at the thickest point near the middle； clades 190μ long；cladome 190μ broad．Anatriaenes：rhabdome 8.21 mm ． by 29μ ；clades 95μ long；cladome 190μ broad and 48μ high．

Large oxyasters：four to numerous rays；total diameter $27.6-39 \mu$ ．Large oxysphaerusters：rays exceedingly short and broad，appearing as low conical protuberances of the very large centrum；total diameter 19．8－31 μ ．Small strongylosphaerasters：rays conical or eylindrical，truncate；total diameter 10μ ． Stemasters：spheroidal；64－70 μ in diameter．

[^14]Topsent ${ }^{1}$ has identified a number of sponges from the Açores as Geodia cosaster (Sollas). Since, however, the rays of the large strongylosphacrasters with very large centrum are in these sponges short, thick, cylindrical, and spined on their terminal face, and since they possess, besides the dichotriacnes, also orthotriaenes, I hardly think that Topsent's identification is correct.

Southwestern Pacific. East coast of Australia; Port Jackson.

Geodia globostella, nom. nov.
Geomia globostcllifera Ridley, Rept. voy. "Alert.," 1884, p. 480, plate 43, fig. b. Non Geodia globostclifera Carter, 1 SS0.

In spirit: gray with a crimson tinge in places.
Large choanosomal amphioxes: 3 mm . by 38μ. Minute dermal amphioxes: 160 by 5μ. Orthotriacnes: rhabdome 70μ thick; eladome 580μ broad. Protriaenes: rhabdome 16μ thick; clades 1 mm . long.

Large choanosomal oxyasters: rays few in number, often eurved; total diameter 38μ. Large oxysphaerasters: rays conical, very short and stout; centrum very large; total diameter 28μ. Small strongylasters: rays numerous; total diameter 6.3μ. Sterrasters: 90μ Iong.

In 18S0, H. J. Carter described ${ }^{2}$ a sponge as Geodia globostellifera (globostellate ${ }^{3}$) from the Gulf of Manaar. In 1884, s. O. Ridley ${ }^{4}$ had occasion to study a sponge from Port Darwin, which, although distinguished from G. globostellifera Carter, 1850, by the presence of minute dermal amphioxes, by the much greater thickness of the orthotriaene-rhabdomes, the much greater length of the pro-triaene-clades and the larger size of the spicules gencrally, particularly the small strongylasters, he assigned to this species of Carter. Sollas ${ }^{5}$ and myself ${ }^{6}$ roubted the correctness of this identification, and in consideration of the differences between the specimens of Carter and of Ridlley, I think it advisable to distinguish them speeifically.

Southwestern Pacific. North Australia ; Port Darwin.

[^15]
Geodia distincta Lindgren．

Zool．anz．1497，11．p．486．Zool．jahrl．Syst．，1898，11，p．343，plate 17，fig．15，plate 1s，fig．19， plate 20 ，fig． $3 \mathrm{a} k, a^{\prime}, d^{\prime}$＇．Lendenfeld，Tierreich，1903，19，p． 111.

Tuberous．

 （umphioxes： 290 by 12μ ．Orthotriaenes：rhabdome $1.8-2.5 \mathrm{~mm}$ ．by 48μ ；dades concave to the thabdome， 240μ long，sometimes one or two bifureate．Pro－ triaenes（probably mesoprotriaenes）：rhabdome $2.33-3 \mathrm{~mm}$ ．by 12μ ；clades 135μ long：cladome 120μ broad and 130μ high．Anatriaenes：rhabdome 3.4 mm ．by 12μ ；clades 72μ long；cladome $S 4 \mu$ broad and 60μ high．

Large choanosomal oxyasters：rays blunt，roughened；centrum small； total diameter 44μ ：Small subcortical oxyasters：rays spined；centrum 4μ ，whote aster 10μ ，in cliameter．Large strongylosphacrasters：rays numerous，short，and thick，with spines on their terminal faces；centrum very large；total diameter 28μ ．Small strongylosphacrasters：centrum 2.5μ ，whole aster $S \mu$ ，in diameter． Nterrasters：spheroidal，6S by 56μ ．

Western Pacific．Java Sea；Java．

Geodia erinaceus（Lendenfeld）．
Tierreich，1：03．19．p． 107.
Cydonium erinaceus Lendenfeld，Deseriptive catalogue sponges Australian muscum，1S58，p． 36.
The following description is based on an examination of part of the type specimen in the British Museum．

Massive flattened，margin mostly lobose，or digitatē；up to 20 cm ．long． In spirit：dirty white to brown．Spicule－fur chiefly of large orthotriaenes．

Large choanosomal thabds：attenuated towards both ends，one or both ends usually rounded； $3.5-4.6 \mathrm{~nm}$ ．（Ldf．，1888， 2 mm ．）by 23－49 μ ．Minute dermal rhabds：mostly amphiox；200－300（Ldf．，1S8S， 320μ ）by $10-12 \mu$ ．Orthotriaenes： thabdome $3.5-4.2 \mathrm{~mm}$ ．（Ldf．， $1888,1-3 \mathrm{~mm}$ ．）by $40-50 \mu$ ；clades coneave to the rhabdome throughout their whole length， $400-550 \mu$ long；clade－angles $90-100^{\circ}$ ． Mesoproclades：rare；rhabdome 4．8－5．2 mm．by $10-20 \mu$ ；clades usually irregu－ lar and one or two often reduced，fully developed ones $50-60 \mu$ long；clade－ angles 49－56 ；epirhabl $30-70 \mu$ long（not mentioned by Ldf．，1SSS）．Large anatriuenes：rare；rhabdome 13μ thick；clades 30μ long；clade－angles 63° （not mentioned by Ldf．，1SS8）．Winute dermal anatriaenes：rhabdome termi－ nally rounded，about 280 by $2-3.5 \mu$ at the eladome，and $3-5.5 \mu$ in the middle； clades 6－9 μ long；clade－angles $39-54^{\circ}$（not mentioned by Ldf．，1SSS）．

Large oxyasters: from five to fourteen, conical, in small ones smooth, in large ones spined, rays, $1-1.5 \mu$ thick; total diameter $16-30 \mu$. Large oxysphacrasters: connected with the former by transitions; from fifteen to twenty rays, 1.2-3 μ thick, with sparse, stout spines near their end; centrum $3-8 \mu$, whole aster 22-2S μ, in diameter. Small strongylosphaerasters: from eight to twenty, usually equal, rarely unequal, truncate or rounded, spined rays, $0.8-1.3 \mu$ thick; centrum 1.6$3 \mu$, whole aster 5.5-7.3 μ (Ldf., 1S88, 3-5 μ), in diameter. Sterrasters: 140-160 by $127-144$ by $100-108 \mu$.

Southwestern Pacific. East coast of Australia.

Geodia variospiculosa Thiele.
Zoologica, 1898, 24, p. 10, plate 6a-1, 7a, b. Lendenfeld, Tierreich, 1903, 19, p. 107. Ante, p. 55.
Massive tuberous. In spirit: dirty white to light brown.
Large choanosomal amphioxes: $1-3.9 \mathrm{~mm}$. by $20-50 \mu$. Large ehoanosomal tylostyles or styles: 1.35 mm . by $25-50 \mu$; tyle $30-70 \mu$ (observed by me in vars. intermedia and micraster, not mentioned by Thiele, 1898, in vars. typica and eluvigera). Large dermal tylostyles: 1.6 mm . by 11μ, tyle 18μ (present only in var. clavigera). Minute dermal styles: 200-320 by $3-7 \mu$. Orthoplagiotriaenes: rhabdome $1.25-3 \mathrm{~mm}$. by $30-65 \mu$ at cladome and $43-70 \mu$ at thickest point, a little below; clades $220-760 \mu$ long; clade-angles $99-111^{\circ}$. Dichotriaenes: not numerous; rhabdome $1.25-2.6 \mathrm{~mm}$. by $30-75 \mu$ at cladome and $45-90 \mu$ at thickest point, a little below; main clades $150-340$, end clacles $140-400 \mu$ long; main clade-angles 90° or a little over. Mesoprotriaenes: rhabdome 2.53.2 mm . by $7-20 \mu$; clades $60-220 \mu$ long; clade-angles $30-63^{\circ}$; epirhabd $25-$ 95μ long. Large anatriaenes: rhabdome $3.6-5.2 \mathrm{~mm}$. by 12-46 μ; clades 30$180 \mu$ long; clade-angles $22-70^{\circ}$. Ninute dermal anaclades; rhabdome 205-560 μ by $1-4 \mu$ at cladome, and $2-7.5 \mu$ at thickest point below the middle; clades $3-$ 13μ long; clade-angles $38-54^{\circ}$.

Large choanosomal oxyasters: from one to eleven conical, distally spined rays, $9-135 \mu$ long, $1-\mathrm{S} \mu$ thick; total diameter in var. intermedia and var. micraster 17-180 μ. Oxysphaerasters: from fourteen to twenty-two rays, $1-2 \mu$ thick; centrum 5-6 μ, whole aster $14-30 \mu$, in diameter. Small strongylosphaerasters: from ten to nineteen equal or unequal rays $0.5-2 \mu$ thick; centrum 2.4μ, whole aster $5-8 \mu$, in diameter. Sterrasters: $80-133 \mu$ long, $65-116 \mu$ broad, in vars. intermedia and micraster $70-90 \mu$ thick.

Northwestern Pacific. Japan, off Honshu Island. "Albatross" Stations 3746, 3758; westward of Yogashima.

Geodia variospiculosa var. typica Lendenfeld
(icomin moriospiculuma Thatele, Zoologica, 1s9x, 24, p. 10, phate 6 , fig. 6 .
Without demal tylostyles. Orthophagiotriaene-elades t00-460 μ long. Anatriaene-clades up to 180μ long. Oxyaster-rays up to 135 . l long. Sterrasters up to $11 \mathrm{~F}^{-} \mathrm{k}$ long.

Northwestern Pacific. Japan; westward of Yogashima.

Geodia variospiculosa var. clavigera Tharle.
Zoologiea, 1898, 24, p. 11. plate 6, fig. 7a-b.
With large dermal tylostyles. Orthophagiotriaene-clades 250300 klong . Anatriaene-clades only $30-40 \mu$ long, one or two frequently absent (anadiaenes, anamonaenes). sterrasters 100μ long.

Northwestern Pacific. Japan.

> Geodia variospiculosa var. intermedia Lendenfeld Ante, p. 55.

Without large dermal tylostyles. Orthoplagiotriacne-clades 220-550 μ long. Anatriaene-clades up to 135μ long. Oxyaster-rays up to 90% long. sterrasters up to $125 \mu \mathrm{long}$.

Northwestern Pacific. Japan; off Honshm Island. "Abatross" Station 3746.

Geodia variospiculosa var. micraster Lendenfeld.

$$
\text { Ante, p. } 55 .
$$

Without large, dermal tylostyles. Orthoplagiotriaene-clades 240-760 μ long. Anatriaene-clades up to 130μ long. Oxyaster-rays up to $i 2 \mu$ long. sterrasters up to $13: 3 \mu$ long.

Northwestern Pacific. Japan; off Honshu Island. "Albatross" Station 3758.

Geodia reniformis Thiele.

Zoologica, 1895, 24, p. 9, plate 1, fig. 3, plate 6, fig. 5a-h. Lendenfeld, Tierreich, 1903, 19, p. 108.
Kidney shaped. Dry: light brown.
Large chounosomal amphioxes: 3.3 mm . by 45μ. Ninute dermal amphioxes: 170μ long. Orthotriaenes: rhabdome 2.8 mm . by 90μ; clades $500-600 \mu$ long. Mesoproclades: mostly triaene, rarely diaene; rhabdome 1.5 mm . by 25μ; clades
70μ, cpirhabd $30-40 \mu$ long. Anaclades: mostly triaene, rarely diaene or monaene; rhabdome $4-4.5 \mathrm{~mm}$. long, clades 50μ long.

Large oxyasters: rays few, $40-70 \mu$ long. Small oxyasters: rays more numerous, $15-20 \mu$ long. Oxysphaerasters: rays stout and short; total diameter 12 μ. Small strongylosphaerasters: regular or irregular (ataxastrose); total diameter 5μ. Sterrasters: 130 by 113μ.

Northwestern Pacific. Japan; Enoshima.

Geodia japonica (Sullas).
Thiele, Zoologica, 159s, 24, p. 7, plate 2, fig. 1, plate 6, fig. 3. Lendenfeld, Tierreich, 1993, 19, p. 111 ; Ante, p. 72.
Cylonium japonicum Sollas, Rept. voy. "Challenger," 188s, 25, p. 256.
The following description is also based on an examination of part of the type specimen in the British Museum.

Cup shaped, outside lobose, large, up to nearly 50 cm . high. Dry: white.
Stout choanosomal amphioxes: $2-3.3 \mathrm{~mm}$. by $30-51 \mu$. Large styles: 2.1 2.8 mm . by $40-43 \mu$ in the middle and $10-31 \mu$ at the rounded end. Slender amphioxes: 1-2.2 mm. by 12-22 μ. Ninute dermal rhabds: mostly amphiox, rarely style; $195-280$ by $3.5-7 \mu$; often irregularly curved. Orthoplagiotricuenes: rhabdome $2.3-3.2 \mathrm{~mm}$. by $50-85 \mu$; clades $180-380 \mu$ long, distal part straight; clade-angles $90-102^{\circ}$. Mesoproclades: rhabdome 2.84 .3 mm . by $11-$ 21μ; clades $65-125 \mu$ long; clade-angles $22-48^{\circ}$; epirhabd $40-105 \mu$ long (not mentioned by Sollas, 1888, and Thiele, 1898). Large anaclades: mostly triaene, rarely monaene; rhabdome $2.4-5 \mathrm{~mm}$. by $\mathrm{S}-23 \mu$; clades $70-130 \mu$ long; cladeangles $23-45^{\circ}$. Minute dermal anaclades: triaene, diaene, or monaene; rhabdome 235-310 by 1-2 μ at the cladome, and $2.8-5 \mu$ in the middle; clades 3-10 μ long: clade-angles $30-54^{\circ}$ (not mentioned by Sollas, 1888, and Thiele, 1898).

Large oxyasters: from three to seven straight, conical, blunt, spined rays, $1.2-2.8 \mu$ thick; total diameter $21-46 \mu$ (Thiele, 1898 , gives the ray-length as 6-14 μ). Oxysphaerasters: from fifteen to twenty-one straight, conical, pointed, spined rays $1.4-2 \mu$ thick; centrum 5-7.5 μ, whole aster $15-22 \mu$ in diameter. Small strongylosphaerasters: mostly regular, rarely irregular (ataxastrose); from six to twenty-two truncate or terminally rounded, spined rays, $0.5-1.3 \mu$ thick; centrum $1.2-5 \mu$ in diameter; the regular forms $4-6 \mu$, the ataxastrose ones $5.8-7.3 \mu$ in total diameter. Sterrasters: $80-92$ by $65-80$ by $55-61 \mu$ (Thiele, 1898, 75 by 65μ.

Northwestern Pacific. Japan; (Thiele's specimen, near Enoshima).

Geodia cooksoni (Sollas).

Lembenfeld, Tierreich, 1903,19, p. 115.
Cydonium cooksoni solbas, Rept. voy. "Challenger," 18ss, 25, p. 255.
The following description is based on an examination of part of the type specimen in the British Dluseum.

Probably lobose. In spirit: light brown.
Choonosomal amphioxes: $1.2-2 \mathrm{~mm}$., mostly $1.7-1.9 \mathrm{~mm}$. by $18-36$, mostly $25-3: \mu$ (Sollas, 18SS, 41μ. Wimute dermal rhubds: mostly amphiox, rarely with one or both ends blunt: $150-190 \mu$ (Sollas, $18 S 8,129 \mu$) by $2-5 \mu$. Orthoplugiotriaenes: rhabdome $1.2-1.9 \mathrm{~mm}$. by 4060μ (Gollas, $1885,64.5 \mu$); clades coneave to the rhabdome throughout their length, $200-340 \mu$ long; clade-angles SS 104°, on an average 97°. Meseproclades (Sollas, 188S, protriaenes): rhabdome $1.6-2 \mathrm{~mm}$. (Gollas, $1888,2.38 \mathrm{~mm}$.) by $7-13 \mu$ (Sollas, 1888 , error, 75μ) at cladome and $10-18 \mu$ in the middle; rarely three fully developed clades, usually one, two, or all three reduced or absent altogether, fully developed clades 27 45μ long; clade-angles $34-64^{\circ}$, on an average 44°; epirhabd $30-70 \mu$ long.

Large choanosomal oryasters, with from two to thirteen usually strongly spined, straight, conical rays, $1.6-2.3 \mu$ thick at the base; centrum small or absent; total diameter $22-42 \mu$ (not mentioned by Sollas, 188S). Sollas, 18S8, describes chiasters 19.7μ in diameter with slender, cylindrical, truncate rays, which were not observed by me. Oxysphacrasters: with from eleven to thirty conical, distally sparsely spined rays, $0.5-1.6 \mu$ thick at the base; centrum 1.33μ, whole aster 12-18 μ (Sollas, 1888 , up to 19μ) in diameter. Strongylosphaerasters: with from ten to thirty cylindrical or cylindroconical, truncate rays, 0.5-1.1 μ thick; centrum 1.5-2.5 μ, whole aster 4-6.5 μ (Sollas, 1SSS, 1-6 μ), in diameter. Sterrusters: flattened ellipsoids, $75-80 \mu$ by $70-75 \mu$ by $57-60 \mu$ (Sollas, 18SS, 77.4 by 66 f).

Eastern Pacific. Galapagos; Charles Island.

Geodia hilgendorfi Thiele.

Zoologic:1, 1898, 24, p. 8, plate 1, fig. 1, plate 6, fig. 4a-k. Lendenfeld, Tierreich, 1903, 19, p. 112.
Massive clongate, with broad and low lobose protuberances. Dry; whitish.
Large amphioxes: $1.2-1.6 \mathrm{~mm}$. long. Hinute dermal amphioxes: blunt, 140-180 μ long. Orthoplagiotriaenes: rhabdome $1.6-1.7 \mathrm{~mm}$. long sometimes reduced and rounded; clades $250-300 \mu$ long; cladome sometimes very irregular. Mesoprotricenes: rhabdome 1.21 .6 mm . long; clades as long as or longer than the epirhabd. Anatriaenes.

Large choanosomal oxyasters: with or without centrum; total diameter 15-40 μ. Subcortieal oxysphaerasters: rays short and stout, centrum very large; total diameter 12μ. Irregular sphaerasters (ataxasters): rays very short; total diameter $3-5 \mu$. Sterrasters: $53-80$ by $45-60 \mu$.

Northwestern Pacific. Japan.

Geodia hilgendori var. typica, var. nov.
Georlia hilgrn lorfi Thele, Zoologica, 1898, 24, p. 8, plate 1, fig. 4, plate 6, fig. $4 \mathrm{a}-\mathrm{h}$.
Oxyasters: with centrum, $15-20 \mu$ in diameter. Without particularly small, irregular sphaerasters in the interior. Sterrasters: 80 by 60μ.

Northwestern Pacifie. Japan ; probably from the vicinity of Enoshima.

Geodia hilgendorfi var. granosa Thiele.
Zoologica, 1895, 24, p. 9, plate 6, fig. $4 \mathrm{i}, \mathrm{k}$.
Oxyasters: without centrum, 40μ in diameter. Small irregular sphaerasters only 3μ in diameter in the interior. Stervasters: 53 by 45μ

Northwestern Pacific. Japan; probably from the vicinity of Enoshima.

Geodia ataxastra Lendenfeld.
Ante, p. 79.
Spherical or irregularly massive, tuberous or lobose. In spirit: white to lilac-gray.

Large choanosomal rhabds: mostly amphioxes, but also some amphistrongyles and styles; $0.6-2.8 \mathrm{~mm}$. by $12-43 \mu$. Ninute dermal thabds: mostly amphioxes, but also some styles, 120-215 by $3-7 \mu$. Orthoplagiotriaenes: thabdome $1.3-2.3 \mathrm{~mm}$. by 29-70 μ; clades $130-290 \mu$ long; clade-angles $85-116^{\circ}$. Mesoproclades: mostly triaene; rhabdome $1.6-3.4 \mathrm{~mm}$. by $7-10 \mu$; clades $2 \overline{5}-80 \mu$ long; clade-angles $25-55^{\circ}$; epirhabd $28-73 \mu$ long. Large anatriaenes: rhabdome: 2-3.1 mm. by $3-12 \mu$; elades $17-68 \mu$ long; clade-angles $20-55^{\circ}$. Minute dermal anaclades: observed only in var. angustana; rhabdome 190340 by $0.5-2 \mu$; clades $2-6 \mu$ long; clade-angles $33-57^{\circ}$.

Large oxyasters: from two. to eleven rays, $0.6-2.6 \mu$ thick; total diameter $15-50 \mu$, in inverse proportion to the ray-number. Oxysphaerasters with slender rays: from eighteen to twenty-eight conical, pointed, distally spined rays 0.7 -1.3μ thick; centrum 2.4-5.5 μ, whole aster $8-14.4 \mu$, in diameter. Oxysphaerasters with smooth, thick rays: observed only in var. latana; about eighteen conical, blunt, smooth rays, 2μ thick; eentrum about 4.5μ, whole aster about 13μ, in
diameter. Small strongylosphaerasters: from seven to twenty straight or conical, distally often thickened rays, $0.2-0.8 \mu$ thick ; centrum $0.6-3 \mu$, whole aster 2.6 6.4μ in diameter. Ataxasters: from one to eight eylindrical, or cylindroconical, truncate, simple or rarely bifureate, rough or spined rays, $0.3-2.8 \mu \mathrm{long}$ and $0.4-1.5 \mu$ thick; the rays are very irregularly distributed and often very uncqual in size; they arise from a spherical or irregularly tuberous centrum 1.4 4.5μ in diameter; total diameter $4-8.3 \mu$; connected by transitions with the small strongylosphaerasters. Acenthtylasters: rare, from ten to fifteen cylindrical, simple or rarely branched rays, $1-2 \mu$ thick; their distal ends bear dense clusters of large divergent spines and appear thickened; no centrum; total diameter S-16 \%. Irregular sterraster-derivates (sterroids): observed only in var. latana; a simple or lobose central mass with extensive tufts of ray-like spines 48μ long; total diameter $21-50 \mu$. Sterrasters: 55-78 by $50-67$ by $47-57 \mu$

Eastern Pacific. Gulf of Panama; Perico Island.

> Geodia ataxastra var. angustana Lendenfeld.
> Ante, p. 79.

Gencrally whitish. Large amphioxes up to 2.8 mm . long; orthoplagio-triaene-rhabdomes up to 2.3 mm . by 70μ. Average anatriaene-clade angle 34°. Minute dermal anaclades present, their rhabdomes $190-340 \mu$ long. Two-rayed oxyasters present, $40-50 \mu$ long, the three- to seven-rayed $21-40 \mu$ in diameter. Oxysphaerasters with stout smooth rays and sterroids not observed. Sterrasters up to 78μ long.

Eastern Pacific. Gulf of Panama; Perico Island.

Geodia ataxastra var. latana Lendenfeld.

$$
\text { Ante, p. } 79 .
$$

Lilac-gray. Large amphioxes up to 1.9 mm . long; orthoplagiotriaene rhablomes up to 1.7 mm . by 45μ. Average anatriaene-clade angle 47°. Mimute dermal anaclades not observed. Two-rayed oxyasters not observed, the threeto seven-rayed 17 -28 μ in diameter. Oxysphaerasters with stout, smooth rays present, 13μ in diameter. Sterroids present, $21-50 \mu$ in diameter. Sterrasters up to 65μ long.

Eastern Pacific. Gulf of Panama; Perico Island.

Geodia hirsuta (Sollas).

Lendenfeld, Tierreich, 1903, 19, p. 106.
Cydonium hirsutus sollas, Proc. Roy. Dublin soc., 1S86, 5, p. 197. Rept. voy. "Challenger," 1sss', 25, p. 218, plate 21, figs. 30-12.

Irregular, lobose with digitate processes. In spirit: grayish white.
Amphioxes: shorter and stouter, 4.462 mm . by 60μ, and longer and more slender, 9 mm . by 31.6μ. Tylostyles: with large spherical tyle. Dichotriaenes: rhabdome over 4.46 mm . long, 84μ thick, attenuated at first very rapidly; main clades 127μ, end clades 350μ long. Protriaenes (? mesoprotriaenes) rhabdome at cladome 20μ, at thickest point 29μ thick; clades 127μ long; eladome 143μ broad and 99μ high. Anatriaenes: rhabdome long, 18μ thick; clades 36μ long.

Choanosomal oxyasters: rays pointed or truncate; total diameter 19.7μ. Cortical oxysphaerasters: rays spined; centrum 12μ, whole aster 32μ, in diameter. Strongylosphaerasters: total diameter 11.8μ. Sterrasters: 306 by 245 by 161μ, outline oval or somewhat hexagonal.

Central Pacific. Ki Islands; $5^{\circ} 49^{\prime} 15^{\prime \prime} \mathrm{S} ., 132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{W}$.

Geodia mesotriaena Lendenfeld.
Ante, p. 96.
Massive, cake shaped, horizontally expanded, large, up to 23 cm . in maximum diameter, with praeoscular cavities, searee in the smaller, numerous in the larger specimens. Dry and in spirit: yellow to brown.

Large chocmosomal amphioxes: 4.3-8.2 mm. by 50-105 μ. Large styles: rare; $3-4 \mathrm{~mm}$. by $70-110 \mu$. Minute dermal amphioxes and styles: 380-680 by $9-19 \mu$. Orthoplagiotriacnes: rhabdome $4.6-7.2 \mathrm{~mm}$. by $85-120 \mu$; clades $200-670 \mu \mathrm{long}$, concave to the rhabdome proximally, straight or slightly curved in the opposite direction distally; clade-angles $85-117^{\circ}$. Mesoprotriaenes: rhablome 6-14 mm . by $15-40 \mu$ at the cladome, and $38-70 \mu$ at the thickest point near the middle; clades 90-310 μ long; elade-angles 29-56\%; epirhabd $95-330 \mu$ long. Anatriuenes: rhabdome $11-16 \mathrm{~mm}$. by $\mathrm{S}-40 \mu$; clades $70-270 \mu \mathrm{long}$, cladeangles $34-58^{\circ}$. Mesanaelade anatriaene-derivates: rate; dimensions as in the regular anatriaenes.

Large oxyasters: from five to fifteen rays, conical throughout or nearly eylindrical at the base, distally spined, 1-4 μ thick; total diameter 19-54 μ. Small oxyasters: from eight to twenty rays $0.9-3 \mu$ thick; total diameter $11-20 \mu$. Large oxysphaerasters: from fifteen to twenty-five very spiny rays, 1-3 μ thick;
centrum 3-10 μ, whole aster 19-32 μ, in diameter. Small strongylosphaerasters: from six to twenty distally spined rays, $0.5-2.5 \mu$ thick; centrum 2-6, whole asters $6-14.5 \mu$, in diameter. Large strongylosphaerasters: transitional to sterrgids; rare: $16-33 \mu$ in diameter. Sterroids: rare; observed only in var. megeme, numerous rays 4-6 μ thick, with spined terminal face; 39-58 μ in total diameter. Sterrasters: $92-125$ by $78-107$ by $67-82 \mu$.

Northeastern Pacific. West coast of North America; from $33^{\circ} 38^{\prime} 45^{\prime \prime}$ to $3 f^{\circ} 22^{\prime}$ N. "Albatross" Stations 2909, 2942, 2958.

Geodia mesotriaena var. pachana Lendenfeln.
Ante, p. 96.
Large amphioxes up to 105μ thick. Among the minute dermal rhabds styles are numerous. Average angle of orthoplagiotriaene-clades 99.4°. Rhabdome of mesoprotriaenes and matriaenes up to 40μ thick. Anatriaenechades thick and short, up to 170μ long. Oxyasters up to 37μ in diameter. True sterroids absent. Average proportion of length to breadth of sterrasters 100: 91.

Northeastern Pacific. West coast of North America; $34^{\circ} 22^{\prime}$ N. "Albatross" Station 2909.

Geodia mesotriaena var. megana Lendenfeld.
Ante, p. 96.
Large amphioxes up to 105μ thick. Styles among the minute dermal rhabels rare. Average angles of orthoplagiotriaene-dades 91.9°. Mesopro-triaene-rhabdomes up to 40μ, anatriaene-rhabdomes up to 38μ thick. Ana-triaene-clades thick and up to 270μ long. Oxyasters up to 54μ in diameter. Sterroids in small numbers present, 3958μ in diameter. Average proportion of length to breadth of sterrasters $100: 90$.

Northeastem Pacific. West coast of North America; $34^{\circ} 4^{\prime}$ N. "Albatross" Station 2958.

> Geodia mesotriaena var. microana Lendenfeld.
> Ante, p. 96

Large amphioxes up to 77μ thick. Styles among the minute dermal rhabds rare. Average orthoplagiotriaene clade-angle 104.2°. Mesoprotriaene-rhabdomes up to 25μ thick. Anatriaenc-clades thin and short, up to 175μ long. Large oxyasters up to 42μ in diameter. True sterroids absent. Average proportion of length to breadth of sterrasters $100: 79$.

Northeastern Pacific. West coast of North America; $33^{\circ} 38^{\prime} 45^{\prime \prime} \mathrm{N}$. "Albatross" Station 2942.

Geodia agassizii Lendenfeld.

Ante, p. 113.
Cydonium mülleri Lambe (non Fleming), Trans. Roy. soc. Canada, 1893, 11, p. 30, plate 4, fig. 2.
The following description is also based on an examination of the type specimen of Cydonium mülleri Lambe 1893, in the collection of the Geological Survey of Canada.

Massive, spherical, oval, elongate or somewhat irregular; without pracoscular cavities. In spirit: uniformly white to light brown, some with dark brown patches, some dark blue.

Large amphioxes: of adult $2.3-4.8 \mathrm{~mm}$. by $60-112 \mu$; of immature 1.8 3.4 by $20-66 \mu$. Large amphistrongyles: only in the immature, a little shorter than the amphioxes, 55μ thick. Large, slender styles: rather rare, not in all specimens; of adult $1.5-3.4 \mathrm{~mm}$. by $60-110 \mu$. Large, stout styles: rare, only in some specimens; of adult at thickened rounded end $115-145 \mu$ thick. Mimute dermal amphioxes: of adult $160-480$ by $5-12 \mu$; of immature $180-480$ by $3-8 \mu$. Orthoplagiotriuenes of adult: rhabdome $1.5-4.3 \mathrm{~mm}$. by $65-150 \mu$; clades $240-$ 560μ long, simple, more rarely with irregular branchlets; clade-angles $73-117^{\circ}$; of immature: rhabdome $2-3.5 \mathrm{~mm}$. by $50-100 \mu$; clades $300-500 \mu$ long; cladeangles $88-105^{\circ}$. Regular dichotriaenes: only in the smallest immature specimen; rhabdome $1-2.2 \mathrm{~mm}$. by $50-75 \mu$; main clades $150-300$, end clades $30-130 \mu$ long; angles of main clades 109-112*; cladome 350-700 μ broad. Mesorthotriaenes: rare, not in all specimens; in the adult, a style-like shaft $1.8-3 \mathrm{~mm}$. by $78-164 \mu$ at the rounded end, with clades $78-300 \mu$ long, inserted near the rounded end and concave towards it. Irregular amphiclade orthoplagiotriaene, derivates: rare, not in all specimens, dimensions as in the orthoplagiotriaenes, but with a branch-ray on the rhabdome, besides the ordinary clades. Mesopratriaenes of adult: rhabdome $2-6 \mathrm{~mm}$. by $7-40 \mu$; clades $60-250 \mu$, epirhabd $25-320 \mu$ long; clade-epirhabd angles $22-55^{\circ}$; of immature: rhabdome 9-20 μ. thick; clades $60-125 \mu$, epirhabd $70-100 \mu$ long; clade-epirhabd angles $36-47^{\circ}$ Large anatriaenes of adult: ' rhabdome $4-9 \mathrm{~mm}$. by $10-50 \mu$; clades $40-155 \mu$ long, clade-angles $32-65^{\circ}$; of immature: rhabdome $3.3-4.7 \mathrm{~mm}$. by $18-2 \mathrm{~S} \mu$; clades $45-110 \mu$ long, clade-angles $31-52^{\circ}$. Irregular anatriaene-derivates: rare, not in all specimens; dimensions as in the regular anatriaenes. Minute dermal anaclades: rare, observed only in the smallest immature specimen;
rhatrdone 290μ by $1-1.5 \mu$ at the cladome and $3-5 \mu$ at its thickest point below the middle; clades $4-6 \mu$ long: clade-angles 3862°; possibly foreign.

Large oryasters of adult : from four to sixteen rays, $0.8-3.2 \mu$ thiek, distally spined, pointed to truncate; centrum small; total diameter $9-31 \mu$; of immature: from seven to fourteen rays $0.8-2.3 \mu$ thick; centrum small; total diameter $13-$ 25μ. Large oxysphaerasters of adult: in some specimens rare; from fourteen to twenty-eight or more conical, pointed or blunt, distally spined rays, $1-2 \mu$ thick; centrum $3.5-11 \mu$, whole aster $10-21 \mu$, in diameter; of immature: from ten to thirty rays, 0.9-2 μ thick; centrum $2.7-7 \mu$, whole aster $S-21 \mu$, in dianeter. Small strongylosphaerasters of adult: six to twenty rays, $0.6-1.6 \mu$ thick; centrum 1.5-6 μ, whole aster $3.5-11 \mu$ in diameter; of immature: from ten to twenty-eight rays, 0.5-1 μ thick; eentrum 2-3.5 μ, whole aster $5-9 \mu$, in diameter. Stervasters of adult: $\$ 2-118$ by $75-100$ by $58-83 \mu$; of immature: $76-110$ by $70-92$ by $60-$ 75μ. Sterroids: rare; similar to, but mostly somewhat smaller than, the sterrasters, and with thicker rays; their strongylaster-like young stages only in the immature specimens.

Northeastern Pacific. West coast of North America ; from $33^{\circ} 59^{\prime} 45^{\prime \prime} \mathrm{N}$. to the ricinity of Naha Bay, Behm Canal, S. E. Alaska. "Albatross" Stations 2S56, 2857, 297S, 308S, 3168, 4193, 4199, 4228, 4551: Queen Charlotte Island, Houston Stewart Channel.

Geodia mesotriaenella Lendenfeld.

 Ante, p. 151.Nearly spherical. In spirit: dirty white.
Large amphioxes: $2-2.6 \mathrm{~mm}$. by $20-50 \mu$. Winute dermal rhabds: mostly styles; $196-260$ by $4-5 \mu$. Orthotriaenes: rhabdome $2.1-2.4 \mathrm{~mm}$. by $75-120 \mu$; clades concave to the rhabdome, $350-600 \mu$ long; mostly simple, rarely bifureate; clatc-angles $90-96^{\circ}$. Mesoprotriaenes: rhabdome $2.8-3.4 \mathrm{~mm}$. by $9-19 \mu$ at the cladome, thicker in the middle; clades $100 \cdot 20 \mu$ long; elade-angles $30-$ 47°; epirhabrl $70-16.5 \mu$ long. Anatriaenes: rhabdome 3.7 mm . by $18-30 \mu$; rlacles usually simple, rarely bifureate, $57-140 \mu$ long; clade-angles $41-47^{\circ}$.

Large oxyasters: from five to eleven conieal, blunt, distally spined rays, 1.5$2.8 \mu$ thick; eentrum small; total diameter usually $17-26 \mu$, rarely up to 40μ, these large asters perhaps foreign. Large oxysphaerasters: from fifteen to twenty-three conical, pointed rays with a few spines, $2-2.5 \mu$ thick; centrum 6 9μ, whole aster $20-21 \mu$, in diameter. Small strongylosphaerasters: from three to twenty-five, usually from ten to seventeen rays, $0.5^{-1} \mu$ thick; centrum 1.6-4.5 μ,
whole aster $6-11 \mu$, in diameter. Sterrasters: 87-107, usually not over 97 , by $77-92$, usually not more than 86 , by $58-69 \mu$.

Northeastern Pacific. West coast of North America; near Santa Barbara Islands. "Albatross" Station 4417.

Geodia breviana Lendenfeld. Ante, p. 155.

Cydonium mülleri Lambe (non Fleming), Trans. Roy. soc. Canada, 1893, 10, p. 72, plate 4, fig. 1, plate 6, fig. 1-1a-i.

The following description is also based on an examination of the type specimen of Cydonium mülleri Lambe, 1893, in the collection of the Ceological Survey of Canada.

Cup shaped with small cavity. In spirit: dirty white; dry: brown.
Large choanosomal amphioxes: $1.8-5 \mathrm{~mm}$. by $30-88 \mu$ (Lambe, 1893, 2.773.81 mm . by 80μ). Minute dermal amphioxes: $280-450$ by $2-8.5 \mu$ (Lambe, 1893, 288 by 13μ). Plagioorthotriaenes: rhabdome $1.8-4.1 \mathrm{~mm}$. (Lambe, 1893, 2.4 mm .) by $60-130 \mu$; clades $280-680 \mu$ (Lambe $1893,700 \mu$) long; clade-angles 94-113. Mesoprotriaenes: rhabdome $7-11 \mathrm{~mm}$. (Lambe, $1893,7.84 \mathrm{~mm}$.) by $15-32 \mu$; clades $65-250 \mu$ (Lambe, 1893, 95μ) long; elade-angles $20-44^{\circ}$. Large anaclades: mostly triaene, rarely diaene; rhabdome $9-11 \mathrm{~mm}$. (Lambe, 1893, 7.5 mm .) by 25-40 μ; clades $47-115 \mu$ (Lambe, $1893,60 \mu$) long; cladeangles 45-65 . Minute dermal anaclades: generally without, sometimes with epirhabd (mesanaclades) rhabdome $350-610 \mu$ by 1-4.5 μ at the cladome, and 5 8.6μ at the thickest point below the middle; clades $2-12 \mu$ long; clade-angles $42-60^{\circ}$; epirhabd of the mesanaclades $5-8 \mu$ long (not mentioned by Lambe, 1893).

Large thick-rayed oxyasters: from five to twelve usually simple, rarely bifureate, conical, pointed or blunt, distally spined rays, $1-2.3 \mu$ thick; centrum small; total diameter $16-26.5 \mu$ (Lambe, 1893, apparently considers all the euasterforms as oxyasters and gives $3-13 \mu$ as their total diameter). Large thinrayed oxyasters: rare, not always present, perhaps foreign; nine to fourteen distally spined rays, $0.25-0.7 \mu$ thick; no centrum; total diameter $7-23 \mu$. Large oxysphaerasters: up to thirty rays with large spines, $1-2.7 \mu$ thick; centrum $3-9 \mu$, whole aster $12-21.5 \mu$, in diameter. Small strongylosphaerasters: from thirteen to twenty-five distally spined rays, centrum $2-5.5 \mu$, whole aster $6-12 \mu$, in diameter. Sterrasters: 84-105 by 7598 by $55-77 \mu$ (Lambe, 1893, 91μ).

Northeastern Pacific. West coast of North America; off southern California. "Albatross" Station 2894: Vancouver Island, Strait of Georgia, near Comox.

Geodia ovis Lendenfeld.
Ante, p. 161.
Cake shaped, horizontally extended. With exceedingly high spicule-fur. In spirit: light brown.

Large choanosomal amphioxes: 4-9 mm. by 30-40 k. Large styles and tylostyles: of two kinds, stout and slender; the stout; mostly style; 2.6-4 mm. by 8.5-116 μ; the slender: always tylostyle: long; about 40μ thick: tyle $60-65 \mu$ in diameter. Minute dermal rhabds: mostly amphiox, rarely style; 270-550 by $S 13 \mu$. Orthotriacnes (and plagiotriuenes): rhabdome $5-8$ mm. by $74-100 \mu$ at the cladome, $77-110$: 1 a little farther down; clades concave to thabdome throughout or only basally, and straight distally, $310-640 \mu$ long; clade-angles S6-101․ Irregulur megasclercs: rare. Mesoproclades and proclades: rhabdome 6-17 mm. by 20-41 μ at the cladome, near the middle from two to three times as thick; in the normally developed mesoprotriaenes the clades $140-170 \mu$ long, the clade-angles about 45°, the epirhabd $110 \mu \mathrm{long}$; in the irregular mesoproclades (proclades) clades very unequal, the longest up to 260μ long, sometimes one or two clades or the epirhabd suppressed. Anaclades: nearly all triaene; very uncqual in size; small and large ones distinguishable; the small: rhabdome $670 \mu-2.5 \mathrm{~mm}$. by $2-7 \mu$; clades $6-43 \mu$ long; clade-angles $41-65^{\circ}$; the large: rhabdome up to 23 mm . long by 17-45 μ; clades $70-205 \mu$ long; clade-angles $36-55^{\circ}$.

Large thin-rayed oxyasters: from three to ten conical, distally spined rays, 1-3.2 μ thick; no centrum; total diameter 20-34.5 μ. Large thick-rayed oxyasters: from four to nineteen conical, simple or partly bifurcate rays with large spines in their middle parts, 3-6.3 μ thick; total diameter $2 S-45 \mu$; the manyrayed appear sphacrastrose. Small thick-rayed asters: from six to fifteen truncate or blunt-pointed, distally spined rays, $1-3.2 \mu$ thick; centrum absent or present and then up to 6μ in diameter; whole aster $11-24 \mu$ in diameter. Sterrasters: S2-92 by 70-S3 by 54-61 μ. Sterroids: rare; of similar dimensions, but with much thicker rays.

Northeastern Pacific. West coast of North America; $34^{\circ} 1^{\prime} 30^{\prime \prime}$ N. "Albatross" Station 2975.

Geodia sphaeroides (Kieschnick).
Thiele, Abhandl. Senckenb. gesellsch., 1900, 25, p. 41, plate 2, fig. 14a-k. Lendenfeld, Tierreich, 1903, 19, p. 110.
Cydonium sphaeroides Kieschnick, Zool. anz., 1896, 19, p. 529.
Geodia arripiens Lindgren, Zool. anz., 1497, 20, p. 486. Zool. jahrb. Syst., 1s95, 11, p. 316, plate 18, figs. 10,18 , plate 20 , fig. $5 a-i, a^{\prime}, b^{\prime}, c^{\prime}, i^{\prime}$.

Spherical or ellipsoidal. Surface brown, interior yellowish or grayish.
Large amphiores: $1.5-2.4 \mathrm{~mm}$. by $30-40 \mu$. Small dermal amphioxes: 230 by 5μ. Dichotriaenes: rhabdome $2.35-3 \mathrm{~mm}$. by $60-70 \mu$, sometimes reduced in length and rounded; main clades 120-220, end clades $150-180 \mu$ long; main clade-angles 120°. Large anatrianes: rhabdome $3.3-3.5 \mathrm{~mm}$. by $18-20 \mu$; clarles $50-60 \mu$ long; divergent; cladome 80μ broad and 45μ high. Mimute anatriaenes: dermal or subcortical; rhabdome $340-360$ by $2-3 \mu$; clades $S \mu$ long; cladome 10μ broad and 6μ high. Protriaenes (? mesoprotriaenes): rhabdome $2.5-3 \mathrm{~mm}$. by $16-20 \mu$; clades $60-80 \mu$ long, sometimes one or two recluced; cladome 80μ broad and 68μ high.

Oxysphaerasters: rays numerous, spined; centrum $6-15 \mu$, whole aster 36$50 \mu$, in diameter. Small strongylasters (strongylosphaerasters): total diameter $8-15 \mu$; the dermal smaller than the choanosomal. Sterrasters: sphaeroidal; $35-88$ by $72-80 \mu$.

Western Paeific. Ternate: Coast of Cochin China; $11^{\circ} 5^{\prime} \mathrm{N} ., 105^{\circ} 50^{\prime} \mathrm{E}$.

Geodia micropora Lendenfeld.

Ante, p. 170.
Lobose. In spirit: brownish white.
Large choanosomal amphioxes: mostly simple, oceasionally centrotyle; $1.2-1.6 \mathrm{~mm}$. by $20-28 \mu$; tyle of centrotyles $12-30 \%$ more than adjacent parts of the spicule in diameter. Minute dermal amphiostrongyles: attenuated towards both ends; 125-165 by $2-3.6 \mu$. Orthoplagiotriaenes: rhabdome 1.11.45 mm . by $28-47 \mu$; clades blunt, concave to the rhabdome throughout or only basally and straight distally; $175-230 \mu$ long: clade-angles $97-112^{\circ}$. Mesoproclades: rbabdome about 1.7 mm . by $4-9 \mu$ at the cladome, and about 20% more at the thickest point near the middle; clades very variable, often one or two suppressed, $10-30 \mu$ long; clade-angles 32-64ㅇ epirhabd conical, 25-43 μ long or reduced to a knob.

Large oxyasters: from six to nine conical rays, 0.6-0.7 μ thick, and spinced everywhere, except quite at the base; no centrum; total diameter $14-20 \mu$

Letrye uxyspherasters: from sixteen to twenty-two conical, spined rays, $1-1.6 \mu$ thick; centrum $4-6 \mu$, whole aster $14-20 \mu$, in diameter. Small strongylosphaerasters: from cight to fifteen truncate, spined rays, $0.6-1.3 \mu$ thick; centrum $2-3 \mu$, whole aster 69.2μ, in diameter. Sterrasters: $72-82$ by $65-74$ by $55-62 \mu$.

Eastern Pacific. Galapagos; Duncan Island.

Geodia berryi (Sollas).

Thielfe, Ahhandl. senckenb. gesellsch., 1900, 25, p. 43.
Cydonium berryi Solıas, Rept. voy. "Challenger," 1Ssא, 25, p. 256.
Geodia cylonium var. cetryi! Landgres, Zool. anz., 1897, 20, p. 486. Zool. jahrb. Syst., 1898, 11, p. 311, plate 18 , figs. 9, 20, plate 20 , fig. la $-k, b^{\prime}, c^{\prime}, f^{\prime}$.

Small spherical, gray or brown.
Large choanosomal amphioxes: $2.16-2.54 \mathrm{~mm}$. by $24-26 \mu$. Minute dermal amphioxes: $240-310$ by $8-10 \mu$. Orthoplagiotriaenes: rhabdome 2.15-3.15 mm. by 51.6-72 μ; clades $175-240 \mu$ long. Protriacnes (probably mesoprotriaenes): rhabdome $2.54-4.5 \mathrm{~mm}$. by 12.9μ at cladome, and $23-28 \mu$ at thickest point near the middle. Large anatriaenes: rhabdome 4 mm . by 25.8μ (Sollas, 1SS8, crror 258μ)-32 μ; clades 84μ long; cladome 100-112 μ broad, 65-72 μ high. Minute dermal anatriaenes: rhabdome 480 by $2-4 \mu$; clades $6-8 \mu$ long; cladome $9.5-12 \mu$ broad, 6-8 μ high.

Large choanosomal asters: according to Sollas, 1SS8, chiasters 12-15 μ in diameter; according to Lindgren, 1898, oxyasters with from eight to fifteen rays, $16-20 \mu$ in total diameter. Oxysphaerasters: rays numerous; total diameter 12-15 μ. Small strongylasters (ehiasters): from six to twenty rays; total diameter 8μ. Sterrasters: 71-80 by 65-68 μ.

Formerly I was inclined ${ }^{1}$ to consider G. berryi as a synonym of G. mülleri (cydonium), and, although there can be no doubt that these forms are very similar, the experience I have recently gained with speeimens from the Pacific has made me doubtful as to their identity, so that now, like Thiele, I think it better to retain G. berryi as a distinct species.

The species G. mülleri (eydonium) in the wider sense given to it by me in 1894 and 1903 being thus split up, I am unable to say to what part of it the East Australian sponge mentioned by me under this name, ${ }^{2}$ and of which no material for examination is at my disposal, should be assigned. Therefore I cannot take this sponge into consideration.

[^16]Northwestern and western Pacific. Coast of China; Lingin: Coast of Cochin China, $11^{\circ} 5^{\prime} \mathrm{N} ., 108^{\circ} 50^{\prime}$ E. Ternate.

Geodia kükenthali Thiele.

Abhandl. Scnekenb. gesellsch., 1900,25, p. 43, plate 2, fig. 15. Lendenfeld, Tierreich, 1903, 19, p. 112.
Irregularly ellipsoidal. Whitish, in the interior yellowish.
Large amphioxes: 2.8 mm . ly 50μ. Small amphioxes: in the choanosome among the large ones; 300 by 9μ. Orthoplagiotriaenes: rhabdome over 3 mm . long, about 50μ thick; clades either concave to the rbabdome throughout or curved in the opposite direction distally, 300μ long. Mesoprotriuenes: rhabdome 3.7 mm . by 10μ; elades over 150μ long. Anatriaenes: rhabdome 20μ thick and about as long as the mesoprotriaene-rhabdome; clades strongly recurved, 80μ long.

Large subcortical asters: rare; rays numerous, rather stout, rough, eylindroconical and blunt; total diameter 30μ. Small choanosomal usters: rays pointed or blunt; total diameter 17μ. Small dermal sphaerasters: total diameter 12μ. Sterrasters: 70 by 55μ. Sterroids; with distant rays.

Western Pacific. Ternate.

Geodia amphistrongyla Lendenfeld.
Ante, p. 175.
Irregular, flattened. In spirit: brown.
Large amphistrongyles: $0.5-2.3 \mathrm{~mm}$. by $18-32 \mu$. Large styles: rare; dimensions as in the amphistrongyles. Plagioclades: mostly triacne; rhabdome $1.8-2.2 \mathrm{~mm}$. by $22-32 \mu$, sometimes much reduced in length, usually rounded at the acladomal end; clades concave to the rhabdome, $15 \tilde{5}-190 \mu$ long; cladeangles usually $103-120^{\circ}$. Mesoproclades: mostly triaene, occasionally monaene; rhabdome $3-5 \mu$ thick, clades $40-60 \mu$ long; clade-angles $36-41^{\circ}$; epirhabd $16-23 \mu$ long. Anatriaenes: rhabdome 1.54μ thick; clades $26-50 \mu$ long; clade-angles 25-41 .

Oxyasters: from five to nine usually simple, rarely bifureate, distally spined rays, 0.S-2.1 μ thick; total diameter $20-30 \mu$. Oxysphaerasters: from fourteen to eighteen conical, distally spined rays, $2-2.8 \mu$ thick; centrum $6-7 \mu$, whole aster 19-28 μ, in diameter. Small strongylosphaerasters: from seven to twelve cylindrical or distally slightly thickened rays, 0.8-1.8 μ thick; centrum spherical or irregular, $2.2-\mathbf{4} \mu$ in diameter; total diameter 4.88μ; a few have more rays, these perhaps foreign. Sterrasters: $100-110$ by $87-94$ by $72-78 \mu$.

Southeastern Pacific. Easter Island.

Cushion shaped. In spirit: brownish.
Large choanosomal amphioxes: 1.2-1.8 mm. by $25-42 \mu$. Minute dermal rhabds: mostly blunt amphioxes, rarely styles; 110-200 by 3-6 μ. Plagiotriuenes: rhabdome $0.6-1.2 \mathrm{~mm}$. by $25-35 \mu$, sometimes reduced in length and rounded terminally; clades.concave to the rhabdome throughout, 140-195 μ long; clade-angles 102-114. Dichotriuenes and other lophotriaenes: the former more frequent than the latter; rhablome $0.8-1.2 \mathrm{~mm}$. by $35-59 \mu$; main clades $70-140 \mathrm{t}$, end clades, of which there are in the lophotriaenes from three to five, $70-80 \mu$ long; main clade-angles $105-130^{\circ}$; breadth of cladome $300-500 \mu$. Mesoprotriaenes: rhabdome about 1.3 mm . by $4-9 \mu$ at the cladome, and $7-11 \mu$ at the thickest point near the middle; clades $44-80 \mu$ long; clade-angles $32-41^{\circ}$; epirhathel $38-60 \mu$ long. Large anatriaenes: rhabdome $S-13 \mu$ thick; clades 60$85 \mu$ long; clade-angles $41-50^{\circ}$. Winute dermal anatriaenes: rhabdome $170-$ 210 by $1-3 \mu$ at the eladome, and $2-4 \mu$ at the thickest point near the middle; clades $4-9 \mu$ long; clade-angles $49-67^{\circ}$.

Large oxyasters: from four to eleven smooth, conical rays, $1-2.2 \mu$ thick; centrum small; total diameter $15-41 \mu$. Sphaerasters: from seven to twentytwo or more, nsually cylindroconical, truncate, rarely conical and pointed, usually spined rays, 0.8 ' 2.4μ thick; centrum 2-8 μ, whole aster $7-22 \mu$, in diameter. Sterrasters: mostly $30-45$ by $33-44$ by $27-35 \mu$; a few larger ones, up to 58μ long, also observed, these perhaps foreign.
? Southwestern Pacific. Probably New Zealand.

Geodia acanthtylastra Lendenfeld.
Ante, p. 188.
Irregularly spherical, oval or tuberous. In spirit: brownish white.
Large amphioxes: $0.7-2.2 \mathrm{~mm}$. by $14-40 \mu$. Minute dermal rhabds: for the most part amphioxes, styles also present, but rare; $150-300$ by $3-15 \mu$. Ninute amphioxes: $41-53$ by $1-1.2 \mu$; perhaps foreign. Plagiotriaenes: rhabdome 1.22 .5 mm . by $40-77 \mu$; clades concave to the rhabdome throughout, or only basally and distally straight, $160-260 \mu$ long; clade-angles $100-116^{\circ}$. Irregular plagiotriaene-derivates: of similar dimensions; either with another elade besides the three ordinary, or with bifureate clades (some regular dichotriaenes were observed, but these may be foreign). Mesoprotriaenes: rhabdone $2.3-3.3 \mathrm{~mm}$.
by $13-22 \mu$ at the cladome, and $21-31 \mu$ at the thickest point near the middle; clades $55-130 \mu$ long; clade-angles $31-53^{\circ}$; epirhabd $30-85 \mu$ long. Anatriaenes: rhabdome $3-5.4 \mathrm{~mm}$. by $18-28 \mu$; clades $50-110 \mu$ long; clade-angles $38-56^{\circ}$.

Oxyasters: a large and a small kind can be distinguished; the large: from six to seven rays, 3μ thick; total diameter $36-38 \mu$; the small: from five to ten rays, $0.7-3 \mu$ thick; total diameter $22-29 \mu$; in both kinds the rays are spined. Large orysphaerasters: from twelve to twenty-six conical sharp-pointed rays with a few large spines on their distal part, $1-2.2 \mu$ thick; centrum $3.5-5 \mu$, whole aster $12-16.5 \mu$ in diameter. Transitions between these and the other aster-forms frequent. Acanthtylasters: from four to twelve cylindroconical rays, $0.5-1.3 \mu$ thick, with a terminal verticil of stout recurved knobs or spines, which together form a conspicuous acanthtyle; centrum small; total diameter 11-22 μ. Small strongylosphaerasters: from fourteen to twenty-two distally spined rays, 0.3-0.8 μ thick; centrum 1.5-3.4 μ, whole aster 4.3-6.1 μ, in diameter. Large strongylosphaerasters: rare; seventeen conical, truncate rays, 5μ thick, smooth at the sides, the convex terminal face densely covered with small spines; centrum 13μ, whole aster 23μ, in diameter; perhaps foreign. Sterrasters: 65-76 by $55-68$ by $42-64 \mu$.

Eastern Pacific. West coast of North America; $22^{\circ} 52^{\prime}$ N. "Albatross" Station 2829.

Geodia nigra Lendenfeld.
Descriptive eatalogue sponges Australian museum, 1888, p. 33. Tierreich, 1903. 19, p. 116.
This description is based on an examination of part of the type specimen in the British Museum.

Massive, lobose. In spirit: dark brown or black. Surface very uneven. Cortex of type $2-2.5 \mathrm{~mm}$. thick, composed of a sterraster-armour excavated at very frequent intervals by large cavities, extending right throngh it. These cavities are occupied by lacunose tissue containing minute styles and subtylostyles, which perhaps belongs to another sponge, burrowing in the Geodia. (Lendenfeld, 18SS, cortex 480μ thick).

Large choanosomal amphistrongyles: attenuated towards both ends; 1.31.9, rarely over 2 mm . by $15-30 \mu$ (Lendenfeld, 1888 , error, tylostyles). Ninute dermal rhabds: mostly styles, often with annular thickening near blunt end; subtylostyles exceedingly abundant, perhaps foreign, rarely amphistrongyles; $190-370$ by $5-11 \mu$ (Lendenfeld, 1888, 100 by S (error 80) μ. Plagio-proclades: rhabdome rounded or blunt pointed, 1.2-1.8 num. by 16-33 μ (Lendenfeld, 1888, 40μ) clades usually unequal, one, two, or all three reduced and terminally
rounded, fully developed ones conical, pointed, convex to rhabdome throughout their length, 90260% long, over 200μ only in monaenes; clade-angles $113-147^{\circ}$.

Oxyasters: from six to fifteen smooth, conical rays; total diameter $17-32 \mu$ O.rysphacrusters: from five to thirty and more conical rays, $1.4-4 \mu$ thick, rays usually mooth, rarely with one or two stout spines; centrum $4-12 \mu$, whole aster 16-31 !, in diameter. Stervasters: $55-62$ (Lendenfedd, 188S, 67μ) by $50-59$ by 15-54 μ
southwestern Pacific. East coast of Australia; Broughton Island.

Geodia media Bowerbank.
Pruc. Zonl. soc. London, 1573, p. 13, plate 2, figs. 21-29. Lendenfeld, Ante, p. 191. Šyops (?) media Sollas, Rept. voy. "(hallenger" 1858, 25, p. 266. Sielonops metia Lendenfeld, Tierreich, 1903, 19. p. 103.

The following description is also based on an examination of part of the type specimen in the British Museum.

Massive, irregular, with depressions, in which are conspicuous sieve-covered canal-entrances; more rarely digitate. In spirit and dry: light brown or buff yellow.

Large amphioxes: slender and stout; $1-1.7 \mathrm{~mm}$. by $23-51 \mu$. Large styles: not numerous; 0.9-1.3 mm. by $30-50 \mu$ (not mentioned by Sollas, 1888). Large irregular rhabels: angularly hent or with one or more branch-rays, often numerous: dimensions as in the regular amphioxes and styles (not mentioned by Bowerbank, 1873, or Sollas, 1888). Ninute dermal styles: attenuated towards the rounded end; $140-265$ by 26μ (not mentioned by Bowerbank, 1873 , or sollas, 1888). Slender plugiotriuenes: rhabdome $1-1.6 \mathrm{~mm}$. by $17-30 \mu$; clades strongly concave to rhabdome throughout their whole length, $160-260 \mu$ long; dade-angles $107-114^{\circ}$. Stout plagiotriaenes: rhabdome $0.8-1.7 \mathrm{~mm}$. by $30 \mathrm{~S} 0 \mu$ (Kulas, 1888,45 (error 450) \%) clades slightly concave to rhabdome or nearly straight, $110-310 \mu$ long; clade-angles $105-120^{\circ}$. Mesomonaenes: orthoplagioor proclade; rather scarce; rhabrlome $1.7-2.5 \mathrm{~mm}$. by $4-10 \mu$; clade $17-50 \mu$ long; clade-angle $32-89^{\circ}$; epirlabd $40-75 \mu$ long (not mentioned by Bowerbank, 1573 , or Sollas, 1888). Amphiox-like derivates of the mesocludes: of similar (limensions; with the clade more or less completely suppressed (not mentioned by Bowerbank, 1873 , or Sollas, 1888). Anatriuenes: scarce; rhabdome $10-15 \mu$ thick: clades $23-35 \mu$ long; clade-angles $44-52^{\circ}$ (not mentioned by Sollas, 188S). Mesunatriaenes: very rare, not always present; rhabdome 0.5 mm . long, terminally thickened and rounded; clades similar to those of the anatriaenes; epirhabd 165μ long.

Large oxyasters: from four to eleven conical or cylindrical, pointed or truncate, spined rays, $1-3.5 \mu$ thick; total diameter $20-45 \mu$ (Sollas, 18SS, 26μ). Large oxysphaerasters: connected by transitions with the oxyasters; from fifteen to twenty conical rays; $0.8-1.7 \mu$ thick with spine-verticils near their ends; centrum 3-4.5 μ, whole aster $9-18 \mu$, in diameter (not mentioned by Sollas, 1SSS). Small sphaerasters: regular, or rarely irregular, ataxastrose; from six to eighteen, cylindrical or cylindroconical, truncate or blunt-pointed, spined rays, $0.8-2 \mu$ thick; centrum 2-5, whole aster $4.6-8 \mu$, in diameter. Sterrasters: St-110 by $73-94$ by $60-74 \mu$.

Eastern Pacific. Gulf of Panama: Mexico (probably Pacific coast).

Geodia magellani (Sollas).

Lendenfeld, Tierreich, 1903, 19, p. 107. Thiele, Zool. jahrb. Suppl., 1905, 6, p. 108.
Cydonium magellani Sollas, Proc. Roy. Dublin soc., 1886, 5, p. 197. Rept. voy. "Challenger," 18S8, 25. p. 221, plate 21, figs. 1-14.

In spirit: brownish white.
Amphioxes: $3.927-5.71 \mathrm{~mm}$. by $51.6-58 \mu$. Dichotriaenes: rhabdome 3.927-4.82 mm. by 6490μ; main clades 127μ, end clades 275μ long. Anatriaenes: rhaldome rounded terminally, $7.14-7.5 \mathrm{~mm}$. by $19-23.7 \mu$; clades 110-116 μ long; cladome $160-175 \mu$ broad and $103-119 \mu$ high.

Choanosomal oxyasters: total diameter 16μ. Subcortical oxysphaerasters: rays spined; centrum 8μ, whole aster 21.7μ, in diameter. Small sphaerasters: rays cylindroconical, truncate; centrum large; total diameter 12μ. Sterrasters: spheroidal 123 by 103μ.

Southeastern Pacific. Chile; Calbuco: Patagonia; Tom Bay, $50^{\circ} 8^{\prime} 30^{\prime \prime} \mathrm{S}$., $74^{\circ} 41^{\prime} \mathrm{W} . ;$ Port Churruca, $52^{\circ} 45^{\prime} 30^{\prime \prime} \mathrm{S} ., 73^{\circ} 46^{\prime} \mathrm{W}$.

Geodia exigua Thiele.
Zoologica, 189S, 24, p. 11, plate 6, fig. Sa-h. Lendenfeld, Tierreich, 1903, 19, p. 115.
Small, eylindrical. Dry: whitish.
Amphioxes 1 nm . by 11μ. Orthoplagiotriaenes: rhabdome $1-1.2 \mathrm{~mm}$. by 15μ; clades 100μ long. Anatriaenes: rhabdome long and slender; clades $30-40 \mu$ long.

Large sphaerasters: rays cylindroconical, blunt pointed; centrum well developed; total diameter 18μ. Large strongylasters: rare; total diameter 12 μ. Small strongylasters: total diameter 6μ. Sterrasters: 58 by 52μ.

Northwestern Pacific. Amami-Oshima: Liu-Kiu Islands.

Geodia inconspicua (Bowerbank).
1.fanfafzed, Tierreich, 1903, 19. p. 116.

Pachymatisma inconspicua Bowzrbink, Proc. Zool. soc. London, 1873, p. 326, plate 31, figs. 1-6.
('ydonium inconspicuum: (ВоwғввıNK) Sollas, Rept. voy. "Challenger," 188s, 25, p. 260.
Massive. Dry: light fawn.
Large choanosomal amphiores: 1.9 mm . by 29μ. Minute dermal amphiores: $390 /$ (long, Orthoplagiotriuenes: rhabdome 2 mm . by 33μ.

Oxyasters: rays slender; contrum small; total diameter 20μ. Strongylosphereasters: total diameter 6.5 if. sterrasters: spheroidal, 64μ in diameter.
? Southern Pacific. South Seat

GEODINELLA Levdenfeld.

Without regular triacnes. The tetraxon megaseleres are monaene or diaene teloclades with reduced elades, and oceur not only in the superficial part of the sponge but also in the interior.

Two species are known; both occur in the Pacific Ocean.

Geodinella robusta Lendenfeld.
Ante, p. 205.
Incrusting, cushion shaped or irregularly finger shaped. In spirit: white or brownish white.

Large choenosomal rhabds: mostly blunt amphioxes, but atso amphistrongyles, styles, amphityles, and tylostyles; $0.36-2.5 \mathrm{~mm}$. by $40-80 \mu$. Plagiomomacnes, occasionally also ortho- and pro-monaenes: rhabetome $1.1-2.1 \mathrm{~mm}$. by 26 42 μ; clades $30-105 \mu$ long; clate-angles $87-135^{\circ}$. Similar diuenes: only in var. carolue. Similar tcloclades with reduced clades.

Oxyasters and oxysphaerasters: from six to twenty simple or, rarely, bifurcate, distally spined rays, $0.6 \& \mu$ thick; centrum, when present, up to 8μ in diameter; total diameter of aster $9-38 \mu$, size in inverse proportion to raynumber. Strongylosphaerasters: from eleven to twenty-seven distally spined rays, $1-7 \mu$ thick; centrum $3.5-7 \mu$, whole aster $7-13 \mu$, in diameter. Sterrusters: $180-237$ by 130-200 by $50-130 \mu$.

Northeastern Pacific. West coast of North America; southern California, 33° is 8^{\prime} N. Yancouver Island, Queen Charlotte Sound: S. E. Alaska, Behm Canal, Naha Bay: "Albatross" Stations 2946, 4199, 422 S.

Incrusting, cushion shaped. Among the large rhabds, amphistrongyles, amphityles, styles, and tylostyles occur besides the amphioxes. Teloclades monaene or, more rarely, diaene, with clades up to 70μ long. Sterrasters up to 195μ long, ellipsoidal.

Northeastern Pacific. West Coast of North America ; Vancouver Island, Queen Charlotte Sound: S. E. Alaska, Behm Canal, Naha Bay. "Albatross" Stations 4199, 4228.

> Geodinella robusta var. megaclada Lendenfeld.
> Ante, p. 205.

Finger shaped. Large rhabds nearly all amphiox. Teloclades all monaene, clade up to 150μ long. Sterrasters up to 217μ long, ellipsoidal or, more rarely, three lobed.

Northeastern Pacific. West Coast of North America; S. E. Alaska, Behm Canal, Naha Bay. "Albatross" Station 4228.

Geodinella robusta var. megasterra Lendenfeld.
Ante, p. 205.
Finger shaped. Large rhabds mostly amphiox. Teloclades monaene, clade up to 70μ long. Sterrasters up to 237μ long, ellipsoidal or, more rarely, three lobed.

Northeastern Pacific. West Coast of North America; off Southern California; $33^{\circ} 58^{\prime}$ N. "Albatross" Station 2946.

Geodinella cylindrica (Thiele).

Lendenfeld, Tierreich, 1903, 19, p. 117.
Geodia (? ! cylindrica, Thiele, Zoologica, 1898, 24, p. 12, plate 1, fig. 2; plate 6, fig. 9a-e.
Cylindrical. Whitish brown.
Amphioxes: one end or both ends blunt, $0.8-1 \mathrm{~mm}$. by $25-30 \mu$. Styles: of similar dimensions. Plagio- and pro-diaenes and monaenes: rhabdome of similar dimensions as the amphioxes; clades short, more or less reduced.

Small sphaerasters: rays conical; total diameter $7-8 \mu$. Sterrasters: 180 by 145 by 115μ.

Northwestern Pacific. Japan; Enoshima.

IV. DISTRIBUTION.

The limits here assigned to the Pacific Region extend from the South Pole along the meridian of Cape Horn to Cape Horn and along the west coast of the Imerican continent to Cape Prince of Wales. From here across Bering Strait to Cape Deshnef and along the east coast of the Eurasian continent to Cape Buhis by Singapore. Thence across the Strait of Malacea to the north coast of sumatra, along the castern coast of Sumatra across the Sunda Strait to the north coast of Java and the group of islands east of it, and across the other straits separating these istands, to the northeast coast of Timor. From here across the Arafura sea to Bathurst Island and along its north coast across Dundas Strait to the Coburg Peninsula of northern Australia. Thence along the north and east coasts of Australia, across Bass Strait, and along the cast coast of Tasmania to the South Cape and farther, along the meridian of this Cape, to the South Pole.

If the Geodidae of the Pacific are compared with those of other regions it is seen that, although several of the Pacifie species are similar to species found outside the Pacific, not a single one of the former is really identical with any of the latter.

With the genera, however, it is different. Of the seven genera five are represented both in the Pacific and ultra-Pacific regions, only two, Pachymatisma and Geodinella, being confined to one or the other, Pachymatisma to the ultra-Pacific and Ceodinclla to the Pacific region. Of the five genera common to both regions two, Caminella and Sidonops, are about equally distributed in the two regions; two, Caminus and Isops, are represented by a larger number of species in the ultra-Pacific region than in the Pacifie; and one, Geodia, is richer in Pacific than in ultra-Pacific species.

The total numbers of the species of the seven genera and the absolute and percentage numbers of their Pacific species are tabulated below.

Genera	Number	Number of Pacific species	Percentage of the total number of known species
Caminella	2	1	50
Pachymatisma	5	0	0
Caminus	4	1	25
Isops	17	4	23.5
Sidonops	20	9	45
Geodia	44	29	65.8
Geodinella	2	2	100
	91	46	49

Within the Pacific region the following eleven areas can be distinguished, in no two of which the same species has been found.

> West coast of North America.

Sidonops californica.
" angulata
var. megana
" microana
" orthotriacna
" bicolor
Geodia mesotriaena var. pachana
" megana
" microana
" agassizii

* mesotriaenella
" breviana
" ovis
" acanthtylastra
Geodinella robusta
var. carolae
" megaclada
" megasterra

Sidonops reticulata
Geodia ataxastra
var. angustana
" latana
" media.

Sidonops oxyastra
Geodia cooksoni
" micropora
$22^{\circ} 15^{\prime} \mathrm{N}$.
Southern Califormia.
from 33° IS' N. to Monterey Bay, Cal.
from $33^{\circ} 35^{\prime} 15^{\prime \prime}$ N. to $34^{\circ} 22^{\prime} \mathrm{N}$.
from $33^{\circ} 50^{\prime} 45^{\prime \prime}$ N. to Nalia Bay, Behm Canal, S. E. Alaska
Santa Barbara Island.
Southern California and near Comox, Strait of Creorgia.
$34^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{N}$.
$22^{\circ} 52^{\prime} \mathrm{N}$.
Southern California, Queen Charlotte Sound, and Naba Bay, Behm Canal, S. E. Alaska.

Hest coast of Ccntral America.

Mexico (? which coast).
Perico Island, Gulf of Panama.

Gulf of Panama and Mexico (? which eoast).

Eastern Pacific Islands..
Duncan Island, Galapagos.
Charles Island, Galapagos.
Dunean Island, Galapagos.
(ieodia magellani

Geodia amphistrongyla

Geodia hirsuta

Isops contorta
Geodia mux

- lophotriaena

Isops sollasi
Sílonops nitida
Georlia cosaster
". erinaceus
" nigra

Gcodia globostell:

West coast of South America.
Calhuco, Chile, Tom Bay ($50^{\circ} \mathrm{s}^{\prime} 30^{\prime \prime} \mathrm{S} ., 74^{\circ} 4 \mathrm{I}^{\prime}$ W.) and Port Churruea ($52^{\circ} 45^{\prime} 30^{\prime \prime}$ s., $73^{\circ} 46^{\prime} \mathrm{W}$.) Patagonia.

Southeastern Pacific Islands.
Easter Island

Central Pacific 1slands.
Ki Island, $5^{\circ} 49^{\prime} 15^{\prime \prime}$ s., $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{W}$.

IVestern and Southwestern Pacific Islands.
Fiji Islands.
Samoa Islands.
New Zealand?

East coast of Australia.
Port Jackson.
Port Jackson.
Port Jackson.
East coast of Austratia.
Broughton Island.
North coast of Australia.
Port Darwin.

Coast of Southeastern Asia and Southeastern Asiatic 1slands.
Caminella nigra
Gasparstrait, Java Sea.
Sidonops lindgreni
Java (? probably northern side).
Bay of Amboyna.
Ternate.
" alba
Java Sea and Java (? probably northern side).
ficodia distincta
" sphaeroides
Ternate and Coast of Cochin (hina ($1 I^{\circ} 5^{\prime} \mathrm{N} ., 108^{\circ} 50^{\prime} \mathrm{E}$.).
" berryi
.. kukenthali
Lingin (China), Coast of Cochin China ($11^{\circ} 5^{\prime} \mathrm{N} ., 108^{\circ} 70^{\prime}$ E.) and
Ternate.
Ternate.

Coast of Northeastern Asia and adjacent Islands.

```
Caminus chinensis
Isops obscura
Geodia variospiculosa
                    var. typica
                    " clavigera
                    "t intermedia
                    " micraster
    " reniformis Enoshima, Japan.
    " japonica
    " hilgendorfi
            var. typica
            " granosa Japan, probably Enoshima.
    " exiguar Amami-Oshima, Liu-Kiu Islands.
Georlinclla cylindrica
China Sea and Strait of Formosa.
Japan.
    Japan, and Enoshima, Japan.
    Enoshima, Japan.
```

Off IIonshu Island and westward of Yogashima, Japan.

Doubtful, Southern Pacific?

Isops imperfecta
Geodia inconspicua

South Sea.
South Sea.

Three of the six genera of the Pacific Geodidae, Caminella, Caminus, and Isops, have been found only in the western and northwestern Pacific, on the coasts of eastern Australia and Asia and of the eastern Asiatic Islands; one, Geodinella, only in the northern Pacific, on the coast of Japan, and the northern part of the west coast of North America. The other two, Sidonops and Geodia, are more widely distributed, and the latter (Gcodia) represented in every one of the eleven areas distinguished above.

The number of species of Geodidae found in the northern half of the Pacific is very much greater than that of its southern half. Although this difference is no doubt to some extent due to the inferiority of our knowledge of the latter compared to the former, I think that it may also, in part, be ascribed to a real relative pancity of species in the southern half of the region.

Within the eleven areas distinguished above some species, notably the western Gcodia berryi and the eastern G. ayassizii, are very widely distributed. The latter, which I was able to study earefully, exhibits very considerable differences in the specimens from the most distant localities. This, and the fact that the Pacifie species of Geodidae differ from the ultra-Pacific species and that none of them oecurs in more than one of the eleven areas distinguished, seem to indicate that these sponges are unable to retain their characters fairly unchanged when dispersed over extensive areas.

V. LINT OF STATIONS.

Station	Lenality	Lat.	Long.	Dite"				Bottom	Instruments used
2- 29	WIT Lower California	N.225200	W.109 55\% 00	May 1. 1sss	31	75	74.1	Rocky	Tangles
2.nい	1 HI Oregoh	N. 435906	W.1245630	Oet. 19, 1885	50	57	48.1	.	Ship's drealge
23n?	" ${ }^{\text {. }}$	N. 435500	W. 1245700	" ${ }^{\text {- }}$	42	59	47.1	Clay, pebbles	Large beam trawl
2391	.. southerin California	N.340700	W.1203330	Jan. 5. 1889	53	60	55.6	Sand and broken shells	Ship's dredge
29109	OH southern California	N. 342200	W.J 20 0s 30	Jath. S, 1ss9	205	59	45.2	Green mud	small beam trawl
294: 2	()fT S土2thern California	N. 333845	W.1181345	Feh, 5. 1589	20	59		Gray sand and brokell shells	Large beam trawl
2945	ofr sontloern C'alifornia	N.3.1 0000	W.1192930	Fel). 6, 1889	30	59		Pebbly	$\begin{aligned} & \text { small beam } \\ & \text { trawl } \end{aligned}$
2916	Off southern California	$\cdots .335800$	W.119 3045	"* " ${ }^{\text {a }}$	150	59	56.5	Coarse gray sand	Large bean trawl
295\%	()IT sonthern California	N. 340400	W. 1201930	Feb. 9, I889	26	58	54.9	Gray sand	Tangles
2975	Oft soutler. California	N. 340130	W.1192900	F(t). 12, 1889	36	60	57	Gravel and broken shells	Large bean trawl
2978	Off southern California	N. 335945	W. 1192215	"* ${ }^{\text {a }}$	46	60	56.5	Gray sand	Small beam trawl
$20 \backslash 1$	Uff southern Culifornia	N.33 1800	W. 1192400	Feh. 13.1889	45	58		Coarse gray sand and broken shells	Large beam Irawl
30:5	Off Oregon	N.442800	W.124 2530	Sept. 3, 1889	46	56	46.3	Clay, pebbles	Small beam trawl
$316 \times$	-" epntral Calitornia	N. 380125	W.123 2655	Mar. 24. 1890	34	52		Rocky and coral	Tangles
3746	Gif Ilonshu lslums. Japan, Suno Naki	$\therefore .87 \mathrm{E}, 15$	$\begin{aligned} & 15.8 \mathrm{~km} .(8.5 \\ & \text { ites) } \end{aligned}$	May 19,1900	19	64		Gray sand and rebbles	*

LIST OF STATIONS. - (Continued.)

Station	Locatity	Lat. Long.	Date				Bottom	$\begin{aligned} & \text { Instrut } \\ & \text { use } \end{aligned}$	$\begin{aligned} & \text { iments } \\ & \text { ed } \end{aligned}$
3758	Off Honshin Island, Japan, suno ה̌aki	$\underset{\substack{\text { S. } \\ \text { miles })}}{\text { E. } 3.9 \mathrm{~km} .(2.1}$	May 22, 1900	73:52	65		Black clay and rock	$\begin{aligned} & 8 \text {-foot } \\ & \text { ner } \\ & \text { trawl } \end{aligned}$	Tanbeam
4193	Gulf of Georgia: Ifalibut Bank: Cape Roger C'urtis, Bowen Island	$\begin{aligned} & \therefore .89 \mathrm{E} .20 \mathrm{~km} .(10.8 \\ & \text { miles) (rift } \mathrm{S} .1^{\circ} \mathrm{E} \text {. } \end{aligned}$	June 20,1903	18-23		50.3	Fine green sand		
4199	Qucen Charlotte sound: Off Fort Rupert ; Vancouver Island, B. C. Centre of Round Island	S. $46 \mathrm{~W} .11 .5 \mathrm{~km} .(6.2$ miles) drift $\mathrm{s} .85^{\circ} \mathrm{E}$.	June 25, 1903	68-107		45.9	Soft green mud and volranic sand		
4228	Vieinity of Naha Bay: Behm Canaf: s. e. Alaska, Indian Point	N. 18 E. 1.7 km. $(0.9$ miles) drift N. $2^{\circ} \mathrm{W}$.	July 7, 1903	41-134		47.8	Gravel and sponge spicules		
4417	Off southern California, near Santa Barbara Island, s. w. rock santa Barbara 1sland	$\mathrm{N} .8^{\circ} \mathrm{W}, 11.7 \mathrm{~km},(6.3$ miles) drift $\mathrm{S} .73^{\circ} \mathrm{W}$.	1pr. 12, 1904	29			Fine y ellow sand and coralline rock		
4420	Off southern Califnrnia east of Point San Nicolas Island	S. 77 W .10 .5 km . $(5.7$ miles) drift $\mathrm{s}, 60^{\circ} \mathrm{W}$.	". ${ }^{\text {. }}$	$32-33$			Fine gray sand		
4531	Monterey Bay, Cal., Point Pinos Light House	$\begin{aligned} & \text { N. } 64^{\circ} \text { E. } 3.8 \mathrm{~km} .(2.1 \\ & \text { miles }) \end{aligned}$	May 28, 1904				Fine gray sand, pebbles, and rock		
4551	Monterey Bay, Cal., Point Pinos Light House	S. 9° E. 8.4 km . (4.5 miles) drift S. $37^{\circ} \mathrm{E}$.	June 7, 1904	56			Coarse sand, shells, and rock		

EXPLANATION OF THE PLATES.

Plate 1.

PLATE 1.

Geodinella robusta Lendenfeld.

Figs. 1-4, 16, 18-24.- var. megasterra Lendenfeld.
Figs. 5-12, $17 . \quad$ - var. carolae Lendenfeld.
Figs. 13-15. - var. megaclada Lendenfeld.

1-1.- Clatomes of monames of the var. megasterra; magnified 100; phot., Zeiss, apochr. 16, compens. ec. 6:
1,2 , of plagiomonaenes with a blunt clade;
3 , of an orthomonaene with a pointed clade;
1, of a plagiomonaene with a pointed clade.
5-11.- Teloclates (teloclade-chalomes) of the specimen of var. carolae from Charlotte Sound; magnifred 100; phot., Zeiss, apochr. 16, compens. oc. 6:
5, a plagiodiaene with short, blunt rhabdome;
6, a plagiomonaene with angularly bent rhabdome;
7, S, ciadomes of plagiodiames;
9, a regular plagiomonaene;
10, eladome of an orthomonacne with not quite terminal, pointed elade;
11, cladome of a plagiomonaene with short, blant clade.
12. - The specimen of var. carolae from Naha Bay; natural size; phot., Zeiss, anastig. 167.

1315 . ('ladomes of monaenes of var. megoclata; magnified 100 ; phot., Zeiss, apochr. 16 , eompens. oc. 6:
13, of an orthomonaene with not quite termanal elade;
$1 t$, of a simple plagiomonaene;
15 , of a plagiomonaene with a secondary elade below the cladome proper.
115. - The specimen of var. megasterra; natural size; phot., Zeiss anastig. 480/412.
17. The specimen of var. crorolae from Charlote Sound; natural size; phot., Zeiss, anastig. $480 / 412$.

15-20.- Plagiomonacnes of var. megastera; magnified 30; phot., Zeiss, planar 20.
21.- Axial seetion of var. megasterra; magnified 6; phot., Zeiss, plamar 50: a, cortex (sterraster-armour) ; b, choanosome.
22, 23. - Amphioxes of var. megasterra; magnified 30; phot., Zeiss, planar 20.
2. - The specimen of var. megasterra halved: the eut surface; magnified 6 , phot., 7eiss, planar 50 : a, cortex (sterraster-armour); b, choanosome.

PLATE 2.

PLATE 2.

Geodinella robusta Lendenfeld.

> Figs. 1, $3 . \quad$ - var. megasterra Lendenfeld. Figs. 2, 8. - var. megaclada Lendenfeld. 4-7,9-11.- var. carolae Lendenfelo.
1.- (iroup of sterrasters in a spicule-preparation of var. mequsterre; magnified 100; phot., Zeiss, apochr. 16, compens oc. 6:
a, sterrasters of the newal ellipsoilal form lying flat; b, a three-lobed sterraster lying flat.
2.- Group of sterrasters in a spicule-preparation of var. meguctada; magnified 100; phot., Zeiss, apochr. 16, compens. oc. 6:
a, sterrasters of the usual ellipsoidal form lying flat; b, a three-fobed sterraster lying flat; c, a sterraster of the usual ellipsoilal form standing on one of its longer narrow sides.
3.-Group of cuasters in a centrifugal spienle-preparation of var. megusterra; magnified 300; phot., Zeiss, apochr. \& compens, oc. 6:
a, oxyaster; b, strongylosphaerasters.
4 - 1'art of a seetion of the choanosome of the specimen of var. carolae from Charlotte Sound; congored, aniline-blue; magaified 350: phot., Zeiss, hom. imm. 2, compens. oc. 2:
a surface view of a flagellate chamber with sparse collar cells; b, sectioned flagellate chambers.
5. Group of sterrasters in a spicule-preparation of the specimen of var. cerolac from ('harlotte Sound; magnifiel 100; phot., Zeiss, apochr. 16, eompens, oc. 6:
a, sterrasters lying flat; e, a sterraster standing on one of its longer narrow sides.
fi.- Radial section of the specimen of var. curolae from Charlotte sound: magnified; phot., Zeiss, planar 50:
a, cortex (sterraster-armour) ; b, choanosome; c, wide choanosomal canals.
7.- Part of a section of the chonosome of the specimen of var. carolue from 'harlotte Sound; congored, aniline-blue; magnified 300; phot., Zeiss, apochr. 4, compens, oc. 6:
a , ova: b, eonnective tissue forming capsules enclosing the ova.
S.- Group of strongylofphaerasters in a centrifugal spicule-preparation of var. megaclada; magnified 300 ; phot., Zeiss, apochr. 4 compens. oc. 6.
9.- Group of strongylosphacrasters in a eentrifugal spicule-preparation of the specimen of var. carolac from ('harlotte souml; magnilied 300); phot., Zeiss, apochr. t, eompens. oc. 6.
10.- (iroup) of cuasters in a centrifugal spicule-preparation of the ehoanosome of the specimen of var. carolae from ('harlotte somul; magnified 300; phot., Zeiss, apochr. 4, compens, oc. 6:
a, large oxyaster; 1, small oxyaster; c, small sphacraster.
11.- Part of a section of the choanosome of the specimen: of var. carolue from Charlotte Sound; congored, azure; magnifici 300; phot., 7eiss, apochr. 4, compens. 6:
a, flagellate chambers.

2

7

10

11

Fig. 1-11 Geadinella robusta n. sp.
1, 3 G. r. vur. Megasterra; 2, 8 G. r. var. megaclada: 4-7, 9-11 G.r. arolae.

PLATE 3.

PLATE 3.

Geodinella robusta Lendenfeld.

> Fig. 1. - var. crrolae Lendenfeld.
> Figs. 2, 5, 6, 8.- var. megaclada Lendenfeld.
> Figs. 3, 4, 7, 9.- var. megasterra Lendenfeld.
1.- A normal sterraster of the specimen of var. carolae from Charlotte Sound; magnified 300; phot., Zeiss, apochr. 4 , compens. oc. \mathfrak{b}.
2.- A normal sterraster of var. megarluda; magnified 300 ; phot., Zeiss, apochr. 4, compens. oc. 6.
3.- I normal sterraster of var. megasterra; magnified 300; phot., Zeiss, apochr. 4, compens. oc. 6.
4. - A sterroid of var. megusterra; magnified 300: phot., Zeiss, apochr. 4, compens. oc. 6.

5, S.- I sterroil of var. megaclada; magnified 335; phot., Zeiss, apochr. 4, compens. oc. 6:
a, spherical (in the optical suction ring shaped) group of central granules;
5. the eentre in focus;
A. the upper surface in focus.
6.-A sterroid of var. megaclada; magnified 300 ; phot., Zeiss, apochr. 4, compens. oc. 6.

7, 9.-Aectioned surface of a sterraster of var. megasterra cut in half; magnified 300 ;
a. spherical (in section ring-shaped) group of central granules; b, a growth-zone; c, umbilicus;

7, phet., Zeiss, apochr. 4, compens. oc. 6, and focused higher;
9, phot., Zeiss, hom. imm. apochr. 2, compens. oc. 2, and focused lower.

PLATE 4

Geodinella robusta Lendenfeld.

Figs. 1, 4-7, 13, 21, 22.- var. megasterra Lendenfeld. Figs. 2, 3, 8-12, 14-20.- var. carolae Lendenfeld.
ligs. $23-2 \pi$.
1.- I ray of an oxyaster of the choanosome of var. magasterra; magnified 1 son); u. v. phot., Zeiss, (4. monochr. 1.7, I. oc. 10 .
2.- I sphateraster with blunt conic rays of var. carolaf; magnified 1800; u. v. phot., Zeiss, q. monochr. 1.7, ч. ос. 10 .
3.-A small oxyaster (oxysplacraster) of var. carolae; magnified 1s00; u. v. phot., Zeiss, q. monochr. 1.7 , q. oc. 10.
1.- A small oxyaster (oxysphaeraster) of the cortex of var. megasterra; magnified 1800 ; u. v. phot., Zeiss, q. monochr. 1.7, 4. oc. 10.
5.-Small oxyasters (oxysphacrasters) of the choanosome of var. megasterra; magnified 1800 ; u. v. phot., Zciss, if. monochr. 1.7, q. oc. 10 .
6. 7. - The two ends of a diactine (amphiox) spicule both ends of which are lobose, of var. megasterra; magnified 200; phot., Zeiss, apochr. S', compeus. oc. 6.
-12. - Buds of diactine (amphiox or amphistrongyle) spicules of var. carolae; magnified 100; phot., Z-iss, apoelir. 16, compens. of. 6:
s, 11, wery blunt (strongyle) ends;
9, 12, more tapering emils;
10, an irregular end with a clate-like process.
13.- Part of the surface of a mormal sterraster of var. mejasterra; magnifiad 180); u. v. phot., Zeiss, (9. monochr. 1.7, q. oc. 10: a, the umbilicus.
1.1, 15. Surface of a sterroid of the specimen of var. carolue from Charlotte Soum; magnified 1800; u. v. phot., Zeiss, q. monochr. 1.7. q oe. 10:
11. foensed on the summits of the uppermost rays; 15 , focused 1.5μ lower.
16. A short amphistrongyle of the specimen of var. corolue from (harlotte sound; magnified 100; phot., Zefiss, apochr. 16, compens, oc. 6.
17. - The rounded end of a subtylostyle of the specimen of var. carolac from Charlotte Sound; magnified 100); phot., Zeiss, apochr. 16, compens. oc. 6.
1-20.-Strongylospharrasters of the cortex of the specimen of var. carolae from Charlotte Sound; magnified 1.80); u. v. phot., Zeiss, q. monochr. 1.7, q. oc. 10.
21. Small oxyaster (oxysphacraster) of the choanosome of var. megasterra; magnified 1200 ; u. v. phot., Zeriss, q. monochr. 2.5, q. compens. oc. 10.
22.- Oxyaster of the choanosome of var. megasterra; magnified 1200; u. v. phot., Zeiss, q. monochr. 2.5 . q. oc. 10.

23-25.- Parts of megascleres of var. megaclada; magnified 200; phot., Zeiss, apochr. 8, compens. oc. 6:
23, cladome of an orthomonarne with not quite terminal clade;
24, cud of a blunt amphiox;
25 , central part of a mesomonaene.

PLATE 5.

Sidonops californica Lendenfeld.

Figures 1-37.

1-4. (ladomes of normal anatriaenes; magnified 200; phot., Zeiss, apochr. S, compens. oc. 6
5.-. (ladome of an anat riaene with reduced elades; magnified 200 ; phot., Zeiss, apochr. 8, compens. oe. 6 .
6.- The largur of the two specimens; magnified 1.5; phot., Zeiss, anastig. $450 / 412$.

7-9. Cladomes of mesoplagioelades with more or less redueed clades; magnified 200; phot., Zeiss, apoehr. к, eompens. oc. 6:

- , a monache:
s, a triaene;
9, a cliaene.

10. - Branched end of an irregular, perhaps anatriaenc-derivate megasclere; magnified 200; phot., Zeiss, apochr. s, compens. oc. 6.
11, 12. Large amphioxes; magnified 30; phot., Zeiss, planar 20.
13, 1.t.- Plagiotriaenes; magnified 30 ; phot., Zeiss, planar 20.
15, 16.- (ladomes of plagiotriaenes; magnified 75; phot., Zeiss, apochr. 16, compens. oc. 6.
17-19.- Plagiotriaenes; magnified 30; phot., Zeiss, planar 20.
20.- Group of sterrasters and one sterroid from a spieule-preparation; magnified 200; phot., Zeiss, apochr. S. compens. oc. 6.
21, 22.- Froup of euastors from a centrifugal spicule-preparation; magnified 300 ; u. v. phot., Zeiss, q. monoehr. i. q. oe. 7:

21, focused higher;
:22, focused lower; c, larger oxyaster.
23-26.- Groups of euasters from centrifugal spicule-preparations; magnified 300; phot., Zeiss, hom. imm. apoehr. 2:
a, small strongylosphaerasters; c, large oxyasters.
27.- Part of a scetion vertical to the surface; magnified 20; phot., Zeiss, planar 20:
a, sterraster-armour; b. subeortical cavities; c, subeortieal plagiotriaenes; d, sterrasters in the ehoanosome: e, large amphioxes in the choanosome.
24, 29.- Rays of large oxyasters; magnified 1800 ; u. v. phot., Zeiss, q. monochr. 1.7, q. oc. 10.
30, 31. Firoups of cuasters from centrifugal spicule-preparations; magnified 300:
31), phot., Zeiss, hom. imm. apochr. 2;

31, phot., Zeiss, apochr. 4, oc. 6 ; a, small strongylosphaerasters; b, small oxysphaerasters; c, large oxyaster.
32-35.-sinall strongylosphaerasters; magnified 1800; u. v. phot., Zeiss, q. monochr. 1.7, q. oc. 10.
36,37.- Parts of the surface of two sterrasters; magnified 1800; u. v. phot., Zeiss, q. monochr. 1.7, q. oe. 10.

PLATE 6.

Sidonops oxyastra Lendenfeld.

Figures 1-23.
1, 2.- Parts of scetions showing strands of spindle-cells traversing the choanosome; haematoxylin, aniline-blue:
1, magnified 100; phot., Zeiss, apochr. 4, compens. oc. 6;
2, magnified 200; phot., Zeiss, apochr. 8, compens. oc. 6.
3.- Part of section through the choanosome showing canal-end branches and flagellate chambers; hamatoxylin, aniline-blue; magnified 400; phot. Zeiss, apochr. 4, compens. oc. 6.
4.- I lole of the sponges showing a group of uniporal efferents; magnified 3 ; phot., Zeiss, anastig. 167.
5.- View of the largest specimen, attached to a flat stone; reduced $1: 0.63$; phot., Zeiss, anastig. 480 / 412
6-13.- Plagiotriatenes; magnified 43; phot., Zeiss, achr. aa, compens. oc. 6:
(f. With all the clades shortencil and blunt;

7 , with one reduced, blunt clade;
s-13, with pointed clades;
$7,8,10$, with unequal clades;
$6,9,11-13$, with equal clades.
14.- Two large ehoanosomal amphioxes from a spicule-preparation: magnified 43; phot. Zeiss, achr. aa, compens. oc. 6.
15-15.- Cladomes of minute dermal anaclates; magnified 300:
15, 17, 1s, phot., Zciss, apochr. 8, compens. oc. 12;
19 phot., Zeiss, apochr. 4 , compens. oc. 6 ;
15, a regular mesanatriaene;
16, an irregular mesanatrizene;
$17,1 \mathrm{~s}$, more or less irregular anatrizenes.
19, 20.- Parts of a radial section through a region of the cortex bearing afferent pores:
19, magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6;
20, magnilied 200; phot. Zeiss, apochr. S', compens. oc. 6;
a, monaxonid sponge attached to this part of the surface of the Sidonops; b, minute dermal anaclades of the sidonops; c, dermal membrane of the Sidonops occupied by masses of small oxysphaerasters (oxyasters).
21.- Part of a radial section through a region of the cortex bearing efferent pores, showing the dermal layer occupical by dense masses of minnte dermal rhabds; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6.
22.- I minute dermal rhabd; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6 .
23.- l'art of a radial section through a region of the curtex bearing afferent pores, showing numerous minute protrnding dermal anaclades; magnified 50 ; phot., Zeiss, achr. aa, compens. oc. 6.

PLATE 7.

PLATE 7.

Sidonops oxyastra Lendenfeld.

Figures 1-20.

1, 2.-. Two radial sections through a lobe of the sponge; magnified 10 ; phot. Zeiss, planar 50:
1, a thin section stained with haenatoxylin and aniline-blue;
2, a thick unstained section;
a, sterraster-armour; b, monaxonid sponge attached to the Sidonops; c, afferent cortical cauals; d, wide efferent canals; e, efferent pores.
3-5.- Groups of asters from a centrifugal spicule-preparation; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
a, large oxyasters; b, small oxysphaerasters and oxyasters; c, large oxysphaeraster.
6. - Part of a radial section through a region of the cortex bearing afferent pores; magnified 20 ; phot. Zeiss, planar 20:
a, sterraster-armour; b, monaxonid sponge attached to the Sidonops.
7, 8.- Large oxyasters from centrifugal spicule-preparations; magnified 900 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 5.
9, 10.- Group of small oxysphaerasters (oxyasters) from a centrifugal spicule-preparation; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
9 , focused higher; 10, focused lower.
11, 12.-small oxysphaeraster; magnified 1500 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
11, focused higher; 12, focused lower.
13-15.- Large oxyasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
16-18.- Small oxysphaerasters (oxyasters) ; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.

19, 20.- Large oxysphacraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 : 19, focused higher; 20, focused lower.

PLATES.

Sidonops oxyastra Lendenfeld.

Figures 1-15.
1-3.-Sterrasters; magnilied 300:
1, phot. Zeiss, apochr. 1, compens. oc. 6;
2,3 phot. Zeiss, hom. imm. apochr. 2.
4.- Ciroup of spicules from a spicule-preparation; magnified 30; phot. Zeiss, planar 20:
a. large amphioxes; b, lateral views of plagiotriaenes; c, apical view of a plagiotriaene-cladome.
5.- Group of large amphioxes from a spicule-preparation; magnified 30; phot. Zeiss, planar 20.

6-s.- Part of the lateral surface of a thick-rayed sterraster; magnified 1800 ; u. v. phot. Zeiss, q. monoehr. 1.7, q. oe. 10 :
6. foeused high; 7, focused lower 8 , focused still lower.
9.- l'art of the lateral surface of a sterraster not quite fully developed; magnified I800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
10, 11.- Part of the lateral surface of a thin-rayed sterraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. I.7, q. oc. 10:
10, focused higher; 11, focused lower.
12.-Sterraster; magnified 1000; phot. Zeiss, hom. imm. apochr. 2, compens. oc. 6; the centrum of the spicule in focus:
a, rosette of central granules; b, umbilicus.
13, 11.- Views of parts of the surface (superficial paratangential sections) with transmitted light; magnified 20: phot. Zeiss, planar 20:
13, of a region bearing afferent pores;
14, of a region bearing efferent pores.
15.- Part of a region of the surface with afferent pores; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6.

6

7

13

12

15

2

3

10

11

14

PLATE 9.

PLATE 9.

Sidonops bicolor Lendenfeld.

Figures 1-19.

1-6.- (ladomes of plagiotriaenes; magnified 50 ; phot. Zeiss, apochr. 16, compens. oe. 4:

1. 3-5, of a specimen from station 2958;

2, 6, of a specimen from Station 4531.
7, s.- Long slender amphioxes; magnified 20; phot. Zeiss, planar 20 :
7 , of a specimen from Station 4551 ;
s, of a specimen from Station 2781.
0-11.-Stout amphioxes; magnified 20; phot. Zeiss, planar 20:
9, a targe one of a specimen from Station i531;
10 , a medium-sized one of a specimen from Station 27 S 1 ;
11, a small one of a specimen from Station 2781.
12-1-1.- Plagiotriames; magnified 20; phot. Zeiss, planar 20:
12, a plagiotriacne with blunt rhabdome of a specimen from Station 2781;
13, a plagiot riacne with pointed rhabdome of a specimen from Station 2958;
14, a plagiotriaene with pointed rhabdome of a specimen from Station 2781.
15, 16. - Parts of radial sections through the cortex and adjacent parts, showing the chones of a specimen from Station 4420; magnified 30; phot. Zeiss planar 20:
a, surface of the sponge.
17.- Part of a radial section through a specimen from Station 3168; magnified 7.5; phot. Zeiss, planar 51):
a, surface of the sponge.
18. - Part of a section through the ehoanosome of a specimen from Station 4531; haematoxylin; magnified 200; phot. Zeiss, apochr. 8, compens. oe. 6.
19. - I'art of a section through the choanosome of a specimen from Station 3168; haematoxylin; magnified 30; phot. Zeiss; planar 20.

Fig. 1-19 Sidonops bicolor n. sp.

PLATE 10.

Sidonops bicolor Lendenfeld.

Figures 1-15.
1-4.-Groups of sterrasters from spicule-preparations; magnified 200; phot. Zeiss, apochr. S, eompens. oc. 6:
1, of a specimen from Station 2958 ;
2 , of a specimen from Station 3168 ;
3 , of a specimen from Station 2781 ;
4 , of a specimen from Station 4420 .
5.- Sterraster of a specimen from Station 4551 ; magnified 300 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 7.

6-12.- Groups of euasters from centrifugal spicule-preparations; magnified 300; u.v. phot. Zeiss, q. monochr. 6, q. oe. 7:
6 , of a specimen from Station 3168;
7 , of a specimen from Station 4420 ;
8,11 , of a specimen from Station 2781 ;
$9,10,12$, of a specimen from Station $\mathbf{5 5 5 1}$;
a, oxyasters; b, strongylosphaerasters.
13.- Group of euasters from a centrifugal spicule-preparation of a specimen from Station 4551; magnified 300; u. v. phot. Zeiss, q. monochr. 1.7:
a, oxyasters; b, strongylosphaerasters.
11, 15.- Pores in the dermal membrane of a specimen from Station 3168; magnified 75; phot. Zeiss, apochr. 16, compens. oe. 4:

14, a uniporal efferent opening;
15 , a cribriporal afferent opening.

4 at

5

vichy -

$$
x+1
$$ 4 r

7

15

Fig. 1-15 Sidonops bicolor n. sp.

PLATE 11.

PLATE 11.

Sidonops bicolor Lendenfeld

Figures 1-17.

1,2.-A larger and a smaller strongylosphacraster of a speeimen from Station 4.55 ; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10:

1. focused higher; 2, focused lower.

3-5.-Strongylosphaerasters; magnified 1s00; u. v. phot. Zeiss, q. monoehr. 1.7, q. oe. 10 :
3,5 , of a specimen from Station 2781 ;
4 , of a speeimen from Station 3168.
6-8.- Groups of cuasters from a centrifugal spieule-preparation; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
6, a strongylosphaeraster (a) and a medium-sized oxyaster (b) of a specimen from Station 4551;
7, a strongylosphaeraster (a), and an oxysphacraster (b) of a specimen from Station 2781;
S, a strongylosphaeraster (a) and a large oxyaster (b) of a specimen from Station 2781.
9.- An oxyaster of a specimen from Station 2781 ; magnified 900 ; u. v. phot. Zeiss, q. monoehr. 1.7, q. oe. 5 .
10.-Group of strongylosphaerasters of a speemen from Station 2781 ; magnified 900 ; u. v. phot. Zeiss, q. monoehr. 1.7, q. oe. 5.
11-14.- Parts of the surface of sterrasters; magnified 1800; u. v. phot, Zeiss, q. monochr. 1.7, q. oe. 10 :
11,12 , of the umbilical side of sterrasters of a specimen from Station 2958 ;
13 , of the side opposite the umbilicus of a speeimen from Station 2781 ;
14 , of the side opposite the umbilieus of a specimen from Station 2958 .
15-17. - Three specimens; natural size; phot. Zeiss, anastig. $180 / 412$:
15,16 , two specimens from Station 4420 ;
17 , a specimen from Station 4551.

PLATE 12.

Sidonops angulata Lendenfeld.

ligs. 1-4, 16, $19 . \quad$ - var. megana Lendenfeld (lobose form).
Figs. 5-8, 17, 20.

- var. megana Lendenfeld (massive form).
ligs. $9,10$.
Figs. 11-15, $19,21,22$ - var. orthotriaena Lendenfeld.

1-14.- Cladomes of anaclades; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6:
1-4, of the lobose speeimen of var. meyana;
$5-\mathrm{s}$, of the massive specimen of var. megana;
9,10 , of var. orthotriaena;
11-11, of var. microana;
1,5 , of anatrizenes with long equal clades;
2, 1, 12-14, of anatriaenes with short equal clades;
3, 6, 8, 9, of anatriaenes with medium-sized equal clades;
7 , of an anatriaene with medium-sized unequal clades:
10,11 , of anarliaenes with short clades.
15.- The acladomal end of the anatriaene of var. microana, the cladome of which is represented in Fig. 14 ; magnified 200; phot. Zeiss, apochr. 8, eompens, oc. 6.
16, 17.- Groups of spicules from spicule-preparations; magnified 10 ; phot. Zeiss, planar 50:
16 , of the lohose specimen of var. megana;
17 , of the massive specimen of var. megana;
a, stender, dermal, simply curved amphioxes; b, slender, dermal, angularly bent amphiox;
c, stout, choanosomal amphioxes; d, plagiotriaenes.
18-20.- Views of three of the specimens; phot. Zeiss, anastig. 450/412:
18, var. microona; magnified 1.1;
19, the lobose specimen of var. megana; reduced $1: 0.86$;
20 , the massive speciuen of var. megana; reduced $1: 0.9$.
21, 22.-Groups of plagiotriaenes from a spieule-preparation of var. microana; magnified 10 ; phot. Zeiss, planar, 50.

PLATE 13.

Sidonops angulata Lendenfeld.

Figs. 1-8. - var. megana Lendenfeld (lobose form).
Figs. 9-12, 22-25.- var. megana Lendenfeld (massive form).
Figs. 13-17, 21. - var. microana Lendenfeld.
Figs. 1s 20. - var. orthotriaena Lendenfeld.

1, 2.-Stout, choanosomal amphioxes of the lobose specimen of var. megona; magnified 40; phot. Zeiss, planar 20.
3.- A plagiotriaene of the lobose specimen of var. megana; magnified 40; phot. Zciss, planar 20.
4.- Apical view of the cladome of an irregular plagiotriaene of the lohose specimen of var. megana; magnified 40; phot. Zeiss, achr. aa, compens. oc. 6.
5-16.- Cladomes of plagiotriaenes seen from the side; magnified 40; phot. Zeiss, achr. aa, compens. oe. 6:
$5-8$, from the lobose specimen of var. megana;
$9-12$, from the massive specimen of megana;
13-16, from var. microana;
5 , with long, somewhat unequal, terminally strongly recurved elades;
6,8 , with long, somewhat unequal, terminally slightly recurved elades;
$7,13,16$, with unequal, slightly recurved clades;
9 , with short, equal, nearly straight clades;
10, with short, irregularly curved, somewhat unequal clades;
11, 15, with merlium-sized, equal, slightly recurved elades;
12 , with unequal, nearly straight clades;
14, with medium-sized, slightly unequal, rather strongly recurved clades.
17.- Group of spicules from a spicule-preparation of var. microana; magnified 40; phot. Zeiss, planar 20
a, an angularly bent amphiox; b, a nearly straight amphiox; e, the cladomal half of an anatriaene.
18.- Cladome of an orthotriaene of var. orthotriaena; magnified 40 ; phot. Zeiss, achr. aa, compens. oc. 6.
19.- An orthotriaene with angularly bent rhabdome of var. orthotriaena; magnified 40; phot. Zeiss, aehr. aa. compens, oe. 6 .
20.- Two rhabels of var. orthotriuena; magnified 40; phot. Zeiss, planar 20:
a, a club-shaped style; b, an amphiox.
21.- P'art of a radial section of var. microana; magnified 10; phot. Zeiss, planar 50: a, cortex (sterraster-armour); b, spieule-fur.
22-24.-Surface views (parts of superfieial paratangential sections) of the massive speeimen of var. megana; magnified 100; phot. Zciss, apochr. 16, compens. oe. 6:
22, an efferent uniporal opening;
23, 24, afferent cribriporal openings (pore-sieves).
25.- Part of a radial section through the superficial part of the massive speeimen of var. megana; magnified to; phot. Zeiss, aehr. aa, eompens. oe. 6 : a, sterraster-armour; b, a chone; c, a subcortical cavity.

Fig. 1-25 Sidonops angulata n. sp.

PLATE 14

Sidonops angulata Lendenfecd.

> Figs. $1-4,18,19$. Figs. $5,6,16,17,20-22$ - var. megana Lendenfeld (lobose form). ligs. $7-9$.

1-15.- Microseleres from centrifugal spicule-preparations; magnified 300:
1, 5, 7, s, u. v. phot. Zeise, q. monochr. 6, q. oc. 7;
2-1, 6, 9-15, u. r. phot. Zeiss, q. monochr. 1.7;
$1-1$, from the lobose specimen of var. megana;
5,6 , from the massive specimen of var. megana;
7-9, from var. microana;
10-15, from var. orthotriaena:
a, small oxysphacrasters with large centrum; b, large oxyasters without centrum; c, young sterrasters; d, strongylosphacrasters; e, intermediate oxyasters (oxysphaerasters) with small centrum.
16.- A small oxysphacraster of the massive specimen of var. megana; magnified 1800; u.v. phot. Zciss, q. monochr. 1.7, if. oc. 10.

17 .- Two strongylosphaerasters of the massive specimen of var. megana; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10.
18, 19.- A strongylosphaeraster with few, irregularly distributed, fully developed rays, of the lobose specimen of var. megana; magnified 1 s 00 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
18, focused higher; 19, focused lower.
20.-Radial section through the dermal membrane of the massive specimen of var. megana; haematoxylin; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6:
a, surface of the sponge; b, conspicuous, granular, subdermal cells; c, asters protruding beyond the surface.
21.- Radial section throngh the choanosome of the massive specimen of var. megana; azure; magnified 200 ; phot. Zeiss, apochr. S, compens. oc. 6:
a, flagellate chambers; c, asters.
22.- Rarlial section through the cortex of the massive specimen of var. megana; azure; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6:
a, fibrous inner cortical layer; b, subcortical cavity; c, asters, protruding into the subcortical cavity.
23.-Small oxysphaeraster of var. orthotriarna; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 .
24.- Large triactine oxyaster with rudiment of a fourth ray of var. orthotriaena; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, (1. oc. 10.

25-30. - Strongylosphacrasters of var. orthotriaena; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10 :

25, part of a regular strongylosphaeraster with cylindrical rays;
26, a strongylosphaeraster with somewhat irregularly distributed, cylindrical rays;
$27,2 \mathrm{~s}$, two views of a legular strongylosphapraster with somewhat conical rays;
27, focused higher; 28, focused lower;
29,30 , two views of a strongylosphaeraster with only one fully developed ray;
29, focused higher; 30, focused lower.

Fig. 1-30 Sidonops antulata n. sp.
4, 18, 1.) lobose specimen of S. a. var. megana; $5,6,16,17,20-32$ massive specimen of S. a. var. megana: 7- 3 S. a. var. microana; 10-15, 23-30 S. a. zar. ortholviaena.

PLATE 15.

PLATE 15.

Sidonops angulata Lendenfeld.

Figs. 1, 2, 4, 3. - var. megana Lendenfeld (massive form).
Figs. 3, 7, 8, 11.- var. megana Lendenfeld (lobose form).
Figs. 5, 6, 12. - var. orthotriaena Lendenfeld.
Fig. 10. - var. microana Lendenfeld.
1,2.- Two views of the umbilicus and the adjacent parts of the surface of a sterraster of the massive specimen of var. megana; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
1, focused higher: 2, focused lower
3.- The umbilicus and the adjacent parts of the surface of a sterraster of the lobose specimen of var. megana; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
4.- Part of a section through the choanosome of the massive specimen of var. megana; haematoxylin; magnified 300; phot. Zeiss, apochr. 4, compens. of. 6:
a, masses of small cells; b, lumen of a canal.
5,6.- Part of the surface opposite to the umbilicus of a sterraster of var. arthotriaena; magnificd 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:

5 , focused higher; 6 , focused lower.
7.- Part of a paratangential section of the cortex of the lobose specimen of var. megona; magnified 200; phot. Zeiss, apochr. 8, compens, oc. 6:
a, blunt cones protruding into a radial cortical canal; b, lumen of the radial cortical canal; c, sterrasters.
8.- Part of a paratangential section of the lobose specimen of var. megana, transverse through a chone; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6:
a, position of the (closed) chonal canal.
9-12.-Groups of sterrasters from spicule-preparations: magnified 200; phot. Zeiss, apochr. 8. compens. oc. 6:
9 , of the massive specimen of var. megana;
10, of var. microana;
11, of the lobose specimen of var. megana;
12. of var. orthotriaena.

Fig. 1-12 Sidonops anguilata n. sp.
2, 4, 9 massive specimen of S. a. var. megana: 3, 7, 8, 11 lobose speciment of S. a. var. megume; 5, 6, 12, S. a. var. orthotriuena: 10 S. a. var. microana.

PLATE 16.

Geodia media Bowerbank.

Figs. 1-21.

1-14.- Megascleres; magnified 30; phot. Zeiss, planar 20:
$1-5,7 \mathrm{n}, 0,8 \mathrm{sh}, 9 \mathrm{y}, 10 \mathrm{x}, 13,14$, from the digitate specimen;
$6,7 \mathrm{~m}, \mathrm{p}, \delta_{z}, 9 \mathrm{e}, \mathrm{w}, 10 \mathrm{~d}, 11,12$, from massive specimens;
1-6, 11, groups of megaseleres from spicule-preparations;
7, mesoelades with reduced elades;
s, regular stout amphioxes;
9 , angularly bent amphioxes;
10 , branched amphioxes;
12, 14, plagiotriaenes;
13, regular, angularly bent, and branehed styles,
a, (Figs. 3-5) large, slender, regular amphioxes; b, (Figs. 1-5, S) large, stout, regular amphioxes; c, (Fig. 9) large, stout amphiox, strongly angularly bent at one point; d, (Figs. 5, 10) large amphioxes with one simple branch near one of the ends, enelosing a small angle with the axis of the spicule; e, (Fig. 5) large amphiox with a hifid branch near one end; f, (Figs. 11, 13) large, regular, simple styles; g, (Fig. 13) large, angularly bent styles; h, (Figs. 11, 13) large styles with one simple branch; i, (Fig. 13) large style with a bunch of simple branches near the pointed end; j, (Fig. 2) large angularly bent amphiox with one simple branch; k, (Fig. 13) large angularly bent style with one simple branch; l, (Fig. 6) anatriacne, probably foreign to the sponge; m , (Fig. 7) mesoplagiomonaene with nearly straight rhabdome; n, (Fig. 7) mesopromonaene; o, (Fig. 7) mesoplagioorthomonaene; p, (Fig. 7) mesoplagiomonaene with strongly curved rhabdome; q, (Figs. 1, 12, 14) slender regular plagiotriaenes; r, (Fig. 5) slender plagiotriaene with unequal clades; s, (Figs. 1-6, 11, 12) stout regular plagiotriaenes; t, (Fig. 12) stout plagiotriaene with one bifid clade; u, (Fig. 3) stout plagiodiaene with one bifid elade; v, (Fig. 1) stout mesoplagiotriaene with long epirhabd (pointing downwards in the figure); w, (Fig. 9) large, stout amphiox angularly bent in two places; x, (Fig. 10) large stout amphiox with one simple branch near the blunt end, enelosing a large angle (of nearly 90°) with the axis of the spicule; y, (Figs. 1, 9) large, stout amphioxes slightly angularly bent at one point; z, (liggs. 6, s, 11) very large, stout, regular amphioxes.
15.- The umbilical part of the surface of a sterraster of a massive specimen; magnified $1800 ; u . v$. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
16.- The largest of the massive specimens; natural size; phot. Zeiss, anastig. $480 / 412$.
17.- The digitate specimen; natural size; phot. Zeiss, anastig. $450 / 412$.

1s, 19.-Groups of sterrasters from spicule-prcparations; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6:
18, of a massive specimen;
19, of the digitate specimen.
20,21.- A sterroid of the digitate specimen; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6: 20, the upper surface in focus; 21, the equatorial profile in focus.

6

2

18

17

15

4

ar a

21

Fig. 1-21 Geodia media Bwbk.
$1-5,7 \mathrm{n}, \mathrm{o}, 8 \mathrm{~b}, 9 \mathrm{j}, 10 \mathrm{x}, 13,14,27,19-21$ digitate form; $6,7 \mathrm{~m} . \mathrm{p}, \mathrm{S}, 9 \mathrm{c}, \mathrm{w}, 11 \mathrm{~d}, 11,12,15,16,18$ massiou forme. infeld photographed.
33. - The rounded end of a style (subtylostyle) of var. micraster; magnified 75; phot. Zeiss, apochr. 16, compens. oc. 6.
34-35. - Cladomes of orthoplagiotriaenes and dichotriaenes of var. intermedia; magnified 40; phot. Zeiss, apochr. 16:
34-36, cladomes of regular adult orthoplagiotriaenes ;
37, cladome of a young orthoplagiotriaene;
3s, a, cladome of a rather irregular adult orthoplagiotriaene;
b, cladome of a dichotriaene.
39, 40.- Two aspects of the specimen of var. intermedia; phot. Zeiss, anastig. $480 / 412$:
39, natural size;
40, magnified 1.14.
41.-The specimen of var. micraster; magnified 1.07; phot. Zeiss, anastig. $480 / 412$.
42. - A choanosomal amphiox of var. micraster; magnified 20 ; phot. Zeiss, planar 20.
43.-A choanosomal style of var. micraster; magnified 20; phot. Zeiss, planar 20.

44-47.- Orthoplagiotriaenc cladomes of var. micraster; magnified 40; phot. Zeiss, apochr. 16.
44,45 , with unequal but otherwise regular clades;
46, with one shortened and truncate and one abruptly bent clade;
47, with rather equal regular clades.
48. - Cladome of a diehotriaene of var. micraster; magnified 40 ; phot. Zeiss, apochr. 16.
49.- Cladome of a fairly regular orthoplagiotriaene of var. intermedia seen from above; magnified 40 ; phot. Zeiss, apochr. 16.
50.- Cladome of a dichotriaene of var. micraster; magnified 40; phot. Zeiss, apochr. 16.

Plate 18.

Geodia variospiculosa Thiele.

Figs. 1-7, 9, 11, 12, 21, 23-26.- var. micraster Lendenfeld.
Figs. 8, 10, 13-20, 22, 27. - var. intermedia Lendenfeld.
1.- Large hexactine oxyaster of var. micraster; magnified 300 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 7 .
2.- Group of asters from a centrifugal spicule-preparation of var. micraster; magnified 300; u. v. phot. Zeiss, q. monochr. 6, q. oc. 7:
a, large triactine oxyaster; b, smaller oxyasters; c, small strongylosphaerasters.
3.- Large hexactine oxyaster of var. micraster; magnified 300; u. v. phot. Zeiss, q. monochr. 6; q. oc. 7 .
4.- Large triactine oxyaster of var. micraster; magnified 300; u. v. phot. Zeiss, q. monochr. 6, q. oc. 7.
5.- Group of spicules from a centrifugal spicule-preparation of var. micraster; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
c, small strongylosphaerasters; d, large monactine oxyaster; e, parts of dermal styles.
6.- A large monactine oxyaster of var. micraster; magnified 300; phot. Zeiss, hom. imm. apochr. 2.
7.- Group of asters from a centrifugal spicule-preparation of var. micraster ; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6: b, smaller oxyasters; c, small strongylosphaerasters.
8.- Part of a radial section through the subcortical layer of var. intermedia; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6:
a, cortical sterraster-armour; b, bundle of radial megascleres; c, a subcortical group of small dermal styles; d, cladome of an anatriaene.
9.- View of part of the surface of var. micraster, showing a pore-sieve; magnified 75 ; phot. Zeiss, apochr. 16, compens. oc. 6.
10.- Group of spicules from a centrifugal spicule-preparation of var. intermedia; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
a, large triactine oxyaster; b, small oxyaster; c, small strongylosphaerasters; f, oxysphaeraster.
11.-Group of small strongylosphacrasters from a centrifugal spicule-preparation of var. micraster; magnified 300 ; phot. Zeiss, apochr. 4; compens. oc. 6.
12.-A small oxyaster of var. micraster; magnified 300; phot. Zeiss, apochr. \&, compens. oc. 6 .
13.- An oxysphaeraster of var. intermedia; magnified 300 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 7.
14.-Group of asters from a centrifugal spicule-preparation of var. intermedia; magnified 300 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 7:
b, smaller oxyaster; c, small strongylosphaerasters.
15-20.- Large oxyasters of var. intermedia; magnified 300 ; v. v. phot. Zeiss, q. monochr. 6, q. oc. 7: $15,17,19$, large pentactine oxyasters;
16, a large triactine oxyaster;
18, 20, large tetractine oxyasters.
21.- Radial section through the superficial part of var. micraster; magnified 10; phot. Zeiss, planar 50 :
a, sterraster-armour; b, a chone; c, subcortical cavities; d, choanosome.
22.- Part of a radial section of the proximal portion of the choanosome of var. intermedia; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6: a, large oxyasters; b, smaller oxyasters.
23. - Part of a radial section of the proximal portion of the cortex of var. micraster, passing through a (closed) chonal canal; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6: a, oxysphaerasters surrounding the (closed) chonal canal.
24.- Part of a radial section through the distal portion of the cortex and the spicule-fur of var. micraster; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6:
a, minute dermal anaclades: b, rhabdome of a large protruding anatriaene; c, surface of the sponge.
25.- Part of a radial section through the distal part of the choanosome of var. micraster; magnified 200; phot. Zeiss, apochr. \&, compens. oc. 6: a, medium-sized oxyaster; b, smaller oxyasters.
26i.- Radial section through the superficial part of var. micraster; magnified 20; phot. Zeiss, planar 20: a, storraster-armour; b, a chone; c, small dermal styles and anaclades protruding beyond the surface; d, choanosome; e, small dermal styles and anaelades in the subcortical layer.
27.- Part of a radial section of the proximal portion of the choanosome of var. intermedia; magnified 2(1); phot. Zeiss, apochr. 8, compens. oc. 6:
a, large oxyasters; b, smaller oxyasters.

Fig. 1-27 Geodiav variospiculosa Thicle.

PLATE 19.

PLATE 19.

Geodia variospiculosa Thiele.

Figs. 1-8, 12-18, 21, 23, 25-30, 32.- var. micraster Lendenfeld. Figs. 9-11, 19, 20, 22, 24, 31. - var. intermedia Lendenfeld.

1, 2.-An umbilical part of the surface of a normal sterraster of var. mieraster; magnified 1800 ; $\mathbf{u} . \mathbf{v}$ phot. Zeiss, q. monochr. 1.7, q. oc. 10:
1, focused higher; 2 , focused lower.
3.-- ('ladome of a minute dermal anatriaene of var. micraster; magnified 750; phot. Zeiss, hom. imm. apochr. 2, compens. oc. 6.
4, 5.-Small dermal styles of var. micraster; magnified 300; phot. Zeiss, apochr. 4, compens. oe, 6.
6.- Minute dermal anamonaene of var. micraster; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6.

T, s.- Minute dermal anatriaenes of var. micraster; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.
9, 10.- Minute dermal anatriaenes of var. intermedia; magnified 300 ; u. v. phot. Zeiss, q. monochr. 6 , q. oc. 7 .
11.- An umbilical part of the surface of a normal sterraster of var. intermedia; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
12, 13.- (iroup of asters from a centrifugal spicule-preparation of var. micraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7 q. oc. 10:

12, foeused higher: 13 , focused lower;

> a, oxysphaeraster; b, small strongylosphaerasters.
11.- Cladome of a minute dermal anatriaene of var. micraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, 4. oc. 10 .
15, 16. -Sterroid with stout, smooth, spineless rays of var. mictaster; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
15 , focused higher (the upper surface in focus); 16, focused lower (the contour in focus).
17, 18.- Sterroid with very stout, terminally densely spined rays of var. micruster; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6:
17, focused higher (the upper surface in focus) ; 18, focused lower (the contour in focus).
19-24.-small strongylosphaerasters and groups of such from centrifugal spicule-preparations; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
$19,20,22,24$, of var. intermedia;
21, 23, of var. micraster.
25-27.- Rays of oxyasters of var. micraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10. 28. - A monactine aster of var. micraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 . 29, 30.-Rays of oxyasters of var. micraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
31.- Group of sterrasters from a spicule-preparation of var. intermedia; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6.
32.-Group of sterrasters from a spicule-preparation of var. micraster; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6.

Fig. 1-32 Geodia variospiculosa Thiele.
$1-8,12-18,21,23,25-30,32$ G. v. var. micraster; $9-11,19,20,22,24,31$ G. \%. var. internedia.

PLATE 20.

Geodia amphistrongyla Lendenfeld.

Figures 1-11.
1-3.- Cloanosomal amphistrongyles; magnified 30; phot. Zeiss, planar 20.
4.- Cladome of a mesanatriane with oblique epirhabd; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6.
5, 6.-Cladomes of anatriames; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6:
5 , with smaller clade-rhabdome angle;
6 , with larger clade-rhabdome angle.
7, 8.-Cladomes of mesoproclades, magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6:
7, of a mesopromonaene;
s, of a mesoprotriaene.
9.- Part of radial section through the distal portion of the choanosome, showing a cluster of young sterrasters in situ; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6.
10. - Cladome of an anatriaene; magnified 300; phot. Zeiss, hom. imm. apochr. 2.
11.- Cladome of an anatriaene; magnified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6.
12.- Large choanosomal oxyaster; magnified 450 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10.

13, 14.- Parts (rays) of large choanosomal oxyasters; magnified 750; phot. Zeiss, hom. imm. apochr. 2, compens. oc. 6.
15, 16.-Parts (rays) of large choanosomal oxyasters; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
17.- One cud of a cylindrical amphistrongyle with thickenings; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6.
15-21.- Large choanosomal rhahds and parts of such; magnified 100; phot. Zeiss, apochr. 100, compens oc. 6.:
1s, a short anisoactine, somewhat style-like amphistrongyle;
19, a larger, nearly isoactine, cylindrical amphistrongyle;
20 , the rounded end of a large style (the pointed end of this spicule is represented in Fig. 21);
21, the pointed end of a large style (the rounded end of this spicule is represented in Fig. 20).
22-25.- Cladomes of plagiotriaenes and derivates of such: magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6:
22, cladome of a regular plagiotriaene with short clades;
23 , cladome of a plagiomonaene with normal rhabdome and simple clade;
24, an orthodichomonaene with shortened rhabdome;
25 , eladome of a regular plagiotriaene with long clades.
26-30.- Groups of microscleres from a centrifugal spicule-preparation; magnified 300 :
26-2s, 30, phot. Zciss, apochr. 4, compens. oc. 6;
29, phot. Zeiss, hom. imm. apochr. 2;
a, large choanosomal oxyasters; b, large oxysphaerasters; c, small strongylosphaerasters; d, young sterrasters.
31.- View of the sponge; magnified 1.1; phot. Zeiss, anastig. $490 / 412$.
32.-Group of sterrasters from a spicule-preparation; magnified 200 ; phot. Zeiss, apochr. 8, compens. oc. 6.
33.-Radial section through the superficial part of the sponge; magnified 20 ; phot. Zeiss, planar 20:
a, cortex; b, a chone; c, subcortical cavities; d, choanosome.
3436 . - Small strongylosphaerasters, two single ones and a group, from a centrifugal spicule-preparation; magnified 1800 ; u. v. phot. Zeiss, monochr. 1.7, q. oc. 10.
37, 34 .- The umbilicus of a sterraster and the adjacent parts; magnified 1800 ; u. v phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
37 , focused lower; 38, focused higher.
39.- Raclial section through the superficial part of the sponge; magnified 10 ; phot. Zeiss, planar 50: a, cortex; e, subcortical cavities; d, choanosome.
40, 41. Part of the surface of the side of a sterraster; magnified 1800; u. v. phot. Zeiss. q. monochr. 1.7, q. oc. 10:

40, focused lower; 41, focused bigher.

PLATE 21.

PLATE 21.

Geodia mesotriaena Lendenfeld.

Fig. 1. - var. pachana Lendenfeld.
Figs. 2-6. - var. megana Lendenfeld.
1.- Dry specimen of var. pachana seen from above; reduced $1: 0.67$; phot. Zeiss, anastig. $450 /$ 412
2.- Radial section of a spirit specimen of var. megana; reduced $1: 0.67$; phot. Zeiss, anastig. $480 /$ 412 :
a, hirsute part, where the projecting spicules have not been broken off; b, praeoscular cavity. 3-6.- Teloclades of var. megana; magnified 10: phot. Zeiss, planar 50: 3,5 , orthotriaenes fully developed;
4 , young orthotriaene;
6, mesoprotriaene.

PIATE 22.

PLATE 22.

Geodia mesotriaena var. megana Lendenfeld.

Figures 1-10.

1 6.- A series of paratangential sections through a chone and the canals leading to it from the dermal pores (a chonal system); magnified 30; phot. Zeiss, planar 20:
1, first section, the central part in the level of the centre of the concave pore-sieve;
2, second section, the central part half way down the ectochrotal layer overlying the sterrasterarmour;
3,4 , third and fourth section, in the distal and proximal part of the sterraster-armour respectively; 5 , fitth section, at the proximal limit of the sterraster-armour;
bi, sixth section, through the chone, below the sterraster-armour;
a, dermal pores (in Fig. 1); b, oblique superficial canals leading from the pores to the chonal canal (Figs. 1, 2); c, chonal canal (Figs. 3-6).
7.-. Slightly oblique paratangential section, the lower part a, a little higher than the upper part, b, magnified 10; phot. Zeiss, planar 50:
c, chones.
8. - The central part of the first of the paratangential sections represented in Fig. 1; magnified 200; phot. Zeiss, apochr. 8, compens, oc. 6.
9.- Part of a radial section through the choanosome, showing large granular cells; azure; magnified

750; phot. Zeiss, hom. imm. apochr. 2, compens. oc. 6:
a, spindle-shapel granular cells, pointed at both ends; b, a granular cell, pointed at only one end.
10.- Part of a paratangential section, a transverse section through a chone; magnified 200 ; phot. Zeins, apochr. S, compens. oc. 6:
a, chonal canal; b, dense mass of small asters; c, circular fibres.

8
 -… $\cos _{7}^{2}$

6

10

PLATE 23.

PLATE 23.

Geodia mesatriaena Lendenfeld.

Figs. 1, 2. - var. microana Lendenfeld.
Figs. 3, 5, 6, 8, 9.- var. pachana Lendenfeld.
Figs. 4, 7, 10-25. - var. megana Lendenfeld.

1-12.- Cladomes of anatriaenes; magnified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6:
1,2 , of fully developed anatriaenes of var. microana;
$3,5,6,8,9$, of fully developed anatriaenes of var. pachana;
4,7 , of a young anatriaene of var. megana;
10-12, of fully developed anatriaenes of var. megana.
13-19.- Cladones of teloclades and mesoclades of var. megana; magnified 100; phot. Zeiss, apochr.
16, compens. oc. 6:
13, of an irregular mesoprotriaene with branches forming a second verticil of clades on the epirhabd;
14, of a mesoprotriaene with one clade abruptly bent, and one strongyle;
15 , of an irregular protriaene with one clade nearly vertical;
16, of a regular orthotriaene;
17, of an irregular mesanatriaene with strongly deflected epirhabd;
18 , of a young regular mesoprotriaene;
19 , of a regular mesoprotriane fully developed.
20-23.- Cladomes of orthotriaenes of var. megana; magnified 50; phot. Zeiss, apochr. 16, compens. oc. 4 :
20 , of an orthotriaene fully developed with clades not very different in size;
21, of a young quite regular orthotriaene;
22 , of an orthotriaene fully developed with one clade much shorter than the others;
23, of an orthotriacne fully developed with one clade abruptly bent and shorter than the others. 24,25 .- Radial section through a part of the cortex and the adjacent choanosome of var. megana:

24 , magnified 10 ; phot. Zeiss, planar 50 ;
25, (a part of 24) magnified 30 ; phot., Zeiss, planar 20 ;
a. outer surface; b, sterraster-armour; c, superficial canals; d, chone; c, radial main choanosomal canal; f, tissue free from flagellate chambers surrounding the radial main choanosomal canal; g, tissue containing flagellate chambers; h, radial spicule bundles; i, small, more or less radial, flermal rhabds protruding beyond the surface; k, chonal canal.

Fig. 1-25 Geodia mesotriaeta 12 . sp.
1, 2 G. m. var. microana; 3, 5, 6, 8, 9 G. m. var. pachana; 4, 7, 10-35 G. m. var. megana.

Geodia mesotriaena Lendenfeld.

Figs. 1, 4, S, 14, 15, 17, 18, 20, 22-32.-var. megana Lendenfeld.
Figs. 2, 6, 7, 10-13, 16, 19, 21 . var. microana Lennenfeld.
Figs. 3, 5, 9 . - var. pachana Lendenfeld.
1.- Group of small spicnles in a centrifngal spicule-preparation of var. megana; magnified 300 ; phot. Zeiss, apochr. 4 , compens. oc. 6:
a, parts of small dermal rhabds; b. medium oxyasters.
2.- Group of small spicules in a centrifugal spicule-preparation of var. microana; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6:
a, small dermal rhabds; b, euasters.
3.- Group of small spicules in a centrifugal spicule-preparation of var. pachana; magnified 100; phot. Zeiss, apochr. 16, compens, oc. 6:
a, small dermal rhabds; b, euasters.
4.- Group of small spicules in a centrifugal spicule-preparation of var. megana; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6 :
a, small dermal rhabds; b, euasters.
5.- Group of small spicules in a centrifugal spicule-preparation of var. pachana; magnified 300. phot. Zeiss, apochr. 4, compens, oc. 6:
a, parts of small dermal rhabds; b, oxysphaerasters; c, small strongylosphaerasters.
6.- Group of small spicules in a centrifugal spicule-preparation of var. microana; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
a, part of a small dermal rhabd; b, large oxyaster ; c, small strongylosphaerasters; d, medium oxyaster.
7.-Group of euasters in a centrifugal spicule-preparation of var. microana; magnified 300; phot. Zeiss, apochr. 4 , compens. oc. 6:
a large oxyaster; b, large strongylosphaeraster; c, oxysphaeraster; d, small strongylosphaerasters.
8.- Group of euasters in a centrifugal spicule-preparation of var. megana; magnified 300 ; phot. Zeiss, apochr. 4 , compens. oc. 6:
a, sterroid; b, oxysphaeraster.
9.-Group of euasters in a centrifugal spicule-preparation of var. pachana; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6:
a, large strongylosphaeraster; b, small oxyaster.
10, 11.- Groups of enasters in a centrifugal spicule-preparations of var. microana; magnified 600 ; u. v. phot. Zeiss, q. monochr. 2.5, q. oc. 5: a, large medium oxyaster with blunt conic rays; b, small strongylosphaeraster.
12, 13.-Group of etasters in a centrifugal spicule preparation of var. micraana; magnified 600 ; u. v. phot. Zeiss, q. monochr. 2.5, q. oc. 5 :
12 , focused higher; 13 , focnsed lower;
a, large medium oxyaster with stout blunt rays; b, small strongylosphaerasters.
14.- Group of euasters in a centrifugal spicule-preparation of var. megana; magnified 600 ; v. v. phot. Zeiss, q. monochr. 2.5, q. oc. 5:
a, medium oxyasters; b, small strongylosphaeraster.
15.- Group of large medium oxyasters in a centrifngal spicule-preparation of var. megana; magnified 200 ; phot. Zeiss, apochr. 8, compens. oc. 6.
16.-Small strongylosphaeraster with uumerous rays of var. microana, magnified 600; u. v. phot. Zeiss, q. monochr. 2.5, q. oc. 5.
17, 18. - Small strongylosphaerasters with a medium number of rays of var. megana; magnified 900 ; u. v. phot. Zeiss, q. monochr. 2.5, q. oc. 7.
19.- Medium oxyaster of var. microana; magnified 600; u. v. phot. Zeiss, q. monochr. 2.5, q. oc. 5.
20.- Group of small strongylosphaerasters in a centrifugal spicule-preparation of var. megana; maguified 600 ; u. v. phot, Zeiss, q. monochr. 2.5, q. oc. 5.
21. Group of euasters in a centrifugal spicule-preparation of var. microana; magnified 600 ; u. v. phot. Z.eiss, (1. monochr. 2.5, (]. oc. 5:
a, large strongylosphacraster; b, small strongylosphaerasters.
22, 23.- Large oxyasters of var. megana; magnified 1200; u. v. phot., Zeiss, q. monoehr. 2.5, q. oc. 10. 24, 25.- Gronp of euasters in a centrifugal spiculc-preparation of var. megana: magnified 900 ; u. v. phot. Zeiss, q. monochr. 2.5, q. oc. 7:
24, focused higher; 25, foeused lower;
a, large oxyaster with slender rays; b, medium oxyasters; c, small strongylosphaeraster.
26-31. - Tips of rays of oxyasters of var. megana: magnified 2650; u. v. phot., Zeiss, q. monochr. 1.7. q. oc. 14 :

26, a nearly smonth ray;
27 , a slightly spined ray;
$28-31$, strongly spined rays.
32.- Two small strongylosphaerasters of var. megana; magnified 2650; u. v phot., Zeiss, q. monochr. 1.7, q. oc. 14 .

10

14

24

27

28

26

25

23

13

7

0

Fig. 1-32 Geodia mesotriaena n. sp.
$1,4,8,14,15,17,18,20,22-32$ G. m. var. megana; 2, 6, 7, 10-13,16, 19, 21 G. m. var. microana; 3, 5, 9 G. m. var. pachana.

PLATE 25.

Geodia mesotriaena var. megana Lendenfeld.

Figures 1-11.
1.- Radial section through the outer, ectochrotal layer of the cortex; magnified 100; phot.. Zeiss, apochr. 16, compens. oc. 6:
a, surface of the sponge; b, distal, freely projecting ends of the small dermal rhabds: c, oblique superficial canals ; d, radial tufts of small dermal amphioves; e, sterraster-armour.
2, 3.-Sterraster; magnified 300; u. v. phot., Zeiss, q. monochr. 1.7:
2, focused higher; 3, focused lower.
4.-Sterraster; magnified 300 ; phot., Zeiss, apochr. 4, compens. oc. 6.
5.- Group of sterrasters in a spicule-preparation; magnified 150 ; phot., Zeiss, apochr. S, compens. oc. 4.

6, 7.- The umbilicus and the adjacent parts of the surface of two sterrasters; magnified 1800 ; u.v. phot., Zeiss, q. monochr. 1.7, q. oc. 10.
8.-Surface of a sterraster opposite the umbihicus; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 .

9-11.- The umbilicus of a sterraster and the adjacent parts of the surface; magnified 1200 ; u. v. phot., Zciss, q. monochr. 2.5, q. oc. 10:
9 , focused near the bottom of the umbilical pit; 10 , focused halfway up the umbilical pit; 11, focused on the surface round the umbilical pit.

2

3

6

4

5

10

11

PLATE 26.

Geodia agassizii Lendenfeld (adult).

Figures 1-21.

1-12.- Orthoplagiotriaenes and orthoplagiotriaene-derivates; magnified 20; phot. Zeiss, planar 20:
1, a mesorthotriaene orthoplagiotriaene-derivate with simple, terminally abruptly bent clades, of a specimen from Station 2978;
2, ant amphiclade orthoplagiotriaene-derivate with three simple, very unequal clades and one opisthoclade a considerable distance from the cladomal end of the rhabdome, of a speciment from Station 316s;
3, an orthoplagiotriaene with oblique cladome and simple clades, of a specimen from Station 2586;
4, a regular orthoplagiotriaene with short, simple clades, of a specimon from Station 2978;
$5,6,8,12$, orthoplagiotriaenes some or all the clades of which are terminally branchet, of a specimen from Station 4199;
7, a regular orthoplagiotriaene with long simple clades, of a specimen from Station 2886;
$9,10,11$, orthoplagiotriaenes some or all the elades of which are terminally branched, of a specimen from Station 316 s.
13.-Surface-view of a detached picce of the cortex of a specimen from Station 4199 ; magnified 7.5 ; phot. Zeiss, planar 50.
14, 15.-An efferent cortical eanal in a detached piece of an efferent areat of the cortex of a specimen from station 4199; magnified 100; phot. Zeiss, apoehr. 16, compens. oc. 6:
11, seen from within, the chonal sphincter, a, is in focus; an indistinct image of the dermal sieve, b, is seen behind;
15 , seen from without, the dermal sieve, b, is in focus; an indistinct image of the chonal sphineter, a, is seen behind.
16-21.-Six specimens of the sponge; $16,18-21$, natural size, 17 reduced $1: 0.67$; phot. Zeiss, anastig. 1 1×0 / 112 :
16, 19-21, from Station 2856;
17, from Station 4193;
18 , from Station 2857.

Fig. 1-21 Geodia agassizii n. sp. (adult).
1, 4 from station $2978 ; 2,9-11$ from station $3168 ; 3,7,16,19-21$ from station $2896 ; 5,6,8,12-15$ from station 4190 ; 17 from station 4193; 18 from station 2887.

PLATE 27.

PLATE 27

Geodia agassizii Lendenfeld (adult).

Figures 1-19.
1.- Radial section through the region bearing efferent pores of a large specimen from Station 4193; magnified 7.5; phot. Zeiss, planar 50 :
b , sterraster-armour of the cortex; d, large afferent canals; e, large efferent canal.
2.- Radial section through the region bearing afferent pores of a medium-sized specimen from station 316 S ; magnified 7.5 ; phot. Zeiss, planar 50:
a, eftochrotal outer layer of the eortex, free from sterrasters, with small, radial dermal amphioxes; b, sterraster-armour of the cortex ; c, subcortieal cavities; d, large afferent eanal.
3-13.-Groups of spicules from centrifugal spieule-preparations; magnified 300; phot. Zeiss, apochr. 4, compens. oe. 6:
3, 4,9 , of specimens from Station 297 ;
5 , of a specimen from Station 2587 ;
6,11 , of a specimen from station 3168 ;
7 , of a speeimen from Station 4551;
8 , of a specimen from Station 4193 ;
10, of a specimen from Station 2886;
12, of a specimen from Station 4199 ;
13. of a specimen from Station 3085;
a, small dermal amphioxes: b, large choanosomal oxyasters; c, large cortical oxysphaerasters; d, small strongylosphaerasters.
14.- Group of asters from a centrifugal spicule-preparation of a specimen from Station 4193 ; magnified $5($) : phot. Zeiss, hom. imm. apoehr. 2, compens. oc. 6:
b, large oxyaster; e, large oxysphaeraster; d, small strongylosphaeraster.
15-19. - Groups of sterrasters from spieule-preparations; magnified 200; phot. Zeiss, apochr. S, compens. oe. 6:
15 , of a speeimen from Station 2978
16, of a speeimen from station 4551;
17, of a specimen from Station 4193 ;
15, of a specimen from station 30ss;
19, of a specimen from Station 4199 .

Fig. 1-19 Geodia agassizii n. sp. (adult).

PLATE $2 S$.

Geodia agassizii Lendenfeld (adult).

Figures 1-28.

1-7.- Cladomes of mesoprotriaenes; magnified 75, phot. Zeiss, apochr. 16, compens. oc. 6:
1 , with long and stout curved clades, one of which is terminally abruptly bent, and a rather long epirbabd, of a specimen from Station 4199 ;
2, with rather long and stout curved clades and long epirhabd, of a specimen from Station 4199 ;
3, with stout and short curved clades and short epirhabel, of a specimen from Station 4199 ;
4, with short, nearly straight clades and medium epirhabd, of a specimen from Station 4551;
5. with slender, slightly curved clades and rather long epirhabel, of a specimen from Station 2978 ;

6, with long and slender, curved clades and short epirhabd, of a specimen from Station 2978;
7 , with rather stout, nearly straight clades and very long epirhabd, of a specimen from Station 4199.
S-11.- The branched ends of quite irregular telo- and mesoclade-like spicules; magnified 75 ; phot. Zciss, apochr. 16, compens. oc. 6:
s, the branched end of a long rhabed with three conic branch-rays (elades) lying nearly in the same plane as the rhabd (rhabdome), of a specimen from Station 4199;
9 , the branched end of a mabd with two branch-rays lying in a straight line and together appearing as a small style attached obliquely to the end of the rhabd, of a specimen from Station 2857 ;
10, the bramehed end of an amphiox-like spicule with two very oblique, backwardly directed spines inserted a little below the end, of a specimen from Station 2857 ;
11, the branched end of an amphiox-like spicule, with a straight branch-ray arising nearly vertically a little distance below one end, of a specimen from sitation 2887.
12-11.- Parts of stout, club-shaped styles; magnified 75 ; phot. Zeiss, apochr. 16 , compens. oc. 6; of specimens from Station 4193:
12,13 , the thick Jlunt ends of two such styles;
11, the thin pointed end of the style, the other end of which is represented in Fig. 13.
15.- An cud of a regular large choanosomal amphiox, of a specimen from Station 3168 ; magnified 75 ; phot. Zeiss, apochr. 16, compens, oc. 6.
16, 17.- Groups of spicules from spicule-preparations; magnified 20; phot. Zeiss, planar 20:
1 fi , of a specimen from Station 297s;
17, of a specimen from Station 2886 ;
a, large choznosomal amphioxes; b, a club-shaped style; c, an anatriaene; d, a mesoprotriaene.
18-28.- Cladomes of anaclades; magnified 75; phot. Zeiss, apochr. 16, compens. oc. 6:
18, of an anatritene with short, somewhat unequal clades, of a specimen from Station 2887 ;
19, of an anatriaene with short, rather stout, somewhat unequa! clades, of a specimen from Station 4193;
20, 21, of anatriaenes with long and slender, equal clades, of a specimen from Station 2978 ;
22, of an anatriacne with rather long and fairly slender, ecual elades, of a specimen from Station 2857 ;
23, of an anatriaene with short, stont, equal clades, of a specimen from Station 4199 ;
24 , of an anatriaene with long and stout, equal chades, of a specimen from Station 4.551 ;
25 , of an anatriaene with long amd stout, equal clades, of a specimen from Station 1193;
26, of an anatriaene with small, nearly straight, equal clades, of a specimen from Station 4199 ;
27, of an anatriaene with slender, very unequal clades, of a specimen from Station 3168 ;
28 . of an anadiaene, of a specimen from Station 3168.

Fig. 1-28 Geodia agassizii n. sp. (adult).

PLATE 29.

PLATE 29.

Geodia agassizii Lendenfeld (adult).

Figures 1-17.

1-17. Cladomes of orthoplagiotriaenes and orthoplagiotriaene-derivates; magnified 75; phot. Zeiss, apochr. 16, compens. oc. 6:
1, of an orthoplagiotriaene with medium rhablome and simple, somewhat unequal clades, of a specimeñ from Station 28s6;
2, of an orthoplagiotriaene with slender cladome and simple, equal clades, of a specimen from Station 4199;
3 , of an orthoplagiotriaene with thick rhabdome and short, rather equal, simple clades, of a specimen from station 2978 ;
4, of an orthoplagiotriaene with slender rhabdome, and irregularly extending, simple clades, of a specimen from Station 30s8;
5, of an orthoplagiotriaene with thick rhabdome, and simple unequal clades, of a specimen from Station 2978;
6, of an ortboplagiotriaene, with slender rhabdome, and clades, partly abruptly recurved and partly branched terminally, of a specimen from Station 4199;
7 , of a mesorthotriaene with thick rhabdome, and clades terminally abruptly bent, of a specimen from Station 2978;
8 , of an orthoplagiotriaene with thick rhabdome, and simple, equal clades, of a specimen from Station 4551 ;
9, of an orthoplagiotriaene with slender rhabdome, and unequal clades, one of which is branched, of a specimen from Station 4199;
10, of an orthotriaene with slender rhabdome and unequal clades, one of which is branched, of a specimen from Station 4193;
11, of a plagiotriaene with medium rhablome and simple, equal clades, of a specimen from Station $2 \mathrm{sin}^{7}$;
12, of an orthoplagiotriaene with slender rhabdome and unequal clades, one which is branched, of a specimen from station 4199;
13, of an amphiclade orthotriaene-derivate with slender rhabdome with a verticil of three unequal, terminally hranched clades and one simple and knob-shaped opisthoclade, of a specimen from Station 4199 ;
11, of an orthoplagiotriaene with medium rhabdome and unequal clades, one of which is branched, of a specimen from Station 30ss;
15 , of an orthoplagiotriaene with medium rhabdome and very unequal, simple clades, of a specimen from station 3168;
16, of an orthoplagiotriaene with medium rhabdome and unequal, branched clades, of a specimen from station 3168;
17, of an orthoplagiotriaene with slender rhalodome and unequal clades, one of which is branched, of a specimen from station 4199.

8

PLATE 30.

PLATE 30.

Geodia agassizii Lendenfeld (adult).

Figures 1-17.

1.2. Group of asters from a centrifugal spicule-preparation, of a specimen from Station 2886; magnified 1 s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10:

1. focused higher; 2, focused lower;
a, small strongylosphaerasters; h, large oxyaster.
2. Large oxyspharraster of a specimen from Station 297s; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
1.- Large oxyaster of a specimen from Station 2978 ; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, 4. oc. 10 .
j. l'art of a large oxyaster of a specimen from Station 4193; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7., \&. oe. 10 .
(;-9.-small strongylosphacrasters: magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
16, S, of a specimen from Station 4193;
7,9 , of a specimen from station 30 s .
16.- Group of asters from a centrifugal spicule-preparation of a specimen from Station 3168; magnified 1.800; u. v. phot. Zeins, q. monochr. 1.7. q. oc. 10: a, smatl strongylosphaerasters; b, large oxyasters.
11-17.- Parts of sterrasters in different stages of development (growth) of a specimen from Station 30ss; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
13, 12, part of the side opposite the umbilicus of a quite young sterraster with slender, distally sharp-pointed rays; 11, focused lower; 12, foensed higher;
13, part of the umbilical side of a sterraster somewhat older than the one represented in Figs. 11 and 12 , with stouter, but still simple, pointed rays;
11, part of the umbilical side of a sterraster older than the one represented in Fig. 13, the rays of which are still simple but already stout and blunt;
15, 16, part of the side opposite the umbilicus of two sterrasters still older, in which the spine verticils are begiming to appear on the summits of the rays;
17, part of the side opposite the umbilicus of a young sterraster with rays already distally extended and crowned by verticils of slender spines.

2

11

12

3

6

7

9

13

16

14

PLATE 31.

PLATE 31

Geodia agassizii Lendenfeld (adult).

Figures 1-10.

1-10.- Parts of fully developed sterrasters; magnified 1800 ; n. v. phot. Zeiss, q. monoehr. 1.7, q. oc. 10:
1,2 , the umbilical side of a normal sterraster of a specimen from Station 3088 ;
1, foeused higher;
2, focused lower;
3,4 , the umbilical side of a sterroid with large terminal extensions of the rays, of a specimen from Station t193;
3, focused higher-
4, focused lower;
5 , the umbilical side of a sterraster of a specimen from Station 4193 , focused just above the bottom of the umbilical pit to show the roughness of its sides;
6,7 , the umbilieal side of a normal sterraster of a specimen from Station 4193 ;
6, foensed higher;
7, foeused lower;
S-10, the umbilical side of a sterroid of a specimen from Station 3088 , with few and large, rough spines on the ends of the rays, foeused in three levels about 2μ apart;
8 , focused high; 9 , focused intermediate; 10 , focused low.

PLATE 32

PLATEE 32.

Geodia agassizii Lendenfeld (young) from Station 4425 .

Figures 1-46.
1.- Part of a radial saction through the choanosome; hacmatoxylin: magnified 200 ; phot. Zeiss, apoehr. s, compens. oc. 6:
a, flagellate chambers.
2.3.-Small sphacrasters; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :

2, with eonical, pointed rays;
3 , with cylindrical, truncate rays.
4.- Group of cuasters from a centrifugal spicule-preparation; magnified 300 ; u. v. phot. Zeise, q. monochr. 1.7.
5.- Part of a raclial section through the choanosome; hacmatoxylin; magnified 10 ; phot. Zciss, planar 50:
a, an efferent canal with eonstrictions.
6, 7.- Large oxysplacrasters; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
S.- Part of a radial section; magnified 10; phot. Zeiss, planar 50: a, sterraster-armour.
9, 10.- Large ehoanosomal amphioxes; magnified 30; phot. Zeiss, planar 20.
11.- Part of a radial section; magnified 10; phot. Zeiss, planar 50:
a, sterraster-armour; b, protruding parts of spicules forming the spicule-fur.
12.- Part of a radial seetion; magnified 10; phot. Zeiss, planar 50:
a, sterraster-armonr; b, rhabdome of an orthotriaene with rounded and thickencd acladomal end.
13-39.-Sterroids and sterrasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
$13,15,17,19,21,23,25,27$, and $29-39$, the highest part of the upper surface in focus;
14, 16, 1s, 20, 22, 24, 26, 28, the spieules represented above them in Figs. 13, 15, 17, 19, 21, 23, 25, 27, focused lower.
40-42.- ('ladones of mesoproelades; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6:
40, 41, of regular slender ones;
12, of a stout one with one rudimentary clade. (This spicule may be foreign).
43-16.- Cladomes of anaclades; magnified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6:
13, 46, of regular anatriaenes with well-developed. pointed elades;
4.1 of an anadiaene with well-developed pointed clades;

45, of an irregular anat riaene with small elades, one of which is shortened and rounded at the end.

PL.ATE 33.

Geodia agassizii Lendenfeld, (young) from Station 422 S .

Figures 1-14.

1-s.- Four stages of development of the sterraster; magnified 1s00; u. v. phot. Zeiss, q. monochr. I.7, \%. of. 10:
$1,3,5,7$, the highest part of the upper surface in focus;
$2,4,6,8$, the sterrasters (parts of sterrasters) represented to the left of them in Figs. 1, 3, 5, 7, focused lower;
1, 2. young sterraster 17μ in diameter;
3,4 , young sterraster 23μ in diameter;
5 . 6, young sterraster 50μ in diameter;
7 , s, young sterraster 70μ in diameter.
9-14. - Pats of the surface of adult sterrasters and sterroids; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10:
9,14 , part of the surface opposite the umbilieus of sterroids with distant protruding rays the spines of which are rough, apparently covered with secondary spinelets;
10, umbilicat part of the surface of a sterraster with extremely thick rays the spines of which are numerots and smonth;
11, part of the lateral surface of a sterroid;
12, 13, part of the surface, some distance from the umbilieus, of a sterraster with thin protruding rays standing very close together;
12, focused lower; 13, focused higher.

PLATE 34.

Geodia agassizii Lendenfeld (young) from Station 4228.

Figures 1-17.

1-16.- Orthoplagiotriaenes and orthoplagiotriaene-derivates; magnified 30; phot. Zeiss, planar 20: 1-7, orthonlagiotriaenes with the rhaldome pointed at the a eladomal end;
\&, 10-12, 11, orthoplagotrinenes with the rhabedone slighty shortened and roumded and more or less thickened at the acladomal end;
9. orthoplagiotriacne with the rhabdome slightly shortened and simply rounded at the acladomal end;
13, amphiehale orthophagiotriaene-derivate with the rhabdome shortened, rounded, thickened, and provided with a spine-like opisthoclade at the acladomal end;
15, orthoplagiotriaene-derivate with one elade bifureate and the rhabdome much shortened, and rounded and thickened at the acladomal end;
16, mesoelade orthoplagiotriaene-derivate.
17. - Transverse section of the specimen; magnified 1.6; phot. Zeiss, planar 100.

Geodia mesotriaenella Lendenfeld.

Figures 18-26.
1s.- Group of asters from a centrifugal spieule-preparation; magnified 300; u.v. phot. Zeiss, if. monochr. 1.7:
a, large oxyasters; b, small strongylosphaerasters.
19.- View of the sponge; matural size; phot. Zeiss, anastig. $1 \times 0 / 112$.
20.- Portion of the surface bearing afferent pores, a superfieial paratangential section viewed with transmittol light; magnilied 100; phot. Zeiss, apochr. I6, compens. oe. 6.
21, 22. Large oxyaster; magnified lisu0; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10:
21, focused higher; 22, foeuset lower.
23.- A sterraster; maguified 300; phot. Zeiss, apochr. 4, compens. oe. 6.
21.- A large oxyaster; magnified iso0; u. v. phot. Zeiss, q. monochr. 1.7, 1. oc. 10.
25.- Portion of the surface bearing efferent pores, a superficial paratangential section viewed with transmitted light; magnified 100; phot. Zeiss, apochr. 16, eompens. oe. 6.
26. - Group of small strongylosphaerasters from a centrifugal spicule-preparation; magnified 1500 ; u. v. phot. Zeiss, q. monoehr. 1.7, q. oe. 10 :
a, with longer rays attenuated towards the end; b. with shorter cylindrical rays.

PL.ATE 35.

Geodia breviana Lendenfeld.

Figures 1-27.
1-1.- Large choanosomat amphioxes; magnified 30; phot. Zeiss, planar 20.

8 13.-Small strongylospliaerasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10.
s, 9, group of two strongylosphaerasters from a centrifugal spicule-preparation;
s, focusel higher; 9, foensed lower;
10, group of two strongylosphaerasters from a centrifugal spicule-preparation;
11, 12, a strongylosphacraster;
11, focused higher; 12, focused lower:
13, a strongylosphaeraster.
11.- Cladome of a mesoprotriaene; magnified 100; phot. Zeiss, apochr. 16. compens. oc. 6.
1.5-17.-Ortho- and plagiotriaenes; magnified 30; phot. Zeiss, planar 20.

14-22.- Groups of asters from centrifugal spicille-preparations; magnified 300.
1s, $20-22$, u. v. phot. Zeiss, q. monochr. 1.7:
19, phot. Zeiss, apochr. 4 , compens. oc. 6;
a, large oxyasters; b, small strongylosphaerasters; e, large oxysphaeraster.
23.-A sterraster; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6 .

21-27.- Large oxyasters and oxysphaerasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. of. 10:
24,27 , two large oxyasters;
25,26 , a large oxysphaeraster;
25, focused higher: 26 , focused lower.

Geodia mesotriaenella Lendenfelo.

Figures 28-35.
28.30.-Mesoprotriaenes; magnified 100; phot. Zciss, apochr. 16, compens. oc. 6.
31.- (iroup of megascleres from a spicule-preparation; magnified 30 ; phot. Zciss, planar 20: a, orthotriaenes; b, mesoprotriaenes; e, large choanosomal amphioxes.
32-35. Cladomes of anatriaenes; magnified 100; phot. Zeiss. apochr. 16, compens. oc. 6.

PLATE 36

PLATE 36.

Geodia breviana Lendenfeld.

Figures 1-12.
1.-Two minute dermal anaclades in situ protruding from the surface; magnified 300; phot. Zeiss, apoelir. s, compens. oc. 6.
2 9.- Minute dermal anaclades:
2, 1, 6, s, entive dermal anaclades; magnified 150 ; phot. Zeiss, apochr. S, compens. oc. 6;
$3,5,7,9$, the eladomes of the dermal anaclades represented to the left of them in Figs. 2, 4, 5 , and
s: magnified 400 ; phot. Zeiss, apoehr. 4 , compens. oe. 6;
≥-5, triames:
6, 7 , a diaene;
s. 9. a monaene.

10 12.- Minute dermal amphioxes; magnified 150; phot. Zeiss, apoehr. S, compens. oc. 6:
10, a slightly eurved one;
11,12, two angularly bent ones.

Geodia micropora Lendenfeld.

Figures 13-36.

13-17.- (ladomes of mesoproetades; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6:
$1.3,1.5$, of mesoprotriaenes;
11, of an irregular mesoclade;
16 , of a mesoprodiaene;
17, of a mesopromonaenc.
1s, 19.- Group of asters from a centrifugal spieule-preparation; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7. ; f. of. 10:
15, focused higher; 19, focused lower;
a, small strongylo-phaerasters; b, large oxy*phaeraster.
20.-Two smali strongylosphaerasters; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10.

21-23.-sterrasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
21, a young sterraster;
22,23 , full-grown sterrasters.
21-27.-. Spieules and groups of such from centrifugal spicule-preparations; magnified 300; phot. Zeiss, apochir. A, compens. oe. 6:
a, termal rhabds; b, small strongylosphaerasters; c, large oxysphaerasters; d, large oxyasters.
25.- Group of small strongylosphaerasters; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
29. - Part of the surface of the sponge; magnified 3; phot. Zeiss, anastig. 167.

30,31 . - Inubilical part of the surfaee of a full-grown terraster; magnified 1800 ; u. v. phot. Zeiss, q. monoehr.1.ī, ๆ. пе. 10 : 30), focused ligher; 31, focused lower.
32.- View of the sponge; reduced $1: 095$; phot. 7 c iss, anastig. $450 / 412 \mathrm{~mm}$.
33.- Group of asters from a centrifugal spieule-preparation; magnified $1 \mathbf{3 0 0}$; u. v. phot. Zeiss, q. monoehr. 1.7, q. oc. 10:
a, small st rongylosphaeraster; b, large oxysphaeraster.
34.- Group of asters from a centrifugal spieule-preparation; magnified 1800 ; u. v. phot. Zeiss, q. monoelr. 1.7, q. oc. 10 :
a, small strongylosphaerasters; b, large oxyaster.
35, 36.- C'mbilical part of the surface of a not ruite fully developet sterraster; magnified 1800 ; u.v. phot. Zeiss, ๆ. monochr. 1.7, q. oc. 10:
35 , foensed higher; 36, focused lower.

Plate 37.

PLATE 37.

Geodia micropora Lendenfeld.

Figures 1-14.

1.- Portion of a radial section through the superficial part of the sponge: magnificd 20 ; phot. Zeiss, planar 20:
a, cortex.
2.- Portion of a radial section through the superficial part of the sponge; magnified 7.5 ; phot. Zeiss, planar 50: a, cortex; b, large efferent canal-stem.
3.-- Portion of a radial section through the superficial part of the sponge; magnified 100; phot. Zeiss, apochr. 16. compens. oc. 6:
a, dermal membrane; b, tufts of small dermal rhabds in position in the dermal layer; c, sterraster-armour; d, subeortical cavity; e, small dermal rhabds still situated subcortically; f, large subcortical triaencs.
1-7.-Orthoplagiotriaenes; magnified 50; phot. Zeiss, apochr. 16, compens. oc. 4.
8. 9.-surface views of thin superficial, paratangential sections in transmitted light; magnified 10 ; phot. Zeiss, planar 50:
s, part of an afferent area;
9 , part of an efferent area.
10, 11. Chelotrops; magnified 50 ; phot. Zeiss, apochr. 16, compens. oc. 4.
12. - A pore-sieve from an afferent area; magnified 50 ; phot. Zeiss, apochr. 16. compens. oc. 4 .
13.- I group of pore-sieves from an efferent area; magnified 50 ; phot. Zeiss, apochr. 16, compens. oc. 4.
14. - Part of a radlial section through the choanosome; congo-red; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6.

Geodia japonica (Sollas).

Figures 15-30.
15-17.- Cladomes of orthotriaenes; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6:
15 , side-view of an orthotriaene-cladome with terminally irregular clades;
16, side-siew of an orthotriacne with regular clades;
17, an orthotriaene-cladome (with the rhabdome broken off) seen from below.
15-21.- Large choanosomal amphioxes; magnified 20; phot. Zeiss, planar 20.
22.- Group of megascleres from a spicule-preparation; magnified 20; phot. Zeiss, planar 20.
a, ordinary, large choanosomal amphioxes; b, orthotriaene with regular clades; c, orthotriaene with an irregular clade; d, smaller, slender curved amphiox; e, large anatriaene.
23-28.- Orthotriaenes; magnified 20; phot. Zeiss, planar 20:
$23-27$, with fairly straight rhabdome;
28 , with curved rhabdome.
29, 30.- Large anatriaenes; magnified 20; phot. Zeiss, planar 20.

Fig. 1-1t Giodia micropora n. st.
Fig. 10 - 30 Geodia japonica (Sollas).

PLATE 38

Geodia japonica (Sollas).

Figures 1-29.
17.-Cladomes of orthotriaenes; magnified 50; phot. Zeiss, apochr. 16, compens. oc. 2.
s.-Side-view of the specimen; reduced 1:0.5s; phot. Zeiss, anastig. 480/412.

9 17.- Cladomes of mesoproclarles; magnified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6:
9, 14, of regular mesoprotriaenes;
10. 12, of regular mesoprodiaenes;

11, of a regular mesoprodiaene with a rudiment of a third clade;
13 , of a mesoclade with all three clades reduced;
15,16 , of mesopromonaenes with rudiments of the two other clades;
17 , of a mesoprodiaene with one shortened, truncate clade.
18-29.- Cladomes of large anatriaenes; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6:
18, 19, of young, large anatriaenes with not fully developed clades;
2e-22, of full-grown, large anatriaenes, the distal parts of the elades of which are straight;
23-29, of full-giown, large anatriaencs, the distal parts of the clades of which are more or less curved outwards (sigmaelade).

Fig. 1-29 Geodia japunicu (Sollus).
eld photographed.

PLATE 39.

PLATE 39.

Geodia japonica (Sollas).

Figures 1-41.
1-9.- Small dermal rhabds (amphioxes); magnified 300; phot. Zeiss, apochr. 4, compens, oc. 6.
10-12.- Groups of small strongylosphaerasters and a single one from a centrifugal spicule-preparation; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10.
13.-Group of spicules from a centrifugal spicule-preparation; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
a, large oxyasters; b, small strongylosphaerasters; c, a minute dermal anaclade.
14-17.- Minute dermal anaclades; magnified 300; phot. Zeiss, apochr. t, compens. oc. 6:
14,15 , with well-developed cladomes;
16,17 , with reduced cladomes.
18-24.- Large oxyasters; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6 .
25, 26. - Parts of large oxyasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
27.- Group of asters from a centrifugal spicule-preparation; magnified 540 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10:
a, large oxyaster; b, small strongylosphaerasters.
2S-32.-Sterrasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
28, 29 , en face views with the umbilicus near the centre of the upper side;
$30-32$, profile views with the umbilicus at or near the margin.
33.- A large oxysphacraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.

34, 35.-The umbilical part of the surface of a sterraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :

34 , focused higher; 35 , focused lower.
36, 37.-Two strongylosphaerasters from a centrifugal spicule-preparation; magnificd 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
36, focused lower; 37. focused higher.
38, 39.- Cladomes of minute dermal anaclades; magnified 1000; phot. Zeiss, hom. imm. apochr. 2, compens. oc. 6.
40, 41.-Large oxysphaeraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10: 40, focused higher; 41 , focused lower.

28

30

梁会
26
为

40

41

PLATE 10.

Geodia ovis Lendenfeld.

Figures 1-30.

1-4.- Drthotriaenes; magnified 10; phot. Zeiss, planar 50.
5.- View of a thick radial slice of the sponge; magnified 1.5; phot. Zeiss, anastig. $480 / 412$: a, spicule-fur; b, eortex; c, choanosome.
6-13.- Large amphioxes; magnificd 10; phot. Zeiss, planar 50.
11-16.-Sterrasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
14, a side-view;
15,16 , front-views of the umbilical side.
17, 18.- The umbilical part of the surface of a sterraster: magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:

17 , focused lower; 18, focused higher.
19-23.- Cladomes of orthotriaenes; magnified 50; phot. Zeiss, apochr. 16, compens. oc. 2. 24. - Part of the surface of a sterraster opposite the umbilieus; magnified 1800 ; u. v. phot. Zeiss, q. monoehr. 1.7, q. oc. 10 .
25.- Part of an afferent pore-sieve; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6.
26.- Tip of an abnormal spicule with numerous branch-rays; magnified 100; phot. Zeiss, apochr. 16, eompens. oc. 6.
27.- Tip of a normal, large amphiox; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6.
28.- The eut face of the halved specimen; reduced $1: 0.76$; phot. Zeiss, anastig. $480 / 412$.
29.-Sterroid; magnified 300; phot. Zeiss, apochr. 4, eompens. oc. 6.
30.- The tip of an orthotriaene-clade with abnormally branched axial thread; magnified 100 ; phot. Zeiss, apoehr. 16, eompens. oc. 6.

17

18

25

c

15

16

28

PLATE 41

Geodia ovis Lendenfeld.

Figures 1-20.

1-20.- Asters and parts of such; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, compens. oc. 10: 1,2 small stronglosphaerasters;
3 , thin-rayed oxyaster;
4 , strongylosphacraster:
$5-5$, medium strongylasters;
9. group of asters from a centrifugal spicule-preparation;
a, small, thick-rayed aster; b, oxyaster with thin, more cylindrical rays;
10,11 . group of asters from a centrifugal spicule-preparation;
10, focused higher; 11, focused lower;
a, small thick-rayed aster: b, large thick-rayed oxyaster with one ray bifureate;
12, oxyaster with rays intermediate in thickness;
13, 1 1, harge strongylaster;
13 , focused higher; 11 , focused lower;
15 , large oxyaster with slender rays;
16, farge oxyaster with thick rays;
17, part of a large oxyaster with thick rays;
18, a ray of a large thick-rayed oxyaster;
19 , a ray (the left below) of the large thin-rayed oxyaster represented in Fig. 15, focused lower;
20, a ray of a large thick-rayed oxyaster.

$$
1
$$

PLATE 42.

PLATE 42

Geodia ovis Lendenfeld

Figures 1-10.
1.- Radial section through the superficial part of the sponge; magnified 30; phot. Zeiss, planar 20: a, dermal membrane; b, sterraster-armour; c, choanosome; d, a chone.
2.- Radial section through the superficial part of the basal part of the sponge and the spicule-fur; magnified 10; phot. Zeiss, planar 50:
ti, surface of the sponge; b, c, d, freely protruding spicules of the spicule-fur: b, large amphioxes; c, small anaelades; d, orthotriaenes.
3.-Group of spicules from a centrifugal spicule-preparation; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6:
a, minute dermal amphioxes; b, minute dermal anaclade; c, asters.
1-7.- Ninute dermat amphioxes; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6.
S.- Radial section through the superficial part of the sponge; magnified 20; phot. Zeiss, planar 20:
a, dermal membrane; b, sterraster-armour; c, choanosome.
9.-Radial section through the dermal layer of the cortex; magnified 100; phot. Zeiss, apochr. 16 ; compens, oc. 6:
a, elermal membrane; b, sterraster-armour; e, tufts of minute dermal rhabds.
10, 11. - Cladomes of minute dermal anaelades; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 .

12-17.-Asters and groups of such from centrifugal spicule-preparations; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6:
a, large thick-rayed oxyasters; b, large thin-rayed oxyasters; e, small strongylasters.
18, 19.- Groups of oxyasters with medium rays from a centrifugal spicule-preparation; magnified 330; phot. Zeiss, apochr. 4, compens. oc. 6.
20-22.- Groups of asters from a centrifugal spicule-preparation; magnified 510 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10: a, large thick-rayed oxyasters; b, large thin-rayed oxyasters; c, small strongylasters.
23, 21.- Groups of spicules from a centrifugal spicule-preparation; magnified 330: phot. Zeiss, apochr. 4, compens. oc. 6: a, minute dermal rhabd; b, minute dermal anaclades; c, asters.
25.- Small anatriaene; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6 .

26-40.-Cladomes of anatriacnes; magnified 100; phot. Zeiss, apochr. 16, eompens. oc. 6.

Fig. 1-40 Geadia ovis n. sp.

Geodia ovis Lendenfeld.

Figures 1-8.
1-8.- Cladomes of mesoproclades and teloclades; magnified 100; phot. Zeiss, apochr. 16, compens. oe. 6:
1, of an irregular inesoprodiaene;
2 , of an irregular plagiotriaene with elades convex towards the rhabdome;
3, 4 , of quite regular mesoprotriaenes;
5 , of a quite regular mesopromonaene;
6 , of an irregular mesoprotriaene, with one elongated clade;
7 , of : prodiaene;
s, of an irregular mesoprotriaene with one clade reduced to a rounded knob, and another mueh elongated.

Geodia ataxastra Lendenfeld.

Figs. 9-25, 28-38.- var. angustana Lendenfeld. Figs. 26, 27. - var. latana Lendenfelo.

9-14.- Cladomes of orthotriaenes (plagiotriaenes) of var. angustana; magnified 50 ; phot. Zeiss, apochr. 16 , compens. oe. 2 :
9 , of a young one;
10, of an adult, somewhat irregular one;
11-14, of adult regular ones.
15-22.- Orthotriaenes of var. angustana; magnificd 20; phot. Zeiss, planar 20.
23,24.-Groups of megascleres from spieule-preparations of var. angustana; magnified 20; phot. Zeiss, planar 20:
a, orthotriaene; b, mesoprotriaene; c, anatriaenes; d, large amphioxes.
25.- Part of a radial section of var, angustanu; magnified 10 ; phot. Zeiss, planar 50 :
a, cortex; b, choanosome.
26.-An afferent pore-sieve of var. latana; magnified 100; phot. Zeiss, apoehr. 16, compens. oe. 6.
27. - Group of megaseleres from a spieule-preparation of var. latuna; magnified 20 ; phot. Zeiss, planar 20 :
a, orthotriaenes; d, large amphioxes.
25 - A group of efferent pore-sicves of var. angustana; magnified 30; phot. Zeiss, planar 20.
29-32.-Large oxysphaeraster of var. ungustana; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10 :

29, focused higher; 30, focused lower; 31, focused still lower; 32, focused lowest.
33, 34.- Groups of small strongylosphacrasters from a centrifugal spicule-preparation of var. angustana; magnified 1s00; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
35.- Part of a large slender-rayed oxyaster of var. anyustana; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
36.- Part of a large thick-rayed oxyaster of var. angustana; magnified 1890 ; u. v phot. Zeiss, q. monochr. 1.7, q. oc. 10.
37.- Group of spicules from a centrifugal spicule-preparation of var. angustana; magnified 1800: u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
a, part of a large thick-rayed oxyaster; b, small strongylosphaeraster.
38.- Part of a large thin-rayed aster of var. angustana; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7. q. oc. 10.

Fig. $1-8$ Gioilut waits n. sf
Fig. 9-38 Giodia aturustra n. sp.
9-25, 28-38 G. a. var. angustana; 26, 27 G. a. var. latana.

PLATE 44.

PLATE 41.

Geodia ataxastra Lendenfeld.

Figs. 1-12, It-19.- var. angustana Lendenfeld.
Fig. $13 . \quad$ - var. latana Lendenfeld.

1-11. - Cladomes of mesoproclades; magnifical 100; phot. Zciss, apochr. 16, compens. oc. 6: 1-12, 14, of var. angustana;
13, of var. latana;
1,2 , of mesoprotetraenes;
3-11, of fairly regular mesoprotriaenes;
12, of a mesoprodiaene;
13, 14, of irregular mesoprotriaenes with one or more clades reduced in length and terminally rounded.
15 22.- Cladomes of large anatriaenes of var. angustana; magnified 100; phot. Zeiss, apochr. 16, compens, oc. 6.
23.- Clatome of an anatriaenc-derivate with clades reduced to small knobs of var. angustana; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6.
21. - Part of a section through the choanosome of var. angustana; haematoxylin; magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6.
25.- View of a chuster of specimens of var. angustuna growing together on a stone; natural size; phot. Zeiss, anastig. $480 / 412$.
26.- Iadial section through the superficial part of var. anyustana; magnified 30; phot. Zeiss, planar 20:
a, sterraster-armour; b, radial cortical canal; c, choanosome.
27. - Thick radial section through the superficial part of var. angustana; magnified 20 ; phot. Zeiss, planar 20: a, surface of the sponge; b, protruding mesoproclades.
28.- Ciroup of spicules from a centrifugal spicule-preparation of var. angustana; magnified 300; phot. Zeiss, apochr. 4 , compens. oc. 6:
b, small strongylosphaerasters; c, large oxyaster; d, minute dermal anaclades.
29. 30. - Groups of asters from a centrifugal spicule-preparation of var. angustana; magnified 540 ; u.v. phot. Zeiss, q. monochr. 6, q. oc. 10:
b, small strongylosphaerasters; e, large thick-rayed oxyasters; e, large thin-rayed oxyaster.
31.- (iroup of spicules from a centrifugal spicule-preparation of var. angustana; magnified 300; phot. Zeiss, apochr. 1, compens. oc. 6:
a, minute dermal amphioxes; b, small strongylosphaerasters.
32.-- A minute dermal amphiox of var. angustana; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.
33.-Group of spicules from a centrifugal spiculc-preparation of var. anqustana; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
a, minute dermal amphioxes; b, small strongylosphaerasters; c, large thick-rayed oxyasters.
31,35 . Groups of asters from a centrifugal spicule-preparation of var. angustana; magnified 540 ; 11. v. phot. Zaise, if monochr. 6, if. oc. 10:
b, small strongylosphaerasters; c, large thick-rayed oxyasters: e, large thin-rayed oxyasters.
36-35.- Nterrasters of var. angustana; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
36, side-view.
$37,3 \times$, views of the umbilical face.
39.- Large oxyastor with medium rays; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6.
40.- (iroun of spieules from a centrifugal spicule-preparation of var. angustana; magnified 300; phot. 7.eiss, apochr. 4, compens, oc. 6:
a, minute dermal rhabds; b, small strongylosphaerasters; c, large thick-rayed oxyasters; d, minute dermal anatriaene.
41, 42.- (ladomes of anatriaenes of var. angustana; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.
43-4.5.- The umbilicus of a sterraster and the adjacent parts of its surface of var. angustana; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
13, focusel high; 44, focused intermediate; 45, focused low.
46-49. Minute dermal anaclades of var. angustuna; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.

PONGES OF THE PAMFIC, I. fIEODIDAE.

Fig. 1-49 Geodia atarastica n. sp.

PLATE 45.

Geodia acanthylastra Lendenfeld.

Figures 1-39.

1-7. - Cladomes of mesoprotriaenes; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6. 8-15.- ('ladomes of anatriaenes; magnified 100; phot. Zeiss, apochr. 16, eompens. oc. 6 .
16.- The eut face of a halved speeimen; magnified 3; phot. Zeiss, anastig. 167.

17-19.-Groups of spieules from spicule-preparations; magnified 20; phot. Zeiss, planar 20:
a, large amphioxes; b, plagiotriaenes; e, anatriaenes.
20-22.- Dermal amphioxes:
20-21, magnified 200; phot. Zeiss, apochr. 8, compens. oc. 6;
22, magnified 300 ; phot. Zeiss, apochr, 4, compens. oc. 6.
23-25. - Groups of asters from centrifugal spicule-preparations; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6: a, large acanthtylasters; b, small strongylosphaerasters.
26, 27.- Groups of asters from a centrifugal spicule-preparation; magnified 510 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10: a, large aeanthtylasters; b, small strongylosphaerasters.
28.- Part of a section through the choanosome; aniline-blue; magnified 200; phot. Zeiss, apochr. 8, eompens. oc. 6 : a, young sterraster; b, flagellate chambers.
29.- View of the sponge; magnified 1.5; phot. Zeiss, anastig. 167 .

30-35.- Plagiotriaenes, diehotriaenes, and eladomes of these spieules; magnified 50 ; phot. Zeiss, apochr. 16, compens. oc. 2:
30,35 , eladomes of somewhat irregular plagiotriaenes with one lengthened elade;
31, 32, regular plagiotriaenes;
33, a plagiotriaene with one bifurcate clade;
34 , eladome of a regular plagiotriaene:
36,37 , dichotriaenes (possibly foreign);
38 , a plagiotriaene with a shortened, terminally rounded rhabdome.
39.- Radial section through the superfieial part of the sponge, magnified 100 ; phot. Zeiss, apochr. 16 , compens. oe. 6:
a, dermal membrane; b, sterraster-armour; c, tufts of dermal rhabds; d, dermal cavities.

PLATE 46.

PLATE 46.

Geodia acanthylastra Lendenfeld.

Figures 1-21.
1, 2.-Group of small strongylosphaerasters; magnified 1800, u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
1, focused higher; 2, focused lower.
3-7.-Small strongylosphacrasters and groups of such from centrifugal spicule-preparations; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
8, 9.-Sterrasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.
10, 11.- Large oxysphaerasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
10, focused lower; 11, focused higher.
12, 13.- Large oxysphaeraster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
12, focused lower; 13, focused higher.
14-16.- The umbilicus of a sterraster and the adjacent parts of its surface; magnified 1800; u.v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
$1+$, focused high; 15 , focused intermediate; 16 , focused low.
1-19.- The umbilicus of a sterraster and the adjacent parts of its surface; magnified 1800 ; u. v. phot. Zeise, q. monochr. 1.7, q. oc. 10 :
17, focused high; is, focused intermediate; 19, focused low.
20.- Radial section through the superficial part of the sponge; magnified 30; phot. Zeiss, planar 20:
$a, ~ p r o t r u l i n g ~ m i n u t e ~ d e r m a l ~ r h a b d s ; ~ b, ~ d e r m a l ~ m e m b r a n e ; ~ c, ~ s t e r r a s t e r-a r m o u r ; ~ d, ~ p r o-~$ truding mesoproclades; e, choanosome.
21.-A pore-sieve; magnified 100; phot. Zeiss, apochr. 16, compens. oc. 6.

14

15

17

12

20

19

21

PLATE 47.

Geodia acanthtylastra Lendenfeld.

Figures 1-8.
1, 2.- Large acanthtylaster; magnified 1800 ; u. v. phot. Zeiss, \&. monochr. 1.7, q. oc. 10 :
1, focused higher; 2, focused lower.
3.- Group of asters from a centrifugal spicule-preparation; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
a, small strongylosphaeraster; b, large acanthtylasters.
4-6.- Acanthtylasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
7.- Group of asters from a centrifugal spicule-preparation: magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
a, small strongylosphaeraster; b, large acanthtylaster.
8.- Large acanthtylaster; magnified 1800: u. v. phot. Zeiss, q. monochr. 1.7, q oc. 10.

Geodia lophotriaena Lendenfeld.

Figures 9-36.
9-21.-Side views of lophotriaenes and plagiotriaenes; magnified 50; phot. Zeiss, apochr. 16, compens. oc. 2:
9 12, 1.1.19, lophotriaenes with more or less irregular eladomes and long simple, pointed rhabdomes;
$13,15,16,18$, diehotriacnes with regular eladomes and long pointed rhabdomes:
17, plaviotriaene;
20, lophotriaene with bifurcate rhabdome;
21, plagiotriaene with shortened and terminally rounded rhabdome.
22.-The sponge seen from above; magnified 3.5; phot. Zeiss, anastig. 167.
23.- Radial section through the superficial part of the sponge; magnified 100; phot. Zeiss. apochr. 16, eompens. oe. 6:
a, dermal membrane; b, sterraster-armour; e, choanosome.
21. Radial seetion through the superficial part of the sponge; magnified 10: phot. Zeiss, planar 50:
a, cortex; b, choanosome.
25-33.- Clademes of dicho- and other lophotriaenes seen from below (the rhabdome is directed vertically upwards); magnified 50 ; phot. Zeiss, apochr. 16, compens. oc. 2:
$25-29$, eladomes of dichotriaenes;
30,33 , eladomes of lophotriaenes with one trifureate and two bifurcate clades;
31, eladomes of a lophotriaene with one bifurcate, one trifurcate and one quaterfureate clade;
32 , cladome of a lophotriaene with one quaterfuicate and two trifurcate clades.
34.- Mesoprotriaene; magnified 50 ; phot. Zeiss, apochr. 16, compens. oc. 2.

35,36 .-Cladomes of anatriaenes; magnified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6 .

PLATE 48.

Geodia lophotriaena Lendenfeld.

Figures 1-34.
1, 2.- Large oxyaster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
1 , focused higher; 2, focused lower.
3-7.- Large amphioxes; magnified 50; phot. Zeiss, apochr. 16, compens. oc. 2.
S, 9.- Minute dermal amphioxes; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6 .
10.- Group of spicules from a centrifugal spicule-preparation; magnified 300: phot. Zeiss, apochr. 4, compens. oc. 6:
a, minute dermal amphiox; b, sphaerasters.
11.- Large oxyaster; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6.
12.-Group of asters from a spicule-preparation; magnified 300 ; phot. Zeiss, apochr. 4, compens. oc. 6: a, sphaeraster; b, large oxyasters.
13-15.-Strongylosphaerasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.
16-15. - Large oxyaster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
16 , focused high; 17 , focused intermediate; 18 , focused low.
19.- Oxysphaerastor; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
20.-Strongylosphaeraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
21.-A ray of a large oxyaster; magnified 1800 ; u. v. phot. Zeiss, q. monochr. 1.7 , q. oc. 10 .

22, 23.-Strongylosphaerasters; magnified 1500 ; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10.
24-26.-Strongylosphaeraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
24, focused high; 25, focused intermediate; 26 , focused low.
27-29.-Sterrasters; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6.
30,31 . - The umbilicus and adjacent parts of the surface of a sterraster; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
30 , focused lower; 31, focused higher.
32.- Group of asters from a centrifugal spicule-preparation; magnified 540 ; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10:
a, sphacrasters; b, large oxyasters.
33, 34.- Part of the surface of a sterraster opposite the umbilicus; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7 , q. oc. 10 .

33 , focused lower; 34, focused higher.

IDemoirs of the תDuseum of Comparative Zoölogy
 at harvard college.
 Vol. XLI. No. 2.

REPORTS ON THE SCIENTIFIC RESULTS OF THE EXPEDITION TO TIIE EASTERN TROPICAL PACIFIC, IN CHARGE OF ALEAANDER AGAssiz, BY THE U. S. FISH COMMISSION STEAMER "ALBATROSS," FRONI OCTOBER, 1904, TO MARCH, 1905, LIEUT. COMALANDER L. MI. GARRETT, U. S. N., COMMLINDING, AND OF OTHER EXPEDITIONS OF THE "ALBA TROSS," 1888-1904.
XXI.

THE SPONGES.

2. THE ERILIDAE.

Br ROBERT YON LENDENFELD.

WITH EiGHT PLATES.
[Published by permission of George M. Bowers, U. S. Commissioner of Fish and Fisheries.]

CAMBRIDGE, U. S. A.:
Drinted for the תinseum.
September, 1910.

CON'TENTS.

No. 2. IREPORTS on the Scientific Results of the Expedition to the Eastern Tropical Pacific, in Charge of Alexander Agassiz, by the U. S. Fish Commission Steamer "Albatross," from October, 1904, to March, 190.5, Lieut. Commander L. M. Garmett, U. S. N., Commanding, and of other Experditions of the "Albatross," 18SS-1904. NXI. The Sponges. 2. Tife Erylidie. By Robert von Lendenfeld. 63 pp. S plates. September, 1910.

TABLE OF CONTENTS.

Page 267Erylidae
ERyLUS 267 268
E. oxyaster (Plate 3, firs. 29-3.5: Pate 1, figs. I-4:3) 268
L. sollasii (Plate I, figs. I-14; I'late 2, figs. I-26; Plate 3, figs. I-2N) 272
E. rotundts 290
var. megarhabela (Plate 5, figs. 15-23, 32; Plate 6, Ggs. 14, 14, 21, 33-35; l'late 7, figs. 22-31, 57-73; Plate 8, fig. 13) 309
var. typicat (Plate 5, figs. 1-4, 11-17, 30; Plate 6, figs. 15-17, 25, 27, 30-32; Plate 7, figs. 16-21, 46-56) 309
var. cidaris (Plate 5, figs. 5, 26-28, 31; Plate 7, figs. 1-10, 42 45, 75, 76, 79 ; luate S, fig. I4) 310
E. caliculatus (Plate 5, figs. 6-10, 24, 25, 29; Plate 6, figs. 1-I3, 19-23, 26, 28, 29 ; Plate 7, figs. 11-15, 31-11, 71, 77, 75, M: Plate \&, figs. 1-12, 15-20) 310
 FRON TIJE PAC'JFJC OCEAN 316
ERyuns 316
Summary of the species found in the Pacific Ocean 316
1之. placenta 317
L. montieularis 317
li. decumbens 317
E. oxyaster 318
L. nobilis 31 s
E. sollasii 318
E. rotundis 319
var. megarhabdat $3: 0$
var. typica 320
sar. cidaris $3: 0$
E. caliculatus 321
111. DlsTRIBUTLUN 322
11. I,NT OF STATJONK 323

1. EXJLINATHON OF THE PLATE

I. DESCRIPTION OF THE SPECIES COLLECTED BY THE "ALBATROSS."

Erylidae.

Tetraxonia with rhabd and teloclade megascleres, and a superficial armour composed of aspidasters ${ }^{1}$ and microrhabds. Euasters are always present in the choanosome.

Sollas ${ }^{2}$ divided the family Geordidae (Geodiadae) of Gray ${ }^{3}$ into the two subfamilies Erylina and Geodina, and placed the geodid genera Eryhus, Caminus, and Pachymatismat in the former. Later authors, I^{4} among others, have not retained these subfamilies and have placed the three genera named, together with the typical genus Geodia and its allies, in the family Geodidae. The genera Caminus and Pachymatisma are not represented in the collections of the "Albatross," so that I have not been able to give any new data concerning their systematic position during this work. The genus Erylus on the other hand is well represented, and the examination of the "Albatross" material has shown that, as I have already stated in the first part of this monograph (ante p. 17), Erylus differs very considerably from Ceodia the typical genus of the feodidae. I therefore now not only revert to Sollas's (loc. cit.) original proposition of dividing the family Geodidae into two subfamilies but propose to go cven farther and to place Erylus in a separate family: the Erylidae.

The question whether other genera (Pachymatisma, Caminus) should also be placed in this new family I shall not, for the reason given above, discuss here, and I leave them, for the present at least, in the Geodidae; the deseription of

[^17]the Parific species, not in the "Albatross" collection, will be found in the first part of this monograph.

The family Erylidac thas comprises the single genus Erylus.

ERYLUS Gray.

With uniporal afferents and uniporal efferents or larger oscules. Without ana- or protriaenes.

There are in the " Dlbatross" colleetion twenty-two specimens which belong to four species, one of which is divided into three varieties. All the species and varieties are new.

Erylus oxyaster, sp, nov:
Plate 3, figs. :9-35; Plate 1, figs. 1-43.
I establish this species for a specimen obtained in the Calapagos Islands. Its asters are oxyasters and to this the name refers.

The single, somewhat fragmentary specimen (Plate 4, fig. 24) is 30 mm . in maximum diameter and consists of two rounded lobose parts, one of which is broad cushion shaped, the other slender, digitate. The surface is smooth and bears mumerous smatl afferent pores. These are quite uniformly distributed and $0.7-1 \mathrm{~mm}$. apart. On the summit of the broater of the two lobes an irregularly circular oscule, 1.5 mm . in diameter, is situated.

The colour of the surface of the sponge (in spirit) is brown. A small part of it, which was probably sheltered from the light, is much lighter than the rest. The interior is light greenish yellow.

The superficial part of the body is differentiated to form a corter 4506.50 p thick. This is composed of two layers, an onter layer, $75-120 \mu$ thick, oecupical by mierorhables, and an inner hayer $360-560 \mu$ thick, ocrupied by aspidasters.
(amal-system. Many of the afferent pores appear to be quite closed. The open ones (Plate 4, fig. 25) are circular and surrounded by fine sphineter-membrancs in which numerous more or less radially disposed microrhabds are situatecl. These pores are $30-60 \mu$ wide. They lead into radial canals which traverse the cortex and open out into subortical cavities the radial diameters of which are usually greater than the paratangential.

The skeleton consists of regular rhabd megaseleres, irregular derivates of these, micromabels, teloclades, aspidasters, and oxyasters. The rhabd megat seleres are for the most part amphoxes, but a few styles have also been observed. These rhabds and their irregular derivates form bundles which
extend radially from the base of the sponge to the cortex and abut vertically on the latter. The microrhabds occupy in deuse masses the outer layer of the cortex. The superficial ones are situated paratangentially, the deeper ones mostly obliquely or radially. The teloclades are mostly regular diehotriaenes, but some irregular dichotriaene-derivates and simple plagiotriaenes have also been observed. The eladomes of these teloclades extend paratangentially; just below the cortex their rhablomes are directed radially inward. The oxyasters form a series from small many-riyed to large few-rayed ones. As, however, the asters of medium diameter and ray-number are not nearly so numerous as the large few-rayed and small many-rayed ones, this series does not appear uniform and large few-rayed and small many-rayed oxyasters can readily be distinguished. The large few-rayed oxyasters are quite uniformby seattered throughout the choanosome; the small many-rayed ones on the other hand, although also present in all parts of the chomosome, are much more numerous in the subcortical region, particularly in the roofs of the subcortical cavities and the walls of the cortical canals, than elsewhere. The aspidasters, which occupy the inner layer of the cortex, are rather irregularly arranged. They exhibit hardly a trace of a paratangential orientation.

The regular amphioxes (Plate 4, figs. 6 9) are isoactine, gradually attenuated towards the ends, and usually rather sharply pointed (Plate 4, figs. 6-8), more rarely blunt (Plate 4, fig. 9). They are straight (Plate 4, fig. 6) or slightly and uniformly corved (Plate 4 , figs. $\overline{7}, 9$), exceptionally abruptly bent in the middle (Plate 4, fig. 8). The amphioxes are $1.8-2.9 \mathrm{~mm}$. long and $60-85 \mu$ thick.

The rare styles (Plate 4, figs. 10, 11) are slightly curved, simply rounded off at one end and gradually attenuated towards the other, whieh is usually very blunt. They are $1.9-2.3 \mathrm{~mm}$. Iong and $60-105 \mu$ thick.

The irregular derivates of the rhabd megaseleres (Plate 4, figs. 12-19) have similar dimensions to the regular rhabds. They appear as more or less curved amphioxes, either strongly angularly bent near one end, or provided with one or more branches. The angle in the angularly bent forms (Plate 4, figs. 12-13) is $15-95^{\circ}$. The branched forms bear one (Plate 4 , fig. 15) or, more frequently, two (Plate 4, figs. 16, 19) or three branches (Plate 4, figs. 17, 18), which arise either from the same part (Plate 4, figs, 16, 19) or from different parts of the shaft (Plate 4, figs. 17, 18). The branches are always very much shorter than the shaft, rarely over 400μ long, straight, conical, and terminally either pointed (Plate 4, figs. 16, 17, 18 the upper right one, 19) or rounded (Plate 4, figs. 15, 18 the upper left and the lower one). The angle at which they arise is very vari-
able. Fometimes two similar branches lie opposite each other in a straight line (Plate 4, fig. 17 the two lower ones, 19). The axial threads of the shaft and the branches are either joined in a regular manner, or slight irregularities oeeur at their junction. The most remarkable of these were observed in the two spicules represented on Plate 4 , figs. 15 and 18 . The axial thread of the single branch of the former and that of the lowest one of the latter do not reach down to the axial thread of the shaft, which passes the junction unaltered, but terminate with a bulbous thickening at a distance of about 3μ from it .

The mierorhubds (llate 3, figs. 29-31, 32a, 35a; Plate 4, figs. 28-33a) are more or less curved. centrotyle amphistrongyles, and generally isoactine. The curvature is cither uniform or one or both ends are also abruptly bent in the direction of the curvature. The isoactine miororhabls are usually $31-47 \mu$ long, but orcasionally very much larger ones, up to $93 / \mathrm{fin}$ length, are observed (Plate 4. fig. 31). The ordinary microrhabds are, near the centre (tyle), 3.5-4.5 μ thick; the tyle measures $4.55 .5 \mu$, msuatly about 1μ more than the adjacent parts of the spicule, in diameter. Towards the rounded ends the aetines taper
 to their greater length. The centre of the spherical tyle usually lies in the axis of the spicule ; sometimes, however, it is ecentrie and then the tyle bulges much more on one side than on the others. In some mierorhabds one actine is reduced in length; these appear as anisoactines. In a few one of the actines is completely suppressed; these appear as bhint tylostyles. The anisoactine mierorhabds are shorter and also somewhat thicker than the ordinary isoactine ones.

The rare playiotriuenes (Plate 4, fig. 20) have a straight, conical rhabdome, about 0.9 mm . long and, at the dadomal end, 75.90μ thick. The clades are nearly straight, about 0.7 mm . long, and enclose angles of $109-112^{\circ}$ with the rhabdome. The breadth of the cladome is $1.3-1.4 \mathrm{~mm}$.

The reguler dichotrinenes (Plate 4, figs. 1-5, 21-23) have a fairly straight, conical rhatdome, $0.6-1.6 \mathrm{~mm}$. long and, at the eladomal end, $70-105 \mu$ thick. The main clades are straight, $250-400 \mu$ long and enclose angles of $109-120^{\circ}$ with the rhabdome. The end elades are conical, pointed, and straight or, more rarely, slightly curved inwards (Plate 4 , fig. 5 , below), and $50-450 \mu$ long. The cladome is (0.9-1.5 mm . broad.

In the rare imegular diehotriaene-derivates either the clades are reduced in number or the rhabdome reduced in length, or both. Forms with two and with only one clade (dichodiaenes and dichomonaenes) have been observed. The reduced thabdomes are eylindrical, rounded at the acladomal end, $200-$
600μ long, and about as thick as the rhabdome of the regular diehotriaenes. In sueh rhabdomes the axial thread terminates some distance from the aclarlomal end, in the centre of its hemispherical surface. In the dichotriaenederivates with reduced clade number, the eentral parts of the axial threads of both the rhabdome and the clades usually exhibit considerable irregutarities.

The oxyasters (Plate 3, figs. 32e, d, 33d, 34c, 35b, d; Plate 4, figs. 26d, 27b, $28 \mathrm{c}, 29 \mathrm{f}, 30 \mathrm{~d}, \mathrm{f}, 32-34 \mathrm{e}, 38-40$) usually have a slight central thickening. This is most clearly discernible in the monactine (Plate 4, fig. 27b) and diactine forms (Plate 3, fig. 35b; Plate 4, fig. 2Sc). The rays are from one to twenty or more in number, concentric, regularly distributed, and usually equal in size. They are perfectly smooth (Plate 4, figs. $38-40$), comical, and pointed. Very rarely one or two rays are reduced in length, much shorter than the others, and terminally rounded (Plate 3, fig. 34e). The properly developed rays of the smatl oxyasters (Plate 4, figs. 39-40) are uniformly attenuated towards the pointed end, those of the large ones (Plate 4, fig. 38) attenuated more rapidly in their distal than in their proximal part. The rays are 6-55 k long and, at the base, $0.8-4.5 \mu$ thick. The whole aster measures $10-90 \mu$ in diameter. The raynumber is, as the following table shows, in inverse proportion to the size of the rays and, apart of course from the monactines, of the whole aster.

Number of rays	1	$2-3$	4.5	6-9	10-13	$1+20$ or more
Total diameter of aster, "	57	48-90	4.)-75	$32-53$	15-23	10-17
Length of rays measured from centrum, $/$.	55	29-50	$27-10$	19-35	9-11	6-10
Basal thickness of rays. μ	4.5	$3-1.5$	3-1.5	1.7-1.5	2-3.5	0.8-1.5

As mentioned above there is a kind of gap in the series of these oxyasters, produeed by the scareity of forms $20-35 \mu$ in diameter with from nine to cleven rays.

Most of the aspidasters (Plate 4, figs. 35-37, 41-43) are stout oval dises. Very rarely roundish (Plate 4, fig. 41) or irregular aspidasters have been olserved. The ordinary oval aspidasters are $208-243 \mu$ long, $125-150 \mu$ broad and in the middle $30-40 \mu$ thick. Towards the margin they thin out gradually. The average proportion of length to breadth to (eentral) thickness is $100: 63.3: 1.5 .7$.

The munilical pit is more or less circular in ontline, $30-50 \mu$ broad, and about 1.5μ deep. Its walls are usually quite smooth. The rest of the surface of the adult aspidaster is covered with protruding rays, often somewhat irregularly distributed, and $1.4-1.7 \mu$ thick. These rays bear terminal vertieils of usually six to eight lateral spines (Plate 4, figs. 36, 37). The youngest aspidasters observed were about 55μ long and appeared as oval, radially striated dises with deeply serrated margins. In a more advanced stage these spicules are smooth dises with slightly undulating margins. On the faces and the margin of such, small protuberances then make their appearance and these grow out to form the protruding rays of the adult aspidasters above deseribed. The centre of the aspidaster is occupied by a rosette-shaped granule about 1.7μ in diameter. Viewed in profile the adult aspidasters show a distinct stratification. The limits of the layers are smooth and nearly parallel to the two faces. Viewed en face they show fine straight striae radiating from the central gramule.

This sponge was trawled in the Galapagos Islands, Station 2809, on April 4, 1888 ; $0^{\circ} 50^{\prime} \mathrm{S} ., 89^{\circ} 36^{\prime} \mathrm{W}$.; depth 82 m . (45 f.$\left.\right)$; it grew on a bottom of gray sand; the bottom temperature was $23.4^{\circ}\left(54.1^{\circ} \mathrm{F}\right.$.).

The only known species which appears to be allied to the sponge described above is E. polyaster Lendenfeld from the Iguthas bank, south Africa. From this it differs, apart from minor peculiarities, by the aspidasters, which are, absolutely and relatively more than three times as thick in k. polyaster ats in E. oryaster, a difference, of course, quite stifficient for specific distinction.

Erylus sollasii, sp. nov.
Plate 1, figs. 1-48; Plate 2, figs. 1-26; Plate 3, figs. 1-28.
I establish this species for seven specimens obtained at five stations among the Hawaiian Istimds. Among the known species of Erylus the one named after me by Sollas appears to be its nearest ally. I therefore return my distinguished friend's compliment by naming this new species after him.

The two specimens from Station 3847 are both small; one is partly light, partly dark in eolour: in the other the whole of the surface is dark. Both the specimens from station 3848 are large and whitish. The specimens from Stations 3849 and 4055 are large and dark. The specimen from Station 4062 is middle sized and light coloured.

The two specimens from station 3848 are in every way identical; all the others differ to some extent from these and from each other. We have to deal therefore with six different forms. As is shown below, these six forms fall into
three groups, which I consider as three distinet races. These I denominate I, II, and III. Race I contains four forms; the races II and III one each. The four forms of race I are designated $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . To race I , form A , belongs the partly light and partly dark speeimen from South Molokai (Station 38t7); to race I, form B, the small, entirely dark specimen from south Molokai (Station 3S17); to race I, form C, the two large whitish specimens from South Molokai (Station 3848); to race I, form D, the middle-sized, light-coloured specimen from northeast Ilawaii (Station 4062); to race II the large dark specimen from South Molokai (Station 3849); and to race III the large dark specimen from northeast Hawaii (Station 4055).

Shape and size. The smallest specimen is the entirely dark one from Station 3847 (race I, form B). It is massive, lobose, covered with small but relatively high gyriform ridges, and measures 18 by 9 mm . It has one oscule, about 1 mm . wide, which lies on the summit of a slight elevation. The partly light, partly dark specimen also from Station 3817 (race I, form A) is an irregular mass, with still higher gyriform ridges and measures 24 by 17 by 13 mm . It has two oscules, the larger 1.8 mm . in dianeter, and numerous small pores, which are scattered over its surface. The specimen from Station 4062 (race I, form D) is meandric, has small, but relatively quite high, gyriform ridges and measures 36 by 27 by 18 mm . Here and there small apertures are observed on its surface. Of the two specimens from station 3848 (race I, form C) one (Plate 1, fig. 27) is meandric, while the other appears as a mass with lobose, somewhat digitate processes $7-12 \mathrm{~mm}$. thick. The former measures 60 by 35 by 20 mm ., the latter is only 51 mm . long. A few oscules, up to 1.5 mm . wide, are situated on the elevations, and groups of small pores are scattered over the other parts of the surface. The specimen from Station 3819 (race II) (Plate 1, fig. 28) appears as an aggregate of vertical digitate parts about 15 mm . thick, which are joined for the greater part of their length. It is 73 mm . high, 64 mm . long, and 42 mm . broad. From the surface ridges protrude which are about 1 mm . high and 2.5 mm . apart. These ridges are somewhat curved and most of them extend longitudinally, parallel to the vertical axis of the sponge. On or near the summit of each digitate protuberance an oscule is situated. The largest of these oscules is oval and measures 3.2 by 2 mm .; the other oscules are $1-2.5 \mathrm{~mm}$. wide and more or less circular. On the sides of the digitate parts groups of small pores are met with. At one place there is a group of six much larger apertures about 1 mm . wide; here the sponge seems to have been injured some time before its capture. The specimen from Station 4055 (race III) (Plate 3, fig. 27) is an
irregular lobose mass with small gyriform ridges on parts of its surface and measures is by 62 by 40 mm . On or near the summits of some of the lobes oscules are observed. The largest are oval and measure + by 2 mm . The other parts of the surface are occupied by groups of small pores.

In regard to their colour the (spirit) specimens differ to a considerable extent. The two specimens from Station 3848 (race I, form C) are for the most part yellowish white, only some of the protruding parts having a purplish brown tinge. The specimen from Station 4062 (race I, form D) is dirty light brownish gray. The lower, basal portion of the partly dark, partly light-coloured specimen from station $38+7$ (race I, form A) is light gray, the upper portion dark chestnut-brown. In the entirely dark specimen from the same Station (race I, form B), the surface is dark chestnut-brown throughout. The specimen from Station 3849 (race II) is dirty brownish purple, some parts of its surface being considerably darker than others. The specimen from Station 4055 (race III) is rather dark purple-brown.

The superficial part of the body is differentiated to form a cortex (Plate 1, fig. 1a). This is $100-250 \mu$ thick and composed of an outer, middle, and inner layer. The outer, dermal layer is generally quite insignificant and on parts of the surface of most of the specimens absent altogether, probably rubbed off. In those parts of the cortex of race II where it is most highly developed, it attains a thickness of $30 \mathrm{\mu}$. This layer is rich in microrhabds, but contains no fibres and no aspidasters. The middle layer is from 83μ (in parts of the cortex of race II) to 210μ (in parts of the cortex of race III) thick and occupied by dense masses of aspidasters. The inner layer is often insignificant and hardly to be made out in the sections. In race I , form C , it attains in places a thickness of $20-30 \%$. It is composed of paratangential fibres and contains a few gramular cells and groups of granules.

Gramular cells, oval to spherical in shape and $12-18 \mu$ long, are abundant in most of the specimens. These cells are most numerous just below the cortex and here often quite densely packed (Plate 1, fig. 3). They also occur scattered in the interior of the choanosome. These cells are filled with granules of fairly equal size. In the granular cells of pale parts of the sponge, particularly in the region overgrown with symbionts, the granules are colourless. In the subeortical and cortical granular cells of the dark and exposed parts the granules are brown. Both the colourless and the brown granules stain deeply with aniline-blue. As mentioned above a few granular cells and groups of granules also occur in the inner layer of the cortex. These groups of granules are
massive, flattened, or drawn out so as to appear like strings of beads. Some of the granules forming these groups are similar to the granules in the granular cells, others are larger. They seem to be remnants of disintegrated granular cells.

Canal-system. The afferent apertures, which, as mentioned above, generally form groups on the surface, are uniporal. They are always circular but they differ very considerably in size, thẹir diameter varying between 70 and 520μ. The largest pores were observed in race I, form C, and in race III. From each pore a canal leads vertically downwards. This canal penetrates the cortex and opens out into one of the subcortical cavities which underlie the poral areas of the cortex. Its proximal opening into the subcortical cavity is surrounded by a chonal sphincter usually more or less contracted, but only rarely completely closed. The canals leading down from small pores are distended, those leading down from large pores constricted below the entrance. I am inclined to aseribe these differences and also, to a great extent, the differences in the width of the pores themsclves, to differences in the degree of contraction. The afferent eanals, which arise from the subcortical cavities and lead down into the choanosome, are not particularly wide and divide into numerons narrow branch-canals which supply the flagellate chambers. The latter (Plate 1, fig. 4) are spherical or somewhat compressed in the dircetion of their axis, and measure about 20μ in diameter. The efferent canals join to form lacunose cavitics, which sometimes attain a very considerable width (Plate 1, fig. 1). They open out on the surface with the oscules described above.

Skeleton. Loose strands of rhabd megascleres traverse the choanosome. Their distal portions extend more or less radially and they terminate just below the cortex. Triaenes with radial, centripetally directed thabdomes are quite abundant in the subcortical layer. In some of the sections a few spicules of this kind have also been found in the interior of the choanosome. I do not consider that as their natural position, however, and believe that these triaenes were brought there from the subcortical layer in cutting the section. No megascleres protrude beyond the surface, and this is entirely destitute of a spiculefur. Microrhabds occupy in large numbers the outer layer of the cortex and are found in smaller numbers also in the choanosome, chiefly in its distal parts. In the outer, cortical layer of the cortex these microrhabds are not regularly arranged; some are situated paratangentially, others obliquely, and others radially. The middle layer of the cortex is occupied by dense masses of aspidasters, most of which are arranged paratangentially, with their broad faces parallel to the outer surface. Only around the pores some of them are differently sit-
uated; these turn one broad side towards the pore-eanal and the edge towards the outer surface of the sponge. Young and adult aspidasters also oceur seattered in the choanosome. In some speeimens aspidasters are rather numerous in the choanosome. In all parts of the choanosome aeanthtylasters are met with. These asters, particularty the small many-rayed ones, are more numerous in the subeortical region than in the interior. In the spicule-preparations of race I, form C, large smooth-rayed oxyasters up to 50μ in diameter, and in those of race III small smooth-rayed oxysphaerasters (Plate 3, fig. 26b) have been observed. I consider these asters, which were not found in situ in the sections, as foreign spicules. About the foreign nature of the small oxysphaerasters in the pricule-preparations of race III there can indeed be no doubt, as a Donatia-like sponge-crust, containing such oxysphaerasters in large numbers, covers parts of its surface.

The rhabd megascleres (Plate 1, figs. 29-35, 42-48; Plate 3, figs. 19-22) are for the most part blunt amplioxes (Plate 1, figs. 29-31, 33, 44-46; Plate 3, figs. 19, 20, 22). Besides these also sharp-pointed amphioxes (Plate 1, figs. $34,35,42,43,47,48$), amphistrongyles (Plate 1, fig. 32), and styles (Plate 3, fig. 21) oceur. Generally these rhabels are rather uniformly curved (Plate 1, figs. 29-31, $33-35,42,43,46-45$; Plate 3, figs. 19-22), rarely straight (Plate 1, figs. 32, 45), or abruptly bent near one end (Plate 1, fig. 44; Plate 3, fig. 18). The styles and particularly the amphistrongyles are curved much less than the amphoxes. The rhabds are $425-980 \mu$ long and $8-24 \mu$ thick. The longest are found anong the amphioxes, the thickest among the amphistrongyles and styles. 'The small specimens, race I, forms A and B, have smaller rhabds than the larger ones. Among the latter race 1 , form D, and race $11 I$ have larger rhabds than race I, form C, and race II. Besides these simple rhabds, spicules similar in shape and size, possessing however a short branch-ray, are met with, chiefly in race III. In these mesomonaene-like rhabd-derivates the branch-ray (clade) is pointed or blunt, up to 50μ long, and situated near one end, in styles thus branehed near the pointed end. The branch-ray is either turned upwards proclade-, or downward anaclade-fashion. (See table, p. 277.)

Most of the adult microrhabds (Plate 1, figs. 37-41a, 39b, 41b; Plate 2, figs. 16-18; Plate 3 , figs. $13-15,26 a$) are quite stout, slightly and uniformly curved, centrotyle, isoactine amphioxes. Most of them are blunt, some sharp pointed. Sharp-pointed microrhabds are particularly frequent in race III. The blunt amphiox microrhabds are often somewhat constrieted just below their ends, so that the ends themselves appear as terminal knobs (Plate 2, fig. 18).

DIMENsIONS OF RHABD MEGASCLERES.

Besides these greatly preponlerating isoactine forms, some anisoactine ones, with one actime shortened and rounded at the end (Plate 1, figs. 39b, 41b), are met, with. In some of the microrhabds of race I, form A, and race II this reduction has gone so far that one actine is absent altogether. Such spicules appear as styles (tylostyles). Also branched microrhabds, composed of more than two actines, have occasionally been met with. These are most frequent in race I , form B. Nost of them are tetractine and appear to have been produced by an early conerescence of two simple microrhabds lying crosswise. Two opposite rays of such spicules usually form a microrhabd of similar dimensions to the ordinary ones. The microrhabd represented by the two other rays is usually considerably shorter. Rarely the two microrhabds presumably composing these spicules are equal in length. Their axis generally encloses small angles, 30° or less; rarely these angles are greater; forms with axis crossing at right angles are exceedingly rare. Sometimes the one microrlabibd is attached to the other by its end; such spicules appear as triactines. The tyle is usually a simple spherical thickening. In the isoactine forms it occupies the centre, in the anisoactine forms it lies nearer to one end than to the other, and in the mierorhabds with one actine quite suppressed, it is situated terminally. In a few of the mierorhabds of race I, form D, the tyle is irregular and appears as a cluster of rounded protuberances.

No correlation between the size of the sponge and the dimensions of its microrhabds is discernible. The thickness of these spicules is about the same in all the forms; their length however varies, those of race III being considerably shorter than those of the races I and II, although the specimens of some of these (race I, A and B) are very much smaller. The microrhabds are $30-78 \mu$ long and $2.5-5 \mu$ thick. The tyle is $0.3-1.5 \mu$ thicker than the adjacent parts of the spicule and measures $3.5-6.5 \mu$ in diameter.

DIMENSIONS OF MICRORHABDS.

The triuenes (Plate 1, figs. 5-26; Plate 3, figs. 1-6, 12, 23, 24) are orthoor, more frequently, plagio-triaenes with simple or branched clades. The rhabrlome is ahways straight. Usually it is simple and conical. Its acladomal end is sharp pointed (Plate 1, figs. $17,19,20$; Plate 3 , figs. 12, 23, 24) or blunt (I'late 1, figs. $15,16,24,26$). Sometimes slight knob-like protuberances are observed near the acladomal end. Rarely the rhabdome is reduced in length, cylindrical, and terminally rounded and slightly thickened (Plate 1, fig. 18; Plate 3 , fig. 1). The properly developed, conieal rhabdomes are $210-520 \mu$, the
reduced, cylindrical ones $140-220 \mu$ long. Their thickness at the acladomal end is $8-22 \mu$. Cylindrical rhabdomes are always thick; all the slender triaenerhabdomes observed were conical. The triaenes of the small speeimens (race I, forms A and B) have somewhat shorter and very much thinner rhabdomes than those of the larger ones. The averages of three thickest of the former being $10-13$, those of the latter 1821μ. Among the large specimens the one of race III has far larger triaene-rhablomes than those of the races I and II.

The cladomes of these triaenes are very polymorphic. Triaenes with simple clades oceur in all the specimens. In race I , form A, no other triaenes were observed. In race I , forms B, C, and in race II a few triaenes with one, more rarely two or three branched (bifureate) clades occur besides the ones with simple clades. The ramification of the triaene-clades is still greater in race I , form D , and in race III: in these the triaenes with branched clades are more numerous than the ones with simple clades.

In the triaenes with three simple clades (Plate 1, figs. 7, 11, 12, 15-20, $24-26)$ the clades are usually conical and blunt pointed, rarely reduced in length, cylindrical, and rounded at the end (Plate 1, figs. 16, 18). Such a reduction of the clades is usually associated with a reduction or other abnormity of the rhabdome. The simple triaene-clades are slightly and uniformly curved, concave to the rhabdome (Plate 1, figs. 17, 19), or nearly straight (Plate 1, figs. 22,25), or, more rarely, abruptly bent down at the end (Plate 1, figs. 18, 20, 24). Their chords are $120-300 \mu$ long.

As stated above, one, two, or all three clades of the triaenes may be branched. This branching is most frequently a simple and regular bifureation, the two branches (end clades) being simple, and fairly equal in length and angular position (Plate 1, figs. 6, 9, the lower ones in fig. 10; Plate 3, the lower left ones in figs. $2,3,5,6$). Irregularities due to a difference in the length or the position of the two branches or to secondary ramifications of the branches are frequently met with. The difference in the length of two end clades forming a pair is caused by the reduction of one of them. This reduction sometimes becomes so great as to lead to a complete suppression of one of the end clades, in which case a single end clade arises from the, in such spicules usually somewhat thickened end of the main clade (Plate $\mathbf{1}$, fig. 8). The differences of position are frequently so great that one end clade appears as a continuation of the main clade (Plate 1, the upper one in fig. 5; Plate 3, the upper one in fig. 3). Some of these spicule-rays might indeed be considered as simple clades from which a branch-ray arises laterally. A secondary ramification of the end
clades has been observed only in race I , form D , and in race III. It affects cither both end clades of a pair in a similar manner (Plate 3, the left ones in fig. 4) or one of them only (Plate 1 , the upper one in fig. 10; Plate 3, the upper in fig. 2 and the right ones in figs. 2-5). The proportion of the length of the main clade to the length of the end clades is, as a comparison of figs. 6 and 9 on Plate 1 shows, subject to very considerable variation. The main clades are $70-270$, the end clades $10-160 \mu$ long. The cladomes are $160-550 \mu$ broad. The triaenes of the small specimens of race I, form A, have the narrowest cladomes (average of the three largest 373μ), those of the large specimen of race III, the broadest (average of the three largest 530μ). The angle enclosed by the axis of the rhabdome and the chords of the simple elades and the stems (main clades) of the branched ones, is $56-116^{\circ}$ (general average 103.4°). It is smallest in the triaenes of race I, form A (average 97°), and largest in those of races II and III (average 107 and 107.5°). Thus most of these spicules are plagioclades, some orthoclades. (See table, p. 281.)

In race II some spicules, $310-330 \mu$ in diameter, composed of two simple (l'late 1, fig. 13) or branched (Plate 1, the right one in fig. 14) clade-like, and two short, conical, blunt rudimentary rays, have been observed. These spicules appear to be derivates of the triaenes described above.

The acanthtylasters (Plate 1, figs. 36-40c; Plate 2, figs. 1-4, S-11; Plate 3, figs. $7,8,25,26 c$) are destitute of a central thickening and have from two to fourtcen, a few perhaps more than fourteen, rays. The rays are concentric and nearly always uniformly distributed, simple, and equal in size. Acanthtylasters with rays unequally long or branched (bifureate) have been only very rarely (h)served. The rays of the larger acanthtylasters (Plate 2, figs. 1, 2, 8, 9; Plate 3, figs. $7, S$) are eylindroconical and at the base $1-3$ usually $1.5-2.3 \mu$ thick. They taper distinctly towards the end, and are, at their thinnest point a short distance below the end, $0.7-1.5 \mu$ thick. The rays of the smaller ones (Plate 2, figs. 10, 11) are somewhat more cylindrical and only $0.4-1.5 \mu$ thick. The rays invariably bear spines, some of which always congregate at the end of the ray and here form a terminal, acanthtyl cluster $1.3-3.5 \mu$ in diameter. The size of the spines is on the whole proportional to the size of the aster. Apart from this they are subject to considerable variation. Sometimes numerous small and insignificant (Plate 3, fig. 7), sometimes numerous medium sized (Plate 2, figs. 8,9), and sometimes only one or a few very large spines, $1-1.6 \mu$ in length (Plate 2 , figs. 1, 2; Plate 3, fig. 8), arise from the sides of the rays. In the tworayed acanthtylasters a cluster of spines arises from the centre of the spicule.

DIMENSIONS OF TRIAENES.

This appears as a rudiment of a third ray. Most of the spines are conical, straight, and vertical, some conical and recurved (Plate 2, fig. 1), some irregular, cylindrical, terminally rounded or even thickened, and occasionally lobose at the end.

The acanthtylasters measure $10-38 \mu$ in diameter. Their size is in inverse proportion to the number of their rays. To obtain a clearer insight into this correlation I measured (and counted the rays of) 207 of them and took the means of the diameters of those with the same ray-numbers. There is no
difficulty in counting the rays of the large few-rayed acanthtylasters, but it is impossible to ascertain the ray-numbers of the small many-rayed ones with sufficient exactitude. I therefore calculated the means of the two- to ninerayed acanthtylasters by themselves, but combined the ten- to fourteen-rayed ones in one group of which I took the mean. This mean can be taken as the mean diameter of the asters with a ray-number equivalent to the mean of 10,11 , 12,13 , and 14 , that is twelve. In this way 1 found that the average diameter of the acanthtylasters with two rays is 38μ,

	hose	ith	three	"	29 ",
،	،	"	four	"	$28^{\prime \prime}$,
	"	"	five	"	27 "
	"	"	six	"	25.
	"	"	seven	"	23 ",
	"	"	eight	"	21 ",
	"	"	nine	"	19 ",

" " " ten to fourteen (mean twelve) rays 14μ.
Apart from the two-rayed asters, which are so few that I was unable to measure a number sufficient for attaining a reliable mean, the mean given above shows that there is a very regular decrease in size with increasing raynumber, amounting in the asters with from three to five rays to 1μ and the asters with six or more rays to about 2μ per unit of difference of ray-number.

In all the forms four- to ten-rayed acanthtylasters have been observed. The four- to six-rayed appearing to be the most frequent ones. In the forms A, (, and D of race I and in race II also threerayed and in race II also a few tworayed acenthtylasters were found. Acanthtylasters with more than ten rays have been found in all the forms exeept race I, form C. In the small speeimens the acanthtylasters are not smaller than in the large ones. The largest acanthtylasters necur in the form A of race I and in the races II and III. (See table, p. '283.)

The aspidasters. The dise-shaped spicules of the cortieal armour of the species of Erylus have hitherto been designated, like the ovoid spicules of the armour of Ceorlia, as sterrasters. Closer examination of these spicules in the species of Erylus of the "Albatross" collection has shown, however, that they differ from the sterrasters found in the species of Geodia and allied genera not only in their shape, but also in their mode of development, to such an extent that it is advisable to give them another name. Aspidaster, the name selected for them, has reference to their shield ($\dot{\alpha} \sigma \pi i s)$ - like shape.

DIMENSIONS OF ACANTHTYLASTERS.

		Race							all forms
		I				II	III		
		Forms					1-12		
		A	B	c	D			limits	general average of the largest three
Number of rays		1-12	3-13	310	3-14	$2-14$		2-14	
1 Hameter	of all asters measured with six rays or fewer, μ	20-36	21-32	21-32	22-31)	$22-35$	25-36	15-3s	
	of all asters measured with seven or more rays, "	10-27	6-20	$17 \cdot 22$	12.27	12-21	13-24	10-27	
	average of the three largest, p	33	29	31	29	35	33		31.7

The adult aspidasters of Erylus sollusii (Plate 1, fig. 36d; Plate 2, figs. 5-7, 12-15, 19 26; Plate 3, figs. 9-11, 16, 17, 25d, 28) are $95-156 \mu$ long, $55-82 \mu$ broad, and 7414μ thick. The general average proportion of their length to their breadth to their thickness is 100:55.8:8.8. Optical transverse sections show that these disc-shaped spicules are gradually attenuated towards the margin, which is usually quite sharp. The shape of their outline is variable; some of them (Plate 2, figs. 13, 23, 26; Plate 3, fig. 9) are quite regularly oval, some rounded rhomboidal (Plate 2, fig. 22; Plate 3, figs. 10, 17), and some irregular (Plate 2, figs. 12, 24,25) with lobose marginal protuberances of which one or a few broad ones, or a larger number of narrow ones may be present. On one face of the dise there is a very shallow, more or less circular depression $20-30 \mu$ in diameter. In this depression, which is obviously homologous to the umbilicus of the sterrasters of Geodia, the surface is either quite smooth, or bears only a few small rays or spines. From all the other parts of the surface (Plate 2, figs. 5, 6; Plate 3 , fig. 28) and also from the margin, rays usually about $1-2 \mu$ thick protrude. Those on the margin are about 1.5μ long, those on the faces appear to be shorter. These rays are scattered rather irregularly and (measured from centre to centre) $2-6 \mu$ apart. Each ray bears a terminal verticil of four to ten lateral spines. The centre of the aspidaster is occupied by a small group of granules, from which very numerous and perfectly straight radial
lines extend towards the margin. In some adult aspidasters this radial structure is well defined (Plate 2, fig. $\overline{7}$), in others it can hardly be made out.

There appears to be a certain degree of correlation between the size of the sponge aud the size of its aspidasters, the latter being smaller in the small specimens of race 1 , forms A and B (average length of the three largest of these forms 118 and 120$) \mu$ respectively), larger in the middle-sized specimen, race I, form D (that average 12.4%, and still larger in the large specimens of race I, form C , and races II and III. Among the latter those of races II and III (that average 150 and 152μ are very considerably larger than those of race I , form C (that average $128 / t$), and the other smaller forms of race I. Aso in their shape the aspidasters of the different forms differ to a certain extent, those of race II being much more slender and those of race I, form C (Plate 2, fig. 25) much more irregular than those of the others. Also in the number of the ray-spines differences are olserved, the rays of the aspidasters of race II bearing up to ten, those of the aspidasters of the races I and III only from four to six lateral spines.

DIMENSIONS OF THE ASPIDASTERS.

		kace						all forms		
		1				H	111			
		Forms								
		A	B	c	D			limits	general average of the three largest	general average
Length	(of all measured, ر	$\begin{gathered} 102- \\ 121 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 120 \end{aligned}$	$\begin{gathered} 105 \\ 130 \end{gathered}$	$\begin{gathered} 107 \\ 126 \end{gathered}$	$\begin{gathered} 120- \\ 156 \end{gathered}$	$\begin{aligned} & 125 \\ & 153 \end{aligned}$	$\begin{gathered} 95 \\ 1.56 \end{gathered}$		
	arerage of the three longest, "	120	118	128	121	152	150		132	
Bradth	of all measured, ${ }^{\text {a }}$	$\begin{aligned} & 57- \\ & 68 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 59- \\ & 73 \end{aligned}$	$\begin{aligned} & 60- \\ & 75 \end{aligned}$	$\begin{aligned} & 60- \\ & 76 \end{aligned}$	$\begin{aligned} & 71 \\ & 82 \end{aligned}$	$55-$		
	average of the three broadest, μ	67	69	73	73	7.5	82		73	
Thiekness	of all measured, $/ 2$	$\begin{aligned} & 7.4- \\ & 12.2 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 10.4 \end{aligned}$	10	$\begin{gathered} 11.2- \\ 12 \end{gathered}$	$\begin{aligned} & 9.2 \\ & 11.4 \end{aligned}$	1211	$\begin{gathered} 7.1 \\ 14 \end{gathered}$		
	average of the three thickest, $/ t$	11.6	10	10	11.6	11	14		11.6	
Averate of proportion of length to breadth to thiekness, !"		$\begin{aligned} & 100: \\ & 55.3: \\ & 8.2 \end{aligned}$	$\begin{gathered} 100: \\ 59.1: \\ 9 \end{gathered}$	$\begin{gathered} 100: \\ 57 \\ 8.4 \end{gathered}$	$\begin{gathered} 100: \\ 56: \\ 9.8 \end{gathered}$	$\begin{aligned} & 100: \\ & 49.8: \\ & 7.6 \end{aligned}$	$\begin{gathered} 100: \\ 57.7: \\ 10 \end{gathered}$			$\begin{gathered} 100: \\ 55.8: \\ 8.8 \end{gathered}$

Young aspidasters were found in considerable numbers scattered throughout the choanosome in several specimens. They are imbedded in the ground substance. A special membrane or plasmatic sheath enclosing them could not be made out even in sections strongly stained with aniline-blue.

The youngest (smallest) aspidasters observed (Plate 2, fig. 14) were oval dises, about 25μ long and 10μ broad, and composed of numerous exceedingly slender and perfectly straight rays which radiated from a granular centrum about 3μ in diameter. These rays are, at first, quite isolated. They grow in length and in thickness and so the whole aspidaster increases in size (Plate 1, fig. 36d; Plate 3, fig. 25d) and the basal parts of the rays become united. The solid, central mass of silica thus produced forms a dise from the margin of which the still isolated, distal parts of the rays protrude (Plate 2, fig. 19; Plate 3, fig. 16). When this stage is reached the longitudinal growth of the rays slows down or ceases altogether, while the transverse growth of the rays, that is their increase in thickness, continues. In consequence the marginal spines become joined more and more (Plate 2, figs. 20, 21) until they entirely lose their individuality, the margin of the aspidaster becoming quite smooth. In young forms of regular aspidasters this smooth, non-serrated margin is continuous (Plate 3, fig. 11), in young forms of irregular ones lobose (Plate 2, fig. 15). Not only the margin but also the two broad faces of such young aspidasters are smooth. Their smoothness in this stage constitutes the chief difference between them and the sterrasters of Cicodia, which do not pass through a smovth stage during their development. Later small, spine-like protuberances make their appearance on the surface of the smooth young aspidaster. These develop into the protruding rays with terminal verticils of lateral spines, which have been described above.

LOCALITIES AND NATURE OF ENVIRONMENT

	Locality	Date	Depth		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3817	s. coast of Molokai, Lae-o Kia Latu Light. N. 61° 30^{\prime}, W. 23°	April 8, 1902	$\begin{gathered} 42-41 \mathrm{~m} . \\ (23-24 \mathrm{f} .) \end{gathered}$	-	sand and stones	$\begin{gathered} 2 \\ \text { Forms } \\ \text { A, B } \\ \text { (Race 1) } \end{gathered}$
3818	s. coast of Molokai, Lae-o Ka Laau Light. N. $65^{\circ} 15^{\prime}$, W. 22.4'	April \&, 1902	$\begin{aligned} & 50-133 \mathrm{~m} . \\ & (41-73 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 21.7^{\circ} \\ \left(71.1^{\circ} \mathrm{F} .\right) \end{gathered}$	sand and gravel	Form (' (Race I)

LOCALITIES AND NATLRE OF ENVIRONMENT (continued).

	Locality	Date	Depth		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
$3 \checkmark 19$	\& coast of Molokai, Lae-n Ka hatu Light. N. 71°, W. 21.9'	A]ril 8 , 1902	$\begin{aligned} & 133-i s \mathrm{~m} . \\ & (73-13 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 19 . \mathrm{s}^{\circ} \\ \left(67.6^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse sand, broken shells. and corals	$\begin{gathered} 1 \\ \text { Race } 1 I \end{gathered}$
40.5	N. E. coast of llawaii, Alia Point Light. Hilo Bay. N. 20°. IV. 3.5^{\prime}	July 16, 1912	$\begin{aligned} & 91-121 \mathrm{~m} . \\ & (50-62 \mathrm{f} .) \end{aligned}$	-	Fine gray sand and Foraminifera	$\begin{gathered} 1 \\ \text { Race } 11 I \end{gathered}$
1062	N. F. coast of Ilawaii. K:uhola light. ㅅ. $69^{\circ} 1{ }^{\circ}$, E. $6.9{ }^{\prime}$	July is, 1902	$\begin{aligned} & 152-207 \mathrm{~m} . \\ & (\mathrm{n} 3-113 \mathrm{f} .) \end{aligned}$	-	Coral, volcanic sand, shells, and Foraminifera.	$\begin{gathered} 1 \\ \text { Form } 1) \end{gathered}$

There ean be no doubt that the seven sponges deseribed above are very closely alliecl, still they differ to a certain extent in size, shape, colour, and spiculation. As to the size it is to be noted that the forms A and B of race 1 are very much smaller than the others. Since, however, the spiculation of these small specimens exhibits immature characters, there can be no doubt that they are young forms, that their small size is merely due to their age and of no systematic importance whatever. Neither can any importance be attached to the differences in shape, since they lie well within the limits of individual variation usual in sponges of this kind. The differences in colour, which ranges from dirty white to dark chestnut-brown, are indeed great. If, beginning with the lightest coloured one, we arrange the forms in the order of the deyree of their pigmentation, we get, 1) race I, form $\mathrm{C}, 2^{2}$) race I , form D , 3) race $I I, 4$) race 111,5) race I, form A, and 6) race I, form B. If, begiming with the deepest, we arrange them in the order of the depth of the water at the place where they were found, we get, 1) race 1, form D, 152207 m ; 2) race I, form C, race II and $111,78-133 \mathrm{~m}$.; and 3) race 1 , forms A and $B, 42-44 \mathrm{~m}$. Although it is unknown which of the specimens of race I, form C, race II, and race $11 I$ grew in deeper, and which in shallower water, we see that the depth of the locality is, on the whole, roughly in inverse proportion to the degree of pigmentation. The darkest forms, the partly or wholly dark chestnut-brown, race I, forms A and B, grew in the shallowest water, at a depth of $42-44 \mathrm{~m}$., to which, in clear tropical sea water, considerable day light penetrates. This and the fact that in some of the specimens the upper protruding parts are darker than the basal, lead me to suppose that these differences of colour are
merely due to differences in the amount of light to which the different specimens were exposed during life. I am therefore inclined to consider these differences as direct individual adaptations of the simplest kind to which no systematic importance whatever can be attached.

The chief differences in the spiculation of the six forms is shown in the following tabular view of the averages of the three largest observed of the most important spicule dimensions and of the character of the triaene-cladomes and aspidasters.

This table shows that in race I, form A, all the triaene-clades are simple; and the rhabd megaseleres shorter and thinner, the mierorhabds longer and thicker, and the triaene-eladomes smaller than in any of the others. In race I,
form B, most of the triaene-clades are simple; and the microrhabds thinner and shorter, and the aspidasters absolutely shorter and relatively broader than in any of the others. In race I , form C , most of the triaene-clades are simple; and the rhabl megascleres thicker and the aspidasters more irregular than in any of the others. In race I, form D, most of the triaene-clades are branched; and the triaene-rhabdomes relatively thicker than in any of the others. In race II most of the triaene-clades are simple; and the acanthtylasters larger, the aspidasters absolutely longer and relatively considerably narrower and thinner and their rays provided with a larger number of lateral spines than in any of the others. In race III most of the triaene-clades are branched; and the rhabd megaseleres longer, the microrhabls very considerably shorter, the triaenerhablomes much longer, the triane-cladomes much broader, and the aspidasters relatively thicker than in any of the others.

That the megascleres of race I, form A, are smaller in size and more simple in character than those of the other forms and that there are other differences of this kind, appears to be due to differences in the age (size) of the specimens. Some peculiarities, as for instance the irregularity of the aspidasters of race I, form C, may be pathological. Some are, no doubt, to be accounted for by differences in the external forces which acted on the different specimens. All these can be considered as mere somatic non-germinal characters, destitute of systematic significance. There remain however some, the nature of which is more doubtful and which might well be germinal. These peculiarities are the exceptional narrowness and thimess of the aspidasters and the richness of their rays in spines in race II, and the exceptional shortness of the microrhabds and the exceptionally large size of the triane-cladomes in race III. If these peculiarities are considered germinal three systematic groups must be distinguished, one for the forms $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D of race I , one for race II, and one for race III.

There can, I think, be no doubt that these three groups must be united in one and the same species; it is another question, however, whether or not varieties should be established for them. After a careful consideration I have decided that these differences are probably germinal and systematically important, but sufficient only for racial distinction, and I distinguish three races, designated I, II, and III, in this species accordingly.

Race 1.

Rhabd megaseleres 425-S80 by S-23 μ; centrotyle microrhabds $30-78$ by $2-5 \mu$ and a tyle $3-6 \mu$; triaenes with simple clades only, or with simple and branched clades, either the former or the latter predominating; rhabdome 104470 by $8-22 \mu$, cladome $160-490 \mu$ broad; acanthtylasters with from three to fourteen rays, $20-36 \mu$ in diameter; aspidasters, regular or irregular, with from four to six ray-spines, $95-130$ by $55-75$ by $7.4-12.2 \mu$, average proportion of length to breadth to thickness $100: 56 . S$: S.S. This race comprises four forms, designated, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

South Molokai, northeast Hawaii.

Race 11.
Rhabd megaseleres 450-760 by $9-20 \mu$; centrotyle microrhabds $39-61$ by 3.4-4.3 μ, tyle 3.5-5.5 μ; triaenes with simple and with branched clades, the former predominating ; thabdome $240-400$ by $12-20 \mu$, cladome $170-450 \mu$ broad; acanthtylasters with from two to fourtcen rays, $22-38 \mu$ in diameter; aspidasters mostly regular, with up to ten ray-spines, $120-156$ by $60-76$ by $9.2-11.4 \mu$, average proportion of length to breadth to thickness $100: 49.8: 7.6$.

South Molokai.
Race III.
Rhabd megascleres 720-980 by 12-22 μ; centrotyle microrhabds $30-44$ by $3-4.5 \mu$, tyle $3.5-5.5 \mu$; triaenes with simple and branched clades, the latter predominating; thabdome $180-520$ by $13-22 \mu$, cladome $280-550 \mu$ broad; acanthtylasters with from four to twelve rays, $25-36 \mu$ in diameter; aspidasters, mostly regular, with from four to six ray-spines, 128-153 by $71-\$ 2$ by 12-14 μ, average proportion of length to breadth to thickness $100: 57.7: 10$.

Northeast coast of Hawaii.
The character of the canal-system and the spiculation show that these sponges belong to the genus Erylus. From all the species of this genus, with the exception of the one from Freemantle, S. W. Australia, which Carter ${ }^{1}$ erroneously identified as Erylus (Stelletta) euastrum O. Schmidt and for which Sollas ${ }^{2}$ established Erylus lendenfeldi, they differ very considerably. Sollas's description indicated, and a reexamination of the type, kindly placed at my disposal by

[^18]Mr. Kirkpatrick, clearly shows, that this species also differs from Erylus sollasii. The chief differences between the two are the presence of asters 100μ in diameter and exceedingly irregular aspidasters in E. lendenfeldi, and their absence in E. sollasii. These differences are quite sufficient for specifie distinction.

Erylus rotundus, sp. now.
megarhabda, var. nov.
1Pate 5, figs. 18-23, 32; Plate 6, figs. 14, 18, 21, 33-35; Plate 7, figs. 22-30, 57 73; Plate s, fig. 13.
typica, var. nov.
Plate 5, figs. 1-4, 11-17, 30; Plate 6, figs. 15-17, 25, 27, 30-32; Plate 7, figs. 16-21, 46-56.
cidaris, var. nov:
Plate 5, fiys. 5, 26-28, 31: Plate 7, figs. 1-10, 42-15, 75, 76, 79; Plate 8, fig. 14.
I establish this species for thirteen speeimens obtained at five different stafions among the Hawaiian Islands. The aspidasters of these sponges are nearly circular in outline and to this the name refers.

The thirteen specimens represent seven distinet forms which fali into three groups. The latter I consider as varieties. One of these varieties possesses remarkable thabd-clusters resembling certain Cidaridae in appearance, hence the varietal name cidaris. The other two varieties, which are destitute of these spicules, differ in respect to their microrhabds, these being very much larger in one of them than in the other. The former I name megarhabdu; for the latter, which is the most frequent of the three, I have selected the name typica.

Two forms belong to the var. megarhabda, four to var. typica, and one to var. ciduris. The number of specimens and the habitat of each form are tabulated below: -

Erylus rotundus

var. megarhabda
form A: 2 specimens from the south coast of Molokai (Station 3849);
" B: 1 specimen from the coast of Kauai (Station 3982); var. typica
form A: 4 specimens from the south coast of Molokai (Station 3849),
" B : 3 dark-coloured specimens from the coast of Kauai (Station 4024);
form C: 1 light-coloured specimen from the coast of Kauai (Station 4128);
" D: 1 specimen from the northeast coast of Hawaii (Station 4061);
var. cidaris
1 specimen from the south coast of Molokai (Station 3849).
Shape and size. The larger of the two specimens of var. megarhabdu, form A (Plate 6, fig. 32), is upright, somewhat flattencl, ellipsoid, 45 mm . high. Its largest and smallest horizontal diameters are 38 and 27 mm . respectively. The surface is rugose. The protruding ridges are high and irregular on the apex, lower and arranged in a more regular manner longitudinally, at the sides of the sponge. On the apex and the upper parts of the sides numerous circular or oval apertures, $0.1-0.7 \mathrm{~mm}$. in diameter, are ohserved. The smaller specimen of this form is irregular, massive, 32 mm . long, and in part covered with foreign boclies, attached to the partly undulating, partly rugose surface. There are a few groups of apertures up to 0.8 mm . in diameter. The single specimen of var. megarhabda, form B , is irregular, massive, and 23 mm . long. To its rugose surface foreign bodies are attached. There is one group of six conspicuous apertures $0.7-1.4 \mathrm{~mm}$. wide on the surface.

The largest of the four specimens of var. typica, form 1 (Plate 5, fig. 30), appears as an upright bunch of thick lobose parts, joined for the greater part of their length to form a continuous mass, from the upper side of which their free lobes protrude. The whole sponge is 67 mm . high; its largest and smallest horizontal diameters measure 69 and 72 mm . respectively. The lobose parts are $16-36 \mathrm{~mm}$. thick and distally rounded. The surface is slightly rugose. On and near the summits of the lobes a few larger apertures, $1-2 \mathrm{~mm}$. wide, are observed; the sides are occupied by numerous small pores. Considerable parts of the surface are covered by an incrusting composite ascidian (Plate 5, fig. 30). The other three specimens of this form are similar, but smaller, the smallest only 33 mm . high. To the surface of one of them numerous foreign bodies, fragments of shells, ete., are attached. The largest of the three specimens of var. typica, form B , is an irregular lobose mass, measuring 55 by 51 by 46 mm . It appears to be composed of more or less coalesced gyriform parts up to 10 mm . in thichness. Some of these terminate in slightly protruding digitate excrescences. The surface is penetrated by numerous small apertures and partly covered with symbiotic sponge-crusts and foreign bodies (fragments of shells, ete.). The other two specimens are similar and only slightly smaller. The
smallest is 52 mm . long. One of them possesses, besides numerous small pores, two larger apertures (oscules) 1.5 and 2 mm . in diameter. The single specimen of rar. typica, form C, is irregular, massive, and 34 mm . long. Several short, lobose protuberances arise from it. The surface is perforated by numerous small pores and foreign bodies are attached to parts of it. The single speeimen of var. typica, form D , is an elongate mass, attenuated at one end to a digitate process, 5 mm . thick. The total length of the sponge is 44 mm . Small pores are seattered over its surface.

The single speecimen of var. cidaris (Plate 5, fig. 31) is an upright, lobose mass, 67 mm . high. Its largest and smallest horizontal dianeters measure 5i and 4.5 mm . respectively. Small irregular grooves are observed on its otherwise smooth, undulating surface. Here and there two adjacent grooves extend for some distance in parallel directions, enclosing a gyriform fold. The surface is perforated by numerous small pores, and a few crusts of symbiotic organisms, hut no dead foreign bodies, are attached to it.

The colour of the interior of these spirit specimens varies from dirty white to light brown, that of the surface is subject to considerable variations. The upper part and the sides of the large specimen of var. megorhabda, form A, are dark purplish hrown, the base and the interior being light dirty brown. Where the dark colour of the sides gradually merges into the light colour of the base, numerous whitish spots, marking the position of the - mostly closed - pores, are observed on the surface. The smatler specimen of this form is coloured in the same way, but the light-coloured part of the surface is here relatively more extensive. The single specimen of var. megarhabde, form B , is rather dark purplish gray.

Three of the specimens of var. typien, form A, are purplish brown alove and light dirty brown below; one is bluish gray. The three specimens of var. typica, form 13, are dark purplish black above and much lighter purplish brown below. The single specimen of var. typica, form C, is light purple with a small, consilerably darker patch. The single specimen of var. typica, form D, is dirty white. The single specimen of var. cideris is whitish with a large brown patch, in which numerous whitish spots, marking the position of the mostly closed pores, are ohserved.

The differences in the degree of pigmentation of these sponges are probably due to differences in the amount of light that fell on their surface during growth. I think that in the specimens not uniform in colour, the upper parts, which were more exposed to the light, became more strongly pigmented than the lower parts,
which were more or less in the shade, and am inclined to ascribe the differences in the degree of pigmentation of the darkest parts of different specimens to differences in the amount of light due to differences in the depth at which they grew. Unfortunately the information about the depths given is not sufficiently exact to allow of a definite conclusion on this point.

The superficial part of the body is differentiated to form a cortex, composed of an outer and an inner layer. The outer layer is oceupied by dense masses of spieules and appears as an armour. Under the outer exposed parts of the surface this armour usually is $65-90 \mu$, in the walls of sheltered cavities, extending farther into the interior, only 35μ thick, or even thinner. Pigment cells occur in the armour between the spicules on the dark parts of the surface. The inner layer of the cortex is usually $55-75 \mu$ thick and contains hardly any spicules. It is composed of paratangential fibres, pigment cells, and usually contains also granule cells.

The pigment cells, the number of which is in proportion to the degree of darkness of the surface, are nearly always clongate and usually extend paratangentially. They have one or, more frequently, several lobose or filiform processes, appear irregularly amoeboid, and are very variable in size, $0-29 \mu$ long. The transparent plasm of these cells contains numerous apparently spherical granules, dark brown in transmitted light, which measure $0.30 .8 \mu$ in diameter. These granules are usually rather uniformly distributed throughout the body of the cell and its processes, but sometimes parts of the cell are free from them. Occasionally rows of single pigment granules, appearing like strings of beads, have been observed in the sections. These probably lie in (invisille) filiform processes of pigment cells.

In the distal part of the choanosome and in the lower layer of the cortex of forms A and B of var. typica, and also in some of the others, remarkable gramule cells have been observed in large numbers. These cells appear to be situated in spherical, oval, or irregular cavities of the ground substance, $15 \cdot 20 \mu$ in diameter, which in some places lie very close together. The granule cells themselves are more or less spherical, measure $S-12 \mu$ in diameter, appear hyaline, and stain slightly with hacmatoxylin and anilinc-blue. They are either simple and structureless, or composed of a number, from ten to twenty or so, of polyedric parts 24μ in diameter. The spaces between these parts appear to be empty. Rarely a more strongly stained, superficial layer and a body, which may be a nucleus, have been observed in the simple, undivided cells; and occasionally minute pigment granules are attached to, or contained in, the ones
composed of phlyedric parts. It is possible that the spaces between these cells and the walls of the cavities, within which they lie, and which appear to be empty, are in reality thick, hyaline, cell walls. But as these spaces are not stainable with any of the stains (eosin, malachite-green, magenta, aniline-blue, methylriolet, azure, hamatoxylin, aurantia, Bismarek-brown), I think this improbable. The cells composed of parts are much more numerous than the simple, undivided omes. The latter are seattered quite irregularly between the former and do not increase in number either towards the surface or towards the interior. Athough convinced that the undivided ones and the ones composed of polyedric parts are merrely different stages in the development of the same kind of cell, I am unable to say whether the simple ones arise from the composed ones or vice rerse.

In the sections of var. typica, form B, groups of broad, irregularly oval cells, $25: 30 \mathrm{long}$, were observed in the distal part of the choanosome. The plasm of these eells is gramular and each one contains a large meleus, about $\delta \mu$ in diameter. These cells appear to be ova.

In the sections of var. cidaris young larvae were observed. Some of these lay free on the canals, others appeared to be just on the point of emerging from the c:avities of the ground substance in which they were bred. These larvae are spherical, measure $50-60 \mu$ in diameter, and appear to consist of a central gramular mass, surrounded by a single layer of roundish, not elongate cells about $8 / \mu$ in diameter.

In the choanosome of var. typica, form D, large numbers of monocellular symbiotic Algate wre observed. These are spherical or oval, measure $15-20 \mu$ in maximum diancter, and have a stout cell wall about 4μ thick.

Canul-system. The uniporal entrances to the canal-system are usually cirmlar, and, when quite open, $100-250 \mu$ wide. Dilated pores of this width are however not frequent, most of the pores heing more or less contracted and :maller, or closed altogether. The flagellate chambers are more or less spherical and measure $1+23 \mu$ in diameter. Those of var. ciduris are smaller (diameter 1417μ than those of the others. The collar cells efothing them are not numerous, distant, rather slemer, and $4-6 \mu$ long. The larger eanals are surrounded by stont mantles of tissue free from megascleres and flagellate chambers. Some of them are traversed by sphincter-membranes. Sueh have been particularly whererel in var. lypica, form B. In the forms C and D of var. lypice and in var. cidur is no ancrines much larger than the pores described above, were observed on the surface. In these sponges the efferent openings (oscules) do not seem
to be of much greater width than the afferents. In both forms of var. meyurhabde and in some specimens of the forms A and B of var. typiea on the other land, larger oscules, up to 1.4 mm . wide in the former, and up to 2 mm . wide in the latter variety, have been observed. These larger oscules usually lie on or near the summit of protruding parts of the sponge. In some cases, as for instance in megurhabdu, form B, large oseular tubes, up to 2.4 mm . in diameter, lead up to the oscules. In other cases, as for instance in var. cidaris, a tract of transparent tissue, about 1.7 mm . Droud, free from megascleres and flagellate chambers, extends from each of the here strongly contracted or cerenly closed oscules, down into the interior of the sponge. In the axis of this tract a row of smatl eavities is observed. These cavities, which in the radial sections appear to be isolated, are $100-150 \mu$ broad, up to $350 \mu \mathrm{long}$, and situated close together. Distally, towards the contracted oseule, they beeome smaller and searcer. I consider these rows of cavities as the remnants of the lumen of the strongly contracted oseular tubes.

The skeleton consists of rhabd megascleres, microrhabols, triaenes, large aeanthtylasters with not very numerous rays, small oxyasters with numerous rays, and aspidasters. In several forms also asters, resembling the acanthtyasters in size and ray-number, but with conical rays, which become very slender distally, have been observed. These spieules, which are particularly numerous in var. megarhabda, form A, are in all probability merely young stages of the ordinary acanthtylasters. I shall not therefore deal with them as a special spicule form. In var. cidaris aster-like rhabd-clusters have been olserved.

Some of the rhabed megaseleres are isolated, others form more or less undirlating bundles (Plate 6, fig. 25a), which traverse the internal parts of the chomosome in a radial or, in the digitate and lobose processes, longitudinal direction, and, on nearing the cortex, tend to assume a position vertical to the surface. These bundles are in var. megarhabda, form A, up to 100μ broad. In the other forms most of the bundles are 1040μ thick. The broad bundles of var. megarhabda, form A, appear to be flattened, band shaped; the narrow ones are cylindrical. The isolated rhabds are, in the interior, quite irregularly scattered; near the surface, just below the cortex, most of them usually assume a position more or less vertical to the surface. This radial arrangement of the subcortical rhabels is particularly well marked in var. megurhabdu, form A.

The asterose rhabd-clusters of var. cideris are seattered in the choanosome.
In var. megarhabida the armour is composed chiefly of obliquely or radially situated microrhabels, aspidasters being relatively scarce and confined to its
superficial part. In this variety numerous microrhabds also oceur seattered in the choanosome. In vars typica and cidaris, on the other hand, the armour is chiefly composed of aspidasters, and here the microrhabds are confined to its superficial part, except in the vicinity of the pores, around which they form mantles, extending right through the whole armour. Sometimes the superficial microrhabd-bearing part of the armour-layer is stout and well developed, and then it consists of an outer zone composed of paratangial microrhabds and an inner zone of oblique and vertical (radial) microrhabds, lying above and between the outermost aspidasters. Often, however, this mierorhabd-bearing outer armour-layer is insignificant, and then eomposed only of relatively few, mostly oblique mierorhabds. It is possible that the superficial parts of the sponges presenting this appearance have been rubbed off. The majority of the mierorhabds in the pore-eanal mantles are situated so that one of their ends points obliquely upward towards the centre of the pore. In some forms of var. typica, particularly in form B, a farr number of mierorhabds were also found seattered in the choanosome.

The cladomes of the triaenes extend paratangentially just below the cortex or within its lower, fibrous layer; their rhabromes are directed radially inward. The triaenes oceupy the interporal spaces and in some forms, as for instance in var. typica, form A (llate 6, fig. 27a), form well-defined groups, in which a number of triaenes lie close together at the points of intersection of the interporal zones.

The acanthtylasters and their oxyaster-like young are seattered throughout the choanosome. They are most abundant in one of the specimens of var. megarhabdr, form A. In some forms, as for instance in var. typica, form B, they are very much searecr in the subcortical region than in the interior of the choanosome. I great many acanthtylasters lie in the walls of the choanosomal canals. Some of the rays of these usually protrude into the canal-hmen. In the walls of the remnants of the contracted oseular tubes of var. ciduris, above referred to, the acanthtylasters stand particularly close together and here form a veritable pavement. This local acanthtylaster-density is doubtless due to the contraction of the surface on which, when normally extended, they are probably distributed in the ordinary, not particularly dense manner.

The small oxyasters with numerous rays are confined to the roofs of the subcortical cavities and the walls of the pore-canals. In the choanosome they appear to be entirely absent. In the walls of the pore-eanals, where they are most numerous and sometimes form quite a dense layer, they extend right up
to within a short distance of the outer surface. In one of the specimens of var. megarhabda, form A, I failed to find any of these asters in situ in the sections.

The aspidasters take part in the formation of the cortical armour and are also found scattered in the choanosome. In vars. typica and cidaris the greater part of the armour is composed of these spicules, which are here absent only in the mantles surrounding the pore-canals. Apart from these mantles, the proximal (internal) part of the armour in these varieties consists entirely of aspidasters. In the distal (external) part of the armour microrhabds are usually added to the aspidasters, and sometimes the outermost part of the armour consists entirely of microrhabeds. Most of the aspidasters of the armour are situated paratangentially. Under exposed tracts of the surface they form many layers, under the sheltered parts of it which limit the cavities, extending into the interior, only few layers or only a single layer. In var. meyarhabda the aspidasters form only a small part of the armour and are liere confined to its distal (external) part. Young and also adult aspidasters are usually found seattered in the chomosome. Here they generally lie in cavities of the ground-substance, as long and broad but much wider (thicker) than the aspidasters, so that the margins of the aspidasters are in contact with the ground-substance, while their faces are separated from it by apparently empty spaces. Seen en face the aspidasters consequently appear to fill these cavities completely, seen in profile they appear as narrow bars occupying the long axis of the oval cavities. The empty spaces at their sides may of course have been produced by the shrinkage of the tissue, during the preservation of the sponges in alcohol, but they may also be natural, and in this case oecupied possibly by some liquid, rich in silica secreted from the surrounding tissue, from which the cell or cells building the aspidaster draw their supply.

The rhabd megaseleres (Plate 5, figs. 11-23, 26-28a) are for the most part simple amphioxes or amphistrongyles, curved uniformly, or in the middle more strongly than near the ends. Occasionally style (Plate 5, fig. 17c) and angularly bent or branched derivates of these rhabds have been observed. The ordinary amphioxes and amphistrongyles are $310-650 \mu$ long, and $6-15 \mu$ thick. Of the amphioxes and amphistrongyles occurring together in the same specimen, the former are on the whole longer than the latter. In the vars. megarhabda and cidaris nearly all the rhabls are sharp-pointed amphioxes (Plate 5, figs. 19-23, 26-28a), blunt amphioxes and amphistrongyles (Plate 5, fig. 18) being rare. In the forms B and C of var. typica, sharp-pointed amphioxes (Plate 5, figs. 14, 15, 17a) also preponderate; in the forms A and D of this variety, on the other hand, the blunt rhabds (amphistrongyles) (Plate 5, figs.
$11-13,16 h$) are more numerous than the sharp-pointed amphioxes. Some of the amphoses, this was particularly observed in form B of var. typict, appear as amphistrongyles, the blunt ends of which are surmounted by small conical tips. 'These tips may be simple or terraced, telescope-like. Angularly bent or hrancheel rhabrderivates have chiefly heen observed in form A of var. megarhabde and in var. cideris. The spicules of this kind in the last-named variety appear as transitional forms connecting its aster-like rhabd-clusters with the ordinary rhabds.

The dimensions of the rhabl megascleres and the relative frequency of the sharp-pointed and blunt amphioxes and amphistrongyles in the different forms and varieties are tabulated below.

The aster-like rhabd-chusters (Plate 7, figs 4 10), whieh have been fomm only in var. cidaris, are, in my opinion, to be considered as derivates of ordinary rhabds. They appear as smooth oxyasters, compused of from about fifteen to thirty eoncentrie, straight rays fairly uniform in thickness, but differing exceedingly in length, and distributed very irregularly. From four to ten of the rays appear properly developed; these are eonieal, more rapidly attenuated distally than proximally, and pointed. The other rays are rudimentary, very short, cytindrical, and terminally rounded. These rudimentary rays together form a kind of lobose centrum, from whieh the longer, pointed rays arise. The rhabdelusters are $125-180 \mu$ in total diameter. Their rays are $5-8 \mu$ thick and the longest one of the whole eluster is $70-100 \mu$ long.

The branched amphioxes (Plate 7, figs. 1-3) also occurring in this variety, which I eonsider as transitions between the elusters and the ordinary rhabds, are $410-520 \mu$ long and $9-13 \mu$ thick. They bear from one to fur straight branch-rays.

The microrhabds (Plate 5, fig. 27e: Plate 6, figs. 30-3.5; Plate 7, figs. 46-51, $53 \mathrm{a}, 5 \mathrm{a}, 55,56 \mathrm{a}, 57 \mathrm{a}, 60 \mathrm{a}, 61-73,75 a, 79$) are for the most part simple, isoactine, gradually or rather abruptly pointed or, more rarely blunt, uniformly curved, and usually slightly rentrotyle amphioxes. The tyle, never large, is often so insignificant as to be hardly visible, and many of these spieules seem to have no central thickening at all. In the forms A, B, and C of var. typica (Plate 6, figs. 30-32; Plate 7, figs. 46, 48-51,53a, 54a, 55, 56a) nearly all the mierorhabls have a distinet eentral tyle. In the mierorhabls of var. cidaris (Plate 7, figs. 75a, 79) the tyle is not so well developed, and in most of the mierorhabls of var. megnrhabda (Plate 6, figs. 33-35, Plate 7, figs. 57a, 66-73) and var. typict, form D) (Plate 7, fig. 47), the tyle is hardly perceptible or absent altogether. Besides these regular, simple, and isoaetine mierorhabds a few anisoactine ones, with one aetine redueed in length and rounded at the end, and a few with small branehrays near one end, have been observed in var. ciduris, in both forms of var. megarhabda, and in form C of var. typica. The mierorhabds are $30-98 \mu$ long and 1.5-7.5 μ thick. Those of var. megarhabda are considerably larger (maximum averages of three $S^{2} .395 .7$ by 5.36 .7 ft) than those of the other two varieties (maximum averages of three $54-61.7$ by $3-3.8$ and 66.1 by 4.2μ respectively).

DMENSIONS AND SHAPES OF MCRORH.ABDE.

Most of the triaenes (Plate 5, figs. 1-5; Plate 6, fig. 27a) are orthotriaenes, some plagiotriacnes. The rhabdome is conical and generally slightly and irregularly curved in an undulating manner. It is $170-370 \mu$ long and, at the cladomal end, 6-12 μ thick. The clades of the same cladome are fairly equal in length. They are usually slightly curved and $80-270 \mu$ long. The breadth of the cladome is $155-440 \mu$. The triaenes of var. cidaris have the broadest, those of var. megarhabda the narrowest cladomes. The angle enclosed between the clades and the rhabdome is $90-107^{\circ}$. In form A of var. megarhabda I have found a few triaenes with clades either bearing a small branch-ray or abruptly bent down near the end.

DIMENSIONS OF TR1AENES

The acanthtylasters (Plate 6, figs. 14b, 15, 16; Plate 7, figs. 52 54b, 56b, $57 \mathrm{~b}, 58,59,75 \mathrm{~b}, 76 \mathrm{~b}$) have from two to fourteen concentric, regularly distributed rays. Two-rayed acanthtylasters are rare and have been observed only in var. cidaris. Also the threc-rayed, which have been found in var. typica, form B, var. megarhabda, form A, and in var. cidaris, are not frequent. Four- to eight-rayed acanthtylasters are abundant in all the forms. Aeanthtylasters with more than eight rays appear to be most frequent in var. typica, form B , and in var. megarhabda, form A . The acanthtylasters measure $1231 / 1$ in total diameter. Those of var. cidaris are somewhat smaller than those of the other two varieties. The size of the acanthtylasters is on the whole in inverse proportion to the number of their rays, those with from two to six rays being 16-31, those with from seven to nine rays 14-24, and those with from ten to
fourten rays $12-19 \mu$ in diameter. The rays are, at the base, $0.52 .4 \mu$ thick and taper distally. At their ends they are usually thickened to an acanthtye, rarely simply rounded off. The transverse diameter of the aeanthtyle (rounded end) is, inclusive of its spines, $0.5-4 \mu$. The basal part of the rays is always quite smooth. This smooth part may be quite short, or it may extend right up to the acanthtyle (the rounded, spiny end). Acanthtylasters with rays smooth right up to the acanthtyle have been observed chiefly in var. typica, form A. Usually the proximal one to two thirds of the rays are spineless, the remaining distal part loeing either rough or provided with smaller or larger spines. The larger the spines, the fewer their number. Frequently an increase in the size of the spines towards the end of the ray is noticeable. The acanthtyle is covered with numerous, faily large spines. Most of the spines appear to be conieal and puinted, but in var. megarhubda, form A, acanthtylasters with cylindrical spines, roumded at the end, have also been observed. The spines of the acanthtyle are usually somewhat recurved. The proximal spines are usually direeted more or less obliquely backward, the distal obliquely upward and outward. On the whole the acanthtyle-spines have the appearance of short hair combed down in all dircetions from the apex. The spines on the other parts of the rays are vertical or, more rarely, directed obliquely outward.

DHMENSIONS OF ACANTHTYLANTERS.

DIMENSIONS OF ACANTHTYLASTERS (contimued).

						ytus	otund	us			
		var.	megarha	bda			ar. typic				
		A	B		A	B	c	D			
Acant	tylasters										
			䭴	$\stackrel{\stackrel{\infty}{5}}{\stackrel{\rightharpoonup}{0}}$					$\frac{\sum_{\overline{3}}^{E}}{\bar{E}}$		(1)
	total diameter, μ	23		23		23-29			23-29	$25-28$	23-29
with three	basal thickness of rays, "	1.4		1.1		$\begin{aligned} & 1.2- \\ & 1.1 \end{aligned}$			$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.1- \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.9 \end{aligned}$
	diameter of acanthtyle (rounded end), μ	2.7		2.7		2-2.1			22.1	$\begin{aligned} & 1.1 ; \\ & 2.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.7 \end{aligned}$
	total diameter, μ	1627	16-26	16-27	19-30	17.31	17.23	15.26	17.31	16.26	16-31
with four to six	basal thickness of rays, μ	0.8-2	0.81	H.S 2	0.7-2	$\begin{aligned} & 0.8 \\ & 1.7 \end{aligned}$	(1.5-2	$\begin{aligned} & 1.2- \\ & 1.5 \end{aligned}$	0.5-2	12.1	$\begin{aligned} & 0.5- \\ & 2.4 \end{aligned}$
	diameter of acanthtyle (rounded end),	$\begin{aligned} & 1.3- \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.3- \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.5- \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.4 \end{aligned}$	14	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	14	2-3	1-1
	total diameter, "	16-21	11-23	14-23	15-19	16-21	15-24	17-1.5	15-24	16-21	11-24
with seven to mine	basal thickness of rays, ${ }^{\prime \prime}$	$\begin{aligned} & 0.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.7- \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$	1.2	$\begin{aligned} & 0.9- \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.6- \\ & 1.2 \end{aligned}$	1.2	$\begin{gathered} 0.6 \\ 1.3 \end{gathered}$	1-1.7	$\begin{aligned} & 0.6- \\ & 1.7 \end{aligned}$
	diameter of acanthtyle (rounded end), ${ }^{\prime}$	$1-2.3$	1.32	1-2.3	1.5	1.3-2	0.5-2	1.5	$0.5 \geq$	$\begin{aligned} & 1.5- \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 2.3 \end{aligned}$
	total diameter,	13-19	12-17	12-19	12-17	15-19	13-16	16	1519	13	$121!$
with ten to fourteen	basal thickness of rays, /"	$\begin{aligned} & 0.6- \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.5- \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.5- \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$	0.7	$\begin{aligned} & 0.5- \\ & 1.3 \end{aligned}$	1	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$
	diameter of acanthtyle (rounded end).	$\begin{aligned} & 1.2- \\ & 2.1 \end{aligned}$	1-1.8	1-2.1	1-1.6	0.7-2	$\begin{aligned} & 1.2- \\ & 1.8 \end{aligned}$	1.2	0.2-2	1.2	$\begin{aligned} & 0.7- \\ & 2.1 \end{aligned}$

It has been stated above, that oxyaster-like spicules similar in size and ray-ummber to the acanthtylasters, which I consider a young form of the latter, atso oceur in these sponges. These spicules are rather numerous in var. megathabdu, form Λ, and met with in smaller numbers in var. meyorhabda, form B, and in the forms I and C of var. typica. The (listal parts of the rays of these asters are exceedingly slender. Proximally the rays thieken considerably and abruptly, so that their basal part appears bulbous. Besides these spicules, which I consider as the carliest known stages, others similar to them, but with thicker and distally rough rays, representing a later developmental stage, are ohserved. linally various asters of this kind oceur, in which a more or less pronomend spiny thickening crowns the end of each ray. These asters connect the slender-rayed oxyasters with the true aunthtylasters.

The small many-rayed oryasters (Plate 6, fig. 14e; Plate 7, figs. 52e, 60c, 76e) are without centrm or have a slight central thickening, in var. typica, form A, up to 4μ in diameter. There are from eight to twenty-two, or more, usually from fourteen to twenty, equal, concentric, and regularly distributed rays. The rays are, at the base, $0.4-0.9 \mu$ thick and eonical, either throughout or only at the end, and then nearly cylindrical in their basal part. They are abways sharp pointed and more or less spiny. Sometimes the spines are too small to be discerned as such and their presence is indicated only by a certain roughness of the rays. Nore often, however, particularly in the larger oxyasters, the spines are large enough to be clearly made out. The larger the spines, the fewer their number. Some of the spines frequently form a verticil some distance below the end of the ray. Oxyasters of this kind were chiefly observed in var. typica, form A. The total diameter of the oxyasters is $7-17 \mu$. Those of var. typica are a little smaller than those of the other two varieties. A few asters were olserved which appeared as transitions between these oxyasters and the acanthtylasters.

DIAMETERS OF KMALL OXVANTERS.

The aspidasters (Plate 5, figs. 27f, 28f; Plate 6, figs. 17, 18; Plate 7, figs. 16 30, 42-45; Plate 8, figs. 13, 14) are broad-oval or circular dises, often with a somewhat irregular outline. This irregularity of outline generally does not exceed that of the aspidasters represented in figs. 18, 19, and 25 on Plate 7 ; occasionally, however, quite irregular aspidasters, with one or more deep ineisions reaching far into the interior, have been observed in all varieties. The aspidasters are $50-77 \mu$ long, $46-70 \mu$ broad, and $4.48 .8 \mu$ thick. Those of var. megarhabda (50-66 by 46-59 by 4.6-S.8 μ) are smaller than those of the other two varieties. The general average proportion of length to breadth to thickness of the aspidasters of all the forms (rarieties) is $100: 93.3: 10.2$. The aspidaster-dise is either of uniform thickness throughout, or slightly thickened in the middle. Its margin is simply rounded off. An umbiticus could not be detected. All parts of the surface, the margin as well as the two faces, are covered with protuberances. The largest protuberances are 0.7-2 μ thick and about as high. Nost of them bear a terminal rerticil of usually from three to seven exceedingly small lateral spines. The large protuberances are usually seattered rather irregularly over the surface. Oceasionally some of the protuberances of the central part of the aspidaster lie in straight lines, radiating from the centre of the dise. Between the larger protuberances small ones, just perceptible with the strongest lenses, lie singly or in small groups on the otherwise smooth surface of the dise.

DIMENSIONS OF ADULT ASPIDASTERS.

The youngest aspidasters observed were oval or circular dises, about half the size of the adult, and composed of numerous, long, exceedingly slender, prefectly straight rays, lying nearly in the same plane, and radiating from an irregular, lobose structure $2-4 \mu$ in diameter. 'This lobose centrum is apparently romposed of short, terminally rounded concentrie rays, arising obliquely to the plane occupied by the long rays. The rays, which in this young stage appear to be isolated throughout, grow in length and in thickness. Their longitudinal growth leads to an inerease in the size of the aspidaster, their transverse growth (thickening) to a coalescence of the rays themselves, which, as the growth continues, progresses from the centre towards the margin of the dise. Thus the aggregations of isolated, radial rays become larger, solid dises with serrated margins. This goes on until the spicule has attained nearly its full size. Then the longitudinal growth of the rays ceases, while their lateral growth continues. This leads to a filling up of the serrations and to the forma-
tion of smooth dises with more or less continuous margin (Plate 7, figs. 22, 23). On the whole of the surface, the margin as well as the faces, of the dise, small exerescenees then make their appearance, and these grow out to form the protuberances above described.

LOCALITIES AND NATIRE OF ENVIRONMENT.

VAR. MEGARHABDA LENDENFELD.

$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \cdot \bar{x} \\ & \hline \underline{x} \end{aligned}$	Locality	Wate	Depith		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3 S 49	S. coast of Molokai, Lae-o Ǩa Laau Light. N. 71°, W. 2I.9'.	Aprils, 19\%2	$\begin{aligned} & 13 .-75 \mathrm{~m} . \\ & (73-13 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 19.5^{\circ} \\ \left(67.6^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse sand Droken shellis, and corals	$\stackrel{2}{\text { Form }}$
3982	Vicinity of Kauai Island, Nawiliwili Light. N. 685, IV. 1.6'.	June 10, 1902	$\begin{aligned} & 126-73 \mathrm{~m} \\ & (333-10 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 9.2^{\circ} \\ \left(48.5^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse hrown eorals, sanul. shells.	$\stackrel{1}{\text { Form B }}$

VAR. TYPHCA LENDENFELD.

	Locality	Date	Depth		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3819	\therefore coast of Molokai, Lae-o Ka Laau Light. N. 71°, W. 21.9'.	April S, I902	$\begin{aligned} & 133 \text { is m. } \\ & \text { (73 4:3 f.) } \end{aligned}$	$\begin{aligned} & 19.5^{\circ} \\ & \left(67.6^{\circ} \mathrm{F} .\right) \end{aligned}$	Coarse sand, broken shells, corals	$\stackrel{1}{\text { Form A }}$
4024	Vicinity of Kanai Island, Mokuaeae Islet. S. $\mathrm{B} 3^{\circ}$, E. 7.6^{\prime}.	June -3, 1902	$\begin{gathered} 14-79 \mathrm{~m} . \\ (24-43 \mathrm{f} .) \end{gathered}$	$\stackrel{23.2^{\circ}}{\left(73.7^{\circ} \mathrm{F} .\right)}$	Coarse coral, sand, and Foraminifera	$\stackrel{3}{\text { Form B }}$
4061	N. E. coast of Hawaii, Kauhola Light. \& 79°, E. 6.7'.	July 18, 1902	$\begin{gathered} 14-1.52 \mathrm{~m} . \\ (24-3 \mathrm{f} .) \end{gathered}$	-	'orals, saml, coralline norlules, and fooraminifera	$\stackrel{1}{\text { Form I) }}$
4128	Vicinity of Kauai 1slaud. Itanamaulu Warehouse. N. $14^{\circ} 30^{\prime}$, W. 2.6^{\prime}.	Angust 1, 1902	$\begin{gathered} 16.5-3: 27 \mathrm{~m} \\ (253-\mathrm{fi}-90 \\ 179 \mathrm{f.}) \end{gathered}$	$\begin{gathered} 8.5^{\circ} \\ \left(17.5^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse brown coral, sand, and Foraminifera.	$\begin{gathered} 1 \\ \text { Form } \\ (2) \end{gathered}$

	Lowality	Hate	Depth	绻品	Buttom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3819	S. coast of Molokai, Lae-o Ka Lazu Light. N. 71°, W. 21.9^{\prime}.	Ipril S, 1602	$\begin{aligned} & 133-7 \mathrm{~m} \\ & (7.3-43 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 19.5^{\circ} \\ \left(676^{\circ} \mathrm{F} .\right) \end{gathered}$	'oarse sand. broken sholls. and corals.	1

The thirtecn sponges described above obviously form a systematic, though far from a homogencous, group, the specimens comprising it differing not inconsiderably from each other in several respects. In three specimens the cortical armour is chiefly composed of microrhabds, the aspidasters in it being but few and confined to its external part. In the other ten the cortical armour is composed chiefly of aspidasters, and the mierorhabds which take part in its formation are confined to the external part. In the three specimens the microrhabds are considerably larger and the aeanthtylasters and aspidasters smatler than in the ten. Among these ten there is one which has smaller oxyasters and relatively thimer aspidasters than the others, and which possesses aster-like rhabd-clusters, a kind of spicule not observed in any of the others. Thus three secondary groups, megarhabda (armour chiefly composed of microrhabls, microrhabds large, aspidasters small), typica (armour chiefly composed of aspidasters, microrhabds small, aspidasters large, without rhabdclusters), and cidaris (armour chiefly composed of aspidasters, mierorhabds small, aspidasters large, with rhabdeclusters) can be distinguished.

Two of the specimens of group megarhabda, which come from the south eoast of Molokai, are fairly identical, while the third, which comes from the coast of Kanai, has a more grayish colour, smaller rhabd megascleres and mierorhabols, comsiderably larger triaenes, larger oxyasters, and thinner aspidasters. Thus two somewhat different forms (1 and B) are eontained in the group megarhabde.

In five of the nine specimens of group typica most of the rhabd megascleres are amphistrongyles or very blunt amphioxes; in the other four most of these spicules are sharp-pointed amphioxes. Four of the five specimens with chiefly amphistrongyle thalyl megascleres, which come from the south coast of Molokai, are fairly identical with each other; the fifth, which comes from the northcast coast of Hawaii, is not like these, massive, lobose, but elongate, digitate in shape, having a much lighter colour, thicker rhabd megaseleres, less centrotyle, for the most part simple amphiox microrhabds, somewhat larger euasters and relatively thimer aspidasters. Of the four specimens with chiefly sharppointed rhabel megascleres, which all come from the coast of Kauai, three (from Station 4(024) are fairly identical, while the fourth (from Station 4128) has a lighter colour, slightly larger microrhabds, much smaller acanthtylasters and longer, considerably broader and thinner aspidasters. Thus four forms (A, B, C, and I) are contained in the group typica.

The surroundings of all the different forms of the same group must have
been different to a certain extent, since they were found at different stations. For this reason, and because the differences between them are not great and their peculiarities more in the character of individual (somatic) adaptations than of germinal qualities, I think that no greater systematic value than that of local forms, two, A and B, in the group megarhabda, and four, A, B, C, and D, in the group typica, ean be attached to them.

The differences between the groups are much greater, and can hardly be directly due to differences in the surroundings, since specimens belonging to different groups were repeatedly captured together, at one and the same station. This and their general nature lead me to eonsider the peenliarities, by which these groups differ, not as mere sumatic adaptations but as germinal characters. Although most probably germinal in nature and certainly not inconsiderable, these differences are, in my opinion, nevertheless insufficient for more than varietal distinction.

The characters of the three varieties are the following:-

> Var. megarhabda.

Cortical armour composed chiefly of microrhabds. Phabd megaseleres mostly sharp pointed, blunt forms rare; 330-650 by $6-13 \mu$. Rhabd-chasters absent. Mierorhabds gradually and sharply pointed, central tyle small or absent; 43-98 by 3-7.5 μ. Triaenes; rhabdome 170370μ long; eladome $160-$ 350μ broad. Aeanthtylasters with three or more rays; 12-27 μ in diameter. Oxyasters $7.5-17 \mu$ in diameter. Aspidasters $55-66$ by $46-59$ by $4.6-8.8 \mu$; average proportion of length to breadth to thickness 100:90.5:10.3.

South coast of Molokai; coast of Kauai.

Var. typica.

Cortical armour eomposed chiefly of aspidasters. Rhabd megaseleres sharp pointed or blunt amphioxes, or amphistrongyles; 310-570 by 6-15 μ. Rhabd-clusters absent. Mierorhabds variously pointed or blunt, with or without central tyle; $30-66$ by $1.5-4 \mu$. Triaenes; rhabdome $200-220 \mu$ long; cladome $150-400 \mu$ broad. Acanthtylasters with three or more rays; $15-31 \mu$ in diameter. Oxyasters $7-16 \mu$ in diameter. Aspidasters $50-77$ by $48-70$ by 4.t-7.S μ; average proportion of length to breadth to thickness 100:94:10.5.

South coast of Molokai; coast of Kauai; northeast coast of Hawaii.

Viar. cidaris.
Cortical armour compsed chiefly of aspidasters. Rhabd megascleres chiefly sharp-pointed amphioxes; f(0)-650 by \& 12 f. Rhabl-clusters 1201SO μ long. Alicrorhablels gradually and sharply pointed, more or less centrotyle; 32-50 by 2 4.5 μ. Triaenes; rhablome $180-190 \mu \mathrm{long}$; dadome 300 440μ broad. Acanthtylasters with two or more rays; $12-31 \mu$ in diameter. ()xyasters 814μ in diameter. Aspidasters 6575 by 6269 by $5-7 \mu$; average propertion of length to brealth to thickness 100:96:9:2.
south conast of Molokai.
The structure of the eamal-system and spiculation of these sponges elearly show that they belong to Erylus. They differ considerably from all the species of this gembs previonsly described, loy the nearly circular shape and the small size of their aspidasters and other characters. Their nearest ally is the speeies here described as Erylus caliculatus. By its shape being ealiculate, by its mierorhabols being amphistrongyle insteal of amphiox, by its aspidasters being larger, relatively much thicker, and partly reniform in shape, and by its spicules generally being larger and much stouter, this sponge differs from E. rotundus to such an extent, that it must be considered specifieally distinet from it.

Erylus caliculatus, sp. nov.

Plate 5, firs (6-10, 24, 25 29; Plate f, figs. 1-13, 19-23, 26, 24, 29; Plate 7, figs. 11-15, 31-41, 74, 77, Ts, so; Plate S , figs. 1-12, 15-20.

I establish this speeies for a specimen obtained on the northeast eoast of Hawail (Nation 4062). The name refers to its caliculate shape.

Shape and size. The sponge (1'late 5, fig. 29) appears as a broad, low, truncate, inverted cone. It is 33 mm . high. The base of the cone, which forms the upper side of the sjonge, is irregularly oval in outline, depressed in the midelle, 47 mm . 10 ng , and 36 mm . broad. Its elevated margin is rounded, about 6 num. thick, and partly divided into lobes. The base of attachment, which corresponds to the trumeate summit of the cone, measures 30 by 18 mm . The surface is uneven and covered with shallow grooves, $0.5-1 \mathrm{~mm}$. broad. These grooves are particularly well marked on the protruding marginal lobes. Numerons small cincular pores, up to 0.3 mm . in diameter, are seattered over the sides of the sponge. Apertures occur also on its depressed upper face, but these are not so numerous and less uniform in size than those on the sides. The largest of these apical apertures, which I am inclined to consider as oseules, mostsure 1 mm . in diameter. The margin is free from pores.

The colour of the sponge (in spirit) is dirty white.
The superficial part of the body is differentiated to form a cortex which contains an aspidaster-armour and is about 65μ thick.

Canal-system. The, probably efferent, apertures on the depressed, terminal face of the sponge are surrounded by sphincter-membranes. The flagellate chambers (Plate 6, figs. 28, 29) are more or less spherical and $1.5-22 \boldsymbol{2}$ in diameter.

The skeleton consists of thabd megascleres, microrhabds, triaenes, acanthtylasters, slender-rayed oxyasters, small oxysphaerasters, and aspidasters. Some of the rhabd megascleres form bundles (Plate 6, fig. 26a), others are isolated and seattered. The bundles extend from the base upward and ontward; on nearing the surface they curve, where necessary, so as to abut steeply or vertically on the cortex. The cladomes of the triaenes extend paratangentially just below the cortical armour, their rhabdomes being directed radially inwards. The triaenes occupy the interporal spaces (Plate 6, fig. 23) and often form welldefined groups at the intersections of the interporal zones. The microrhabets form a thin superfieial layer overlying the aspidaster-armour and oceupy the mantles surrounding the cortical canals, chiefly their outer parts farthest from the lumen. A few microrhabds are also found seattered in the choanosome. The acanthtylasters and the slender-rayed oxyasters, which latter I consider as young acanthtylasters, are numerous in all parts of the choanosome and extend right up to the cortex and even into the mantles of the cortical canals. The small oxysphacrasters are confined to the subcortical region and the mantles of the cortical canals, on the inner surface of which they are often quite numerous. The aspidasters occupy the proximal and middle parts of the cortical armour in dense masses, leaving only the mantles of the cortical canals free. Some aspidasters also occur scattered in the choanosome. The aspidasters in the armour are mostly situated paratangentially. Next the mantles of the cortical canals, however, they often assume other positions.

Most of the rhabd megaseleres (Plate 5, figs. 24, 25) are very blunt amphioxes (Plate 5, figs. 24a, 25a), many indeed so blunt that they can be considered as amphistrongyles. A few blunt styles (Plate 5, fig. 24c) and branched rhabel, derivates have also been observed. Most of the rhabds are more or less curved, usually more strongly in their central part than at their ends. The rhabds are $410-850 \mu$ long and $10-19 \mu$ thick, the average measurements of the three longest and thickest being 723 by 18μ.

The microrhabds (Plate 6, figs. 1, 2, 4a, 5a; Plate 7, figs. 74a, 77a, 78, 80)
are centrotyle amphistrongyles, usually more or less attenuated towards the rounded ends. They are generally slightly curved, the eurvature being uniform or, rarely, greater near the ends than in the middle. Nost of these spicules are isoactine, anisoactine forms with one actine reduced in length being met with only exceptionally. The mierorhabds are $39-52 \mu$ long and, near the middle, close to the tyle, $3-5 \mu$ thick, the average measurements of the three longest and thiekest being 51 by 4.8μ. The tyle is $0.3-1 \mu$ more in transwerse diameter than the adjacent parts of the spicule.

Besides these regular mierorhabds, branched mierorhabd-derivates have been observed in small numbers. In these spieules two or, rarely, more, short, terminally rounded or, exeeptionally, pointed branch-rays arise from a point a little below one end of the spicule. In one of these spicules such branch-rays were observed at both ends. When there are two branch-rays they usually stand opposite each other in a straight line which intersects the axis of the spicule at an angle of 40 to 60°.

The triaenes (Plate 5, figs. 6-10; Plate 6, fig. 23) are orthotriaenes. Their rhabdome is straight, conical, $200-300 \mu$ long, and, at the cladomal end, $13-20 \mu$ thick. The clades are $125-220 \mu$ long, usually simple, and slightly and irregularly curved. Rarely one clade bears a short branch-ray. The clades enclose angles of $87-98^{\circ}$ with the rhablome. The breadth of the cladome is $210-380 \mu$.

The acanthtylasters (Plate 6, figs. 4b, 5b, 6-13, 29; Plate 7, figs. 74, 77b; Plate 8, figs. 2-12) usually have from four to eight, rarely only two or three, concentric and regularly or, more rarely, irregularly distributed rays. The rays are equal or one or more of them reduced in length. The properly developed rays are, at the base, $1.5-4.5 \mu$ thick and taper towards the distal end, which is usually erowned by an acanthtyle, rarely simply rounded off. The acanthtyle or rounded end is $1-5 \mu$ in transverse diameter. The basal part of the rays is either quite smooth or bears a few spines; from their central and distal parts a good many spines arise. The acanthtyle (rounded end) is densely eovered with spines. The spines are usually conical, sharp pointed, and of considerable size. The largest one observed was 1.5μ long. The spines arising from the acanthtyle (rounded end) are generally very markedly recurved and in their position resemble short flexible hair combed down in all directions from the apex of the acanthtyle (rounded end). Those arising from the rays farther down are either vertical or directed obliquely outward or inward. The total diameter of the acanthtylasters is $17-50 \mu$. This dimension and also the size of the rays and acanthtyles are, on the whole, in inverse proportion to the ray-
number. This proportional corrclation is, however, not a uniformly regular one, for while the three- to five-rayed acanthtylasters and their parts are nearly equal in size, and the same applies to the seven- and eight-rayed ones, there are considerable dimensional differences between the two- and three-rayed, the fiveand six-rayed, and six- and seven-rayed ones. In a curve representing this correlation two steep, step-like falls would interrupt the general descent. The dimensions of the two-rayed, three- to five-rayed, six-rayed, and seven- to eightrayed acanthtylasters are tabulated below.

ACANTHTYLASTERS.

Ray-number	2	35	6	7-8
Total diameter, /	50	$23-39$	19-34	17-23
Basal thickness of rays, "	3	$2-1.5$	1.5-3.5	$1.5-2.5$
Transverse diameter of acanthtyle (rounded end), "	4.5	$2-5$	1-1.3	1-2.5

Many oxyasters, similar in diameter and ray-number to the acanthtylasters, occur in the choanosome. The rays of these spicules are quite slender in their distal part but usually thickened in a very marked manner at their base. Similar spicules with slightly thicker, rough rays, and others with still thicker and rougher rays and a slight terminal thickening, connect the oxyasters with the acanthtylasters. I consider the former as young stages of the latter.

The small oxysphaerusters (Plate 6, fig. 3; Plate 7, figs. 11-15, 7tc) have a spherical centrum, $4-5.5 \mu$ in diameter, from which from ten to twenty or more equal, concentric, regularly distributed, conical, blunt or sharp-pointed rays arise. The rays are, at the base, $0.7-1.4 \mu$ thick, and smooth. Their middle and distal parts are covered with small spines. Occasionally a few spines, larger than the rest, form a loose verticil some distance from the end of the ray. The whole aster is $9-18 \mu$ in diameter. A correlation (inverse proportion) between size and ray-number is not discernible.

The aspidasters (Plate 6, figs. 19-22; Plate 7, figs. 31-41; Plate 8, figs. 1, 15-20) are discs varying from broad-oval to circular or reniform. Very rarely aspidasters quite irregular in outline, with several deep incisions, have been observed. The broad-oval to circular aspidasters (Plate 6, figs. 19, 20; Plate 7, figs. 31-37), which are much more numerous than the reniform ones, are fairly regular in outline, $72-88 \mu$ long, $67-77 \mu$ broad, and $10.6-12.8 \mu$ thick. The
arerage proportion of length to breadth to thickness is 100:95: 15. In the reniform aspidasten (Plate 6 , figs. $21,22:$ Plate 7 , figs. 3841), which are otherwise similar to the broad-oval to circular ones, the margin is ineised at a point nsually lying on one of the broader sides. This incision may be quite insignificunt (Plate 7, fig. 39) or it may extend far into the interior of the spicule (Plate 6, fig. 21). The reniform aspidasters have similar dimensions to the broad-oval or circular ones, but are somewhat narrower, some not more than 63μ broad. The surface of the adult aspidaster is eovered with short, truncate, protruling rays, $1.8-4 \mu$ thick. These rays bear terminal verticils of lateral spines, and usually also some spines arise from their apical faces. The number of protruling rays is very variable. On some aspidasters (Plate 6, fig. 20 ; Plate 7, figs. 32-35, $38-40$; Plate 8 , figs. 15,16) they are few and far between, in others (llate 6, fig. 19; Plate 7, figs. 36, 37, 41; Plate 8, figs. 17-20) very numerous and, although usually distributed rather irregularly, nowhere very far apart.

The youngest stages of the aspidasters (Plate 7, fig. 31; Plate 8, fig. 1) appear ats dises composed of slender rays radiating from a eommon centre. The great majority of these rays are as long as the radius of the dise, lie nearly in one plane, and extend from the centre to the margin of the disc. A few are much shorter, and these are situated obliquely to the phane of the dise occupied by the long rays (I'late 8, fig. 1). These ray-aggregations grow in the same Way ats in Erylus rotundus, deseribed in detail, p. 306, and become smooth dises (Ilate 6 , fig. 22), on the surface of which protruding rays later make their appearance. It seems, a priori, probable that the aspilasters with few protuberances (Plate 6, fig. 20 ; Plate 7, figs. 32 35, $38-40$; Plate 8 , figs. 15,16) are young forms which tater, by the accession of further protuberances, we converted into the aspidasters with numerous protruding rays (Plate 6, fig. 19; Plate 7, figs , $3(6,37,41$; Plate 8 , figs. 17-20). Since, however, the protruding rays of the aspidasters with but few of them seem to be on the whole larger than those of the aspidasters with many of them, this is somewhat doubtful.

This sponge was eanght with the tangles on the northeast coast of Hawaii, Station 4062 , Kamhola Light, S. $69^{\circ} 15^{\prime}$, E. 6.9^{\prime} on July 18, 1902; depth 152206 m . ($83-113 \mathrm{f}$.); it grew on a bottom of coral, voleanic sand, shells, and Foraminifera.

The structure of the canal-system and the spiculation of this sponge elearly show that it belongs to Erylus. From all the species of this genus previonsly described it differs considerably by the partly broad-oval to cireular, partly
reniform shape, and the small size of its aspidasters. It is nearest allied to Erylus rotundus. From this E. caliculatus is distinguished by the shape, which is massive lobose to digitate in E. rotundus and caliculate in E. caliculatus; by the microrhabels, which are amphiox in the former and amphistrongyle in the latter; by the aspidasters which are absolutely smaller, relatively thinner, and oval or circular in E. rotundus and absolutely larger, relatively thicker, and in part also reniform in E. caliculatus; and by the spicules generally which are smaller and much less robust in E. rotundus than in E. caliculatus.

[1. (iENERIL SISTEMATIC ACCOUNT OF THE GENER. SPECIES, AND V: \RIETIES FROM TIIE PACIFIC OCEAN.

Erylidae.

Tetraxonida with rhabd and teloclade megaseleres, and a superficial armour composed of aspidasters and microrhabds. Euasters are always present in the choanosome.

For the present I place only one genus, Erylus, in this family.

ERyLUS Gray.

With uniporal afferents and uniporal efferents or larger oseules. Without ama- or protriaenes.

Twenty-two species are known. Eight of these ocemr in the Pacific Ocean.

SCMMIRY ()F THE SPECTES FOUND IN THE PACIFIC OCEIN.
λ_{1} The large chomosomal euasters are oxyasters.
λ_{2} The teloclades are orthophagiotrianes.
A_{3} The micromabls have pointed ends.
E. placenta Thiele. E. monticularis Kirkpatrick.
B_{3} The microrhabds are amphistrongyle centrotyles.
E. decumbens Lindgren.
B_{2} The telochades are ehiefly diehotriaenes.
E. oxyaster Lendenfeld.
B_{1} The large choanosomal euasters are acanthtylasters.
Λ_{2} The aspidasters are about twice as long as broad.
E. nobilis Thicle. E. sollasii Lendenfeld.
B_{2} The anpidasters are nearly as broad as long.
E. rotundus Lendenfeld, var. megarhabda Lendenfeld, var. typica Lendenfeld, var. cidaris Lendenfeld. E. caliculatus Lendenfeld.

Erylus placenta Thiele.
Zoologica, 1898, 24, p. 5, plate 1, fig. 1; plate 6, fig. 1 a-h. Lendenfeld, Tierreich, 1903, 19, p. st.
Incrusting, 2-3 mm. thick. In spirit: reddish gray.
Amphioxes: mostly $700-800$ by about 15μ; sometimes much shorter, only half as long. Orthotriaenes: rhabdome 500 , clades 270μ long.

Microrhabds: slightly curved, abruptly pointed centrotyle amphioxes; $25-50 \mu$ long. Oxyasters: three to six, most frequently four rays; each ray 20 30μ long. Oxysphaerasters: centrum about 5 , whole aster 10μ in diameter. Aspidasters: oval, very frequently with incised margin, irregular; 170-200 by $80-90$ by 18μ.

Northwestern Pacific. Japan: Kagoshima Bay.

Erylus monticularis Kirkpatrick.

Ann. mag. nat. hist., 1900, ser. 7, 6, p. 351, plate 14, fig. 3 a-h.
Thin, incrusting. Pale brown.
Amphioxes: 210 by 10μ. Orthotriaenes, rhabdome 6μ thick; clades 186μ long.

Microrhabds: amphiox; 40 S0 by 1-3 \%. Oxyasters: about 6 rays; total diameter 18 - 30μ. Small tylasters (chiasters, Kirkpatrick): with small centrum; about 12 rays; total diameter 10μ. Aspidusters: 150μ long, 114μ broad.

Central Pacific. Funafuti Islet.

Erylus decumbens Lindgren.
Zool. anz. 1897, 20. p. 485. Zonl. jahrl. Syst., 1898, 11, p. 338, plate 20, fig. 1.
Erylus euasirum (Schmidt) Lendenfeld, Tierreich, 1903, 19. p. 86.
Incrusting, 3 mm . high. Surface black, interior gray.
Amphioxes: one end often blunt, 0.8 mm . by 24% Orthoplayiotriaenes: rhabdome 420 by 28μ; clades curvel, concave to rhablome, 250μ long; cladeangles nearly 90° (according to text), 104° (according to figure).

Microrhabds: curved, centrotyle amphistrongyles, 60 by 6μ. Oxyasters: two to five smooth rays; each ray 24μ long. Sphaerusters: numerous rays; total diameter 10μ. Aspidasters: oval, some with incisions; 182 by 120 by 28μ.

Formerly I was inelined (loc. cit.) to consider this species as identical with Stelletta euastrum Schmilt (1868) and Erylus cylindrigerus Ridley (1884), but the reexamination has made me doubtful on this point, so that I now revert to Lindgren's name.

Western Pacific: Java.

Erylus oxyaster Levinenfeld.

 Ante, p. 26s.Massive with lobose or digitate protuberances. In spirit: brown, part of the surface lighter than the rest.

Amphioxes: pointed, rarely blunt: 1.82 .9 mm . by $60-85 \mu$. Styles: rare; 1.9-2.3 min. by 60-105 1. Angularly bent and branched rhabd-derivates: in dimensions similar to the amphioxes, rare. Plagiotriaenes: rare; rhabdome 0.9 mun. by 7590μ; clades 0.7 mm . long; clade-angles $109-112^{\circ}$. Dichotriaenes: rhabdome ($0.6-1.6 \mathrm{~mm}$. by $70-105 \mu$; main clades $250-400$, end clades $40-450 \mu$ long: clade-angles $109-120^{\circ}$. Irregular dichotrinene-derirates: with the elades reduced in number or the rhabdome reduced in length; rare.

Microrhabds: more or less curved, centrotyle, generally isoactine amphistrongyles; $31-47$, rarely up to 93μ long, $3.5-4.5 \mu$ thick. Oxyasters: usually with a slight central thickening; one to twenty or more perfeetly smooth, coni(eal rays; total diameter $10-90 \mu$. Aspidasters: oval, rarely roundish or irregular; the ordinary oval ones 208-243 by $125-150$ by $30-40 \mu$

Eastern Pacific. Galapagos Islands: $0^{\circ} 50^{\prime} \mathrm{S} ., 89^{\circ} 36^{\prime} \mathrm{W}$. "Albatross" Station 2su9.

Erylus nobilis Thele.

 1. 5

Irregularly eylindrical. White; in the interior brownish.
Amphiores: rather abruptly pointed; nearly 1 mm . by 30μ. Orthotriaenes: Thabdome 600 by $40 / c$; clades 250μ long, slightly curved.

Microrluluds: controtyle amphistrongyles: about 48 by 6 f. Aconthtylasters: most frequently seven rays; each my 20 plong. Aspidusters: oval, ontline sometimes irregular; 190 by ! $90-100$ by 40 fe

Western Pacific. 'Temate.

Erylus sollasii Lennenfeld.

$$
\text { Ante, p. } 272
$$

Irregulaty massive, with lobose, gyriform, or short digitate processes. In spirit: whitish to chestnut-brown or purplish brown; one part of the surface sometimes darker than the rest.

Blunt amphioxes: 425-980 by S-24 \%. Sharp-pointed amphioxes, amphistrongyles, and styles of similar dimension; rare. Orthoplagiotriaenes: rhabdome
$140-520$ by $8-22$, rarely reduced in length and thickened; cladomes very polymorphic; clades simple or bifureate; simple clades 120-300 μ long; hifureate clades, main elades $70-270$, end clades $10-160 \mu$ long; clade-angles $86-116^{\circ}$; in some specimens all the triaene-clades are simple, in some the majority are simple, the minority bifureate, in some the majority are bifurcate.

Microrhabds: curved, centrotyle, pointed; 30-78 by 2.5-5 μ. Anisoactine and branched microrhabd-derivates: of similar dimensions; rare. Aconthtylasters: two to fourteen or more rays; total diameter $10-38 \mu$. Aspidastcrs: oval, rounded rhomboidal, or irregular with lobose marginal protuberances; 95156 by $55-82$ by $7.4-14 \mu$.

Central Pacific. Hawaiian Islands: sonth coast of Molokai. "Albatross" Stations 3847, 3848, 3849; northeast coast of Hawaii. "Albatross" Stations $4055,4062$.

Erylus rotundus Lendenfeld.

$$
\text { Ante, p. } 290 \text {. }
$$

Massive, oval or somewhat irregular, with lobose, gyriform, or cligitate protuberances. Surface usually more or less rugose. In spirit: dirty white to light brown in the interior; surface dirty white to purplish brown or purplish gray or purplish black, one part of the surface often much darker than the rest. Sometimes with whitish spots, marking the position of the pores, on the darker parts of the surface.

Rhabd meguselcres: sharp-pointed amphioxes, blunt amphioxes, or amphistrongyles, variously combined, 310-6.50 by 6-15 f. Styles, angularly bent and branch-bearing rhabd-derixates: of similar dimensions; rare. Aster-like rhabd-clusters: four to ten conical, irregularly distributed, longer, and a number of very short rudimentary, cylindrical, terminally rounded rays; total diameter 125-180 μ; only in variety ciduris. Othoplagiotriacnes: rhabdome 170-370 by $6-12 \mu$; clades often slightly, irregularly curved; $80-270 \mu$ long; clade-angles 90-107 ${ }^{\circ}$.

Microrhabds: slightly curved, variously but generally sharply pointed; $30-98$ by $1.5-7.5 \mu$; with or without central tyle, the latter when present small. Acanthtylasters: two to fourteen rays; total diameter 12-31 μ. Simall oxyasters: eight to twenty-two or more, conical, spined rays; total diameter $7-17 \mu$. Aspidasters: broad oval to cireular; $50-75$ by $46-70$ by $4.48 .8 \mu$.

Central Pacific. Hawaiian Islands: south coast of Molokai. "Albatross" Station 3849; cuast of Kauai. "Albatross" Stations 3982, 4024, 4128; nortlıeast coast of Hawaii. "Albatross" Station 4061.

Inte, p. 309.
Cortical armour composed chiefly of microrhabds. Rhabd megaseleres: mostly sharp pointed; blunt forms rare; 330-650 by 6-13 μ. Rhabd-clusters absent. Orthoplagiotriaenes: rhabdome $170-370 \mu$ long; cladome $160-350 \mu$ broad. Microrhabds: gradually and sharply pointed; $43-98$ by $3-7.5 \mu$; central tyle small or absent. Acanthtylasters with three or more rays; 12-27 μ in diameter. Small oxyasters: 7.5-17 μ in diameter. Aspidusters: $55-66$ by $46-$ 59 by 4.6-8.8 μ

Central Pacific. Hawaiian Islands: south coast of Molokai. "Albatross" Station 3849 ; coast of Kauni. "Albatross" Station 3982.

Erylus rotundus var. typica Lendenfeld. Ante, p. 399.

Cortical armour composed chiefly of aspidasters. Rhabd meguscleres: sharp pointed or blunt amphioxes, or amphistrongyles; 310-570 by 6-15 μ. Rhubd-clusters: absent. Triaenes: rhabdome $200-200$ long, eladome $150-$ 400μ broad. Microrhabels: variously pointed or blunt, with or without central tyle; 30 66 by $1.5-4 \mu$. Acanthtylasters: with three or more rays; 15-31 μ in diameter. Oxyasters: $7-16$ / in diameter. Aspidasters: $50-77$ by 4870 by $4.47 .8 \mu$

Central Pacific. LLawaiian Islands: south coast of Molokai. "Albat tross" Station 3849 ; coast of Kiauai. "Albatross" Stations 4024, 4128 ; northeast const of Hawaii. "Albatross" Station 4061.

Erylus rotundus var. cidaris Lendenfeld.
Ante, 1 . 310.
Cortical amour composed chiefly of aspidasters. Rhabd megascleres: chiefly sharp-pointed amphioxes; 440-650 by S-12 \%. Rhabd-elusters: 125-180 μ long. Triaenes: rhabdome $180-190 \mu$ long, clatome 300-440 μ broad. Microrhabds: gradually and sharply pointed, more or less eentrotyle; 32-50 by 2-4.5 μ Acanthtylasters: with two or more rays; $12-31 \mu$ in diameter. Small oxyasters: S-14 μ in diameter. Aspidusters: $65-75$ by $62-69$ by $5-7 \mu$.

Central Pacific. Hawaiian lslands: south coast of Molokai. "Albatross" station 3849 .

Erylus caliculatus Lendenfeld.

 Ante, p. 310.Inverted conical, caliculate. In spirit: dirty white.
Blunt amphioxes and amphistrongyles: 410-850 by 10-19 μ. Orthotriaenes: rhabdome 200-300 by 13-20 μ; clades $125-220 \mu$ long; clade-angles $57-98^{\circ}$.

Microrhabds: centrotyle amphistrongyles, usually attenuated towards the ends; 39-52 by $3-5 \mu$. Acanthtylasters: usually four to eight, rarely only two or three rays; total diameter $17-50 \mu$. Small oxysphaerasters: ten to twenty or more rays; centrum 4-5.5, whole aster $9-18 \mu$ in diameter. Aspidasters: broad-oval to circular, or, not so frequently, reniform; the broad-oval to circular ones $72-88$ by $67-77$ by $10.6-12.8 \mu$; the reniform ones often narrower.

Central Pacific. Hawaiian Islands: northeast coast of Hawaii. "Albatross" Station 4062.

III. DISTRIBUTION.

If the fauna of the Pacific so far as it relates to the Erylidae is compared with that of other regions, it is seen that its single genus Erylus oecurs in both. Fone of the Pacifie species are similar to species found outside the Pacifie, but not a single one appears to be really identieal with any ultra-Pacifie one.

Bight of the twentr-two known species, that is 36%, oceur in the Pacific.
The range of the Pacifie species is, so far as at present known, not great. With the exeeption of Erylus rotundus and E. sollasii, which have been obtained at various points on the coasts of the Hawaian Islands, all the Pacific species are recorded from one locality only.

The majority of species, the Pacific as well as those of other regions, are tropical (n' subtropical. It is remarkable that no specimen of Erylus has hitherto been found on the west eonast of the Ameriean contiment.

The horizontal distribution of the Pacifie species is:-
Eastern Pacific Islands.
Erylus oxyaster.
Galapagos.
Central Pacific Islands.

Lirylus monticularis.	Funafuti.
" sollasii.	Hawaiian Islands.
" rotundus.	"
" caliculatus.	"

Southeastern Asiatic Islands.
Erylus decumbens.
" nobilis.
Java.
Ternate.
Northcastern Asiatic Islands.
Erylus placenta.
All the Pacifie species have been found in rather shallow water.

IV. LIST OF STATIONS.

Station	Locality	Lat.	Long.	Diate	$\begin{aligned} & \text { E } \\ & \text { 号 } \\ & \text { 品 } \end{aligned}$			Bottom	Instruments used
2809	Galapagos 1s-	$\begin{gathered} \circ \quad \text { " } \\ \text { S. } 005000 \end{gathered}$	$\text { W. } 893600$	April 4, 18s8	45	79°	7.1.1 ${ }^{\circ}$	Gray sand	Small beam trawl
38.47	S. coast of Molokai, Lae-o Kía Laau Light	N. 643000	W. 230000	April s, 1902	23-24	76		Sand and stones	Hand lead, 6 foot hemp tangles
3848	S. coast of Moltrkai, Lae-o Kia Laau Light	N. 681500	W. 22400	* "	44-73	76	71.1	Sand and gravel	Sigsbere sounding matchine, surface tow net, 5! foot Blake beam trawl, fte.
3849	S. coast of Molokai, Laeo Kia Laau Light	N. 710000	W. 210900	" " "	73-43	76	67.6	Coarse sand, broken shells, and corals	Tanner sounding machine, 10 foot Blake bram trawl, surface tow net
3982	Vicinit y of Kauai lsland, Nawiliwili Light	N. 680000	W. 010600	June 10, 1902	233-40	78	48.5	Coarse brown corals, sand, shells	Sigsbee sounding machine, 9 foot hemp tangles
4024	Vicinity of Kauai Island, Mokuaeae Islet	S. 830000	E. 070600	June 23, 1902	24-43	75	73.7	Coarse coral, sand, and Foraminifera	Sigshee sounding machine, 9 foot hemp tangles
4055	N. E. coast of Hawaii, Alia Point Light, Hilo Bay	N. 200000	W. 030500	July 16, 1902	50-62	76		Fine gray sand, and Foraminifera	Tanner sounding machine, 8 foot hemp tangles
4061	N. E. coast of Hawaii, Kauhola Light	S. 790000	E. 060700	July 18, 1902	24-83	77		Corals, sand, corallioe nodules, and Foraminifera	Tanner sounding machine, 8 foot hemp tangles
4062	N. E. coast of Hawaii, Kauhola Light	S. 691500	E. 060900	* " ${ }^{\text {\% }}$	83-113	77		Coral, volcanic sand, shells, and Foraminifera	Tanner sounding machine, 8 foot hemp tangles
4128	Vicinity of Kauai Island, Hanamaulu Warehonse	N. 443000	W. 020600	Altg. 1, 1902	$\begin{gathered} 253-65- \\ 90-179 \end{gathered}$	77	47.8	Cuarse brown coral, sand, and Foraminifera	Sigsbee sounding machine, 8 foot Albat ross pattern Blake beasn trawl

1×4

EXPLANATION OF THE PLATES.

PLATE 1.

Erylus sollasii Lendenfeld.

Figures 1-4S.

1.- Transverse section of a lamellar part of a large dark specimen from South Molokai (race II); magnified 7.5 ; phot. Zeiss, planar 50 mm.:
a, cortex; b, choanosome; c. monaxonid symbiont attached to one side of the Erylus.
2.- Part of the surface of a large whitish specimen from South Molokai (race I, form C); magnified 7.5: phot. Zeiss, planar 50 mm .
3.-Subcortical portion of a radial section oecupied by numerous large spherical granular cells, of a large dark specimen from South Molokai (race 1I); haematoxylin; meqnified 209; phot. Zeiss, apochr. 8, compens. of. 6.
4.- Part of a radial section through the choanosome of a large dark specimen from South Molokai (race 1I); haematoxylin; maynified 200; phot. Zeiss. apochr. S, compens. oc. 6 .
5-12.- Apical views of cladomes of triaenes; magnified 100; phot. Zeiss, apoehr. 16, compens. oc. 6:
5, of a triaene with one simple and two bifurcate clatles of a large dark specimen from south Molokai (race I1);
6 , of a regular dichotriaene with very short end elades of a large dark specimen from South Molokai (race II);
7, of a regular plagiotriaene of a large dark specimen from South Molokai (race II);
8 , of an irregular dichotriaene-derivate in which one end clade of each of the three pairs is retheed, of a middle-sized light-coloured speeimen from northeast Hawaii (race I, form D);
9 , of a regular dichotriaene with long end clates of a middle-sized light-colourel specimen from northeast Hawaii (race 1, form D);
10 , of a triaene with one trifurcate and two bifurate clades of a middle-sized light-coloured speeimen from northeast Hawaii (race I, form D);
11, of a regular plagiotriaene of a large whitish specimen from South Molokai (race I, form C);
12, of a regular plagiotriaene of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D).
13-26. -Side views of triaenes; maynified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6:
13, of a regular plagiotriaene with a rhabdome reduced to a short, conical protuberance, of a large dark specimen from South Molokai (race II);
14, of a triaene with one bifurate and two simple clades, and a rhabdome reduced to a short, conical protuberance, of a large dark speeimen from South Molokai (race IL);
15, of a plagiotriaene with simple, unequal, stout, blunt clades and a regular blunt rhabdome, of a large whitish specimen from South Molokai (race 1, form C);
16, of a plagiotriaene with equal, cylindrieal, terminally roumled clades and a rhabitome bearing small rounded protuberances near the end, of a large whitish specimen from South Molokai (race 1 , form C);
17, of a plagiotriaene with slightly unequal, slender, blunt clades and a regular pointed rhabdome, of a large whitish specimen from South Molokai (race [, form C);
IS, of an irregular orthotriaene with unequal stout clades partly rounded at the end, and a reduced eylindrical, terminally rounded rhabdome, of a middle-sized light-eoloured specimen from mortheast Hawaii (race I, form D);
19, of a plagiotriaene with fairly equal, slender, pointesl, regular clades and a fairly pointed rhabitome, of a midille-sized light-coloureld specimen from northeast Hawaii (race I, form D);
20, of a plagiotriaene with slender, regular clates, one of which is strongly curved at the eml, of a middle-sized light-coloured specimen from northeast Hawaii (race I, from D);
21, of a fairly regular plagiotriaene with short pointed clades, of a large dark speeimen from south Molokai (rafe II);
22, of a triaene with one bifureate clade, of a large dark specimen from South Molnkai (race 11);
23 , of a protriaene with unequal, cylindrical clades, reduced in length and terminally roumded, of a large dark specimen from South Molokai (race II);
24, of a plagiotriaene with one clade terminally recurved and a rhablome bearing slight protuberances near thre end, of a large dark specimen from south Molokai (race 11);
25, of a rather stout plagiotriaene with relatively long clasles, of a large dark specimen from sonth Molokai (race II);

26, of a slender plagiotriaene with relatively tong clades of a large dark specimen from South Molokai (race 1I).
27.- A large whitish specimen from South Molokai (race I, form C); natural size; phot. Zeiss, anastig. $4 \mathrm{~s} 0 / 412 \mathrm{~mm}$.
25.-A large dark specimen from South Molokai (race II); natural size; phot. Zeiss, anastig. 4.50/121 mm .
29-35.- Rhabd megaseleres; magnified 100; phot. Zciss, apochr. 16, compens. oc. 6:
29-31, more or less amphios-rhabds tapering towards both ends, of a large whitish specimen from South Molokai (race I, form C);
32 , stont and short, somewhat irregularly cylindrieal amphistrongyle, of a large whitish specimen from South Molokai (race I, form C);
33,31 , sharp-pointed amphioves, of a small dark speeimen from South Molokai (race I, form B);
35, pointed ampliox of a large dark specimen from South Molokai (race II).
36-11.- (iroups of mieroseleres from centrifuge-spicule preparations; magnified 300; phot. Zeiss, apochir. 4, compens. oe. 6:
a, isoactine centrotyle microrhabds; b, anisonetine microrhabds; c, acanthtylasters; d, young aspidaster;
$36,39,+t$, of a large whitish specimen from South Molokai (race I, form C);
37 , of a small dark speeimen from South Nolokai (race 1, form B);
35, of a large dark specimen from South Molokai (race II);
40, of a middle-sized light-coloured specimen from northeast IIawaii (race 1, form D).
42-45.- Rhabd megsacleres; magnificel 100; phot. Zeiss, apoehr. 16, compens. oe. 6:
42,43 , large, more or less pointed amphioxes, of a middle-sized light-coloured specimen from northcast Hawaii (race I, form D);
44 , style. abruptly bent close to the blunt end, of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D);
45. amphistrongyle, of a middle-sized light-coloured specimen from northeast Hawaii (raee I, form 1):
46, small blunt amphiox, of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D);
47. 48, small, sharp-pointed amphiox. of a small, partly light, partly dark, specimen from South Molukai (race I, form A).

18

36

37
27
20
\qquad
-
19

PLiTE 2.

Erylus sollasii Lendenfeld.

Figures 1-26.

1, 2. - A large acanthtylaster of a large dark specimen from Nouth Molokai (race II); magnified 1s00; u. r. phot. Zeiss, !. monochr. 1.7, q. oc. 10:

1, foensed higher; ¿2, focused lower.
B, 1.- Ciroup of acanthtylasters from a eentrifuge-spicule preparation; magnified 540 ; u. v. phot. Zeiss, q. monochr. 6. q. oc. 10:

3, of a large whitish specimen from South Nowokai (race I, form C);
1, of a large dark specimen from South Molokai (race II).
is- 7 . - The central part of an aspidaster of a large dark specimen from south Molokai (race II); magnified 1s00); u. v. phot. Zeiss, (f. monochr. 1.7, q. oc. 10:
5, focused high (on the upper surlace); 6 , focused intermediate; 7 , focused low (on the centrum).
S, 9.- A large acanthtytaster of a large dark specimen from south Molokai (race 1I); magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:

8 , foeused higher; 9 , focused lower.
10, 11.- A small acanthtylaster of a large dark specimen from South Molokai (race II); magnified 1800; u. v. phot. Zoiss, q. monochr. 1.7, q. oc. 10:

10, focused lower; 11, foeused higher.
12 15.-Aspidasters; magnifeed 510 ; u. v. phot. Zeiss, q. monochr. 1.7, q. of. 10:
12. somewhat irregular alult aspidaster, of a large whitish specimen from south Molokai (race 1, form (${ }^{1}$;
13, regular, oval adult aspidaster, of a large dark specimen from South Molokai (rare II);
11, very young aspidaster composed of radiating rays, of a large dark specimen from south Molokai (raw II);
15. elongate, young, perfectly smooth aspidaster, of a large dark specimen from Nouth Molokai (race 11).
16.- Group of isoactine microrhabds, of a large dark speeimen from South Molokai (race 11); magnified 540 ; u. ソ. phot. Zeiss, q. monerlir. 6, ¢. oc. 10.
17. Isoactine mierorhald, of a large whitish specimen from south Molokai (race I, form ('); magnified 5 t0; ~1. r. phot. Zeiss, q. monochr. 6, q. oc. 10.
1s. - lsoactine microrhatad, of at large dark specimen from South Molokai (race 11); magnified 1800; u. i. phot. Z.jiss, q. monochr. 1.7, 4. oc. 10.

19-2(i.- Aspidasters; magnified 300; phot. Zciss, apochr. A, compens. oc. f:
19. young aspidaster, of a small, partly light, partly dark, specimen from south Holokai (race I, form A);
20, young aspidaster, of a large whitish specimen from south Molokai (race 1, form C);
21, young aspidaster, of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D);
22, adult, lozenge-shaped aspidaster, of a small, partly light, partly dark, speemen from South Molokai (raee I, form A);
23, adult, oval aspidaster, of a middle-sized light-coluured specimen from northeast Ilawaii (race I, form 1);
24, adult, irregular aspidaster, of a small, partly light, partly dark, specimen from South Molokai (race I, form I);
25, adult, irregular aspidaster, of a large whitish specimen from South Molokai (race I, form () ;
26, adult, browd oval asjudaster, of a middle-sized light-coloured specimen from northeast Ilawaii (race I, form D).

PLATE 3.

Erylus sollasii Lendenfeld.

Figures 1-2x. Race 111. Large dark specimen from northeast Hawaii.

1. -Side view of a triaene with branched clades, and a redueed, eylindrical, terminally rounded rhabdome; magnified 100; phot. Zeiss, apochr, 16, compens. oc. 6.
2-6.-Apical views of cladomes of triaenes; magnified 100; phot. Zeiss, apochr. 16, compens. oe. 6:
2-4, with all clades bramehed dictotomously or in a more complicated mamer;
2. 6, with only two clades thus branched and the third simple.
3. s.- Parts of large acanthylasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10.

9-11.-Aspidasters; magnified 3.00; phot. Zeiss, apochr. 4, compens. oc. 6:
9. a perfeetly adult one;

10, a nearly adult one;
11, a young, still smooth one.
12.-. Side view of a triacne with branched clades; magnified 100; phot. Zeiss, apochr. 16, compene. oc. 6 .
13.- Two isoactine microrhabels; maynified 300; phot. Zeiss, apochr. 1, compens. oc. 6.

14, 15.-Two isoactine microrhabels; magnified 5 to; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10 .
16, 17.-Akpidasters; magnified 540 ; u. v. phot. Zeiss, q. monochr. 6, q. oe. 10:
16, a young one;
17 , an adult sne.
18.- Promonaene-like style, abruptly bent near the pointed emd; magnified 100 ; phot. Zeiss, apochr. 16, comperis. oc. 6.
19 2.2.- Rhabd megaseleres; magnified 100; phot. Zeiss, apochr. 16, compens. oe. 6:
19. 20, large amphioxes;
21. style:

22, small amphiox.
23, 24. - Nide views of triaenes; magnified J00; phot. Zeiss, apochr. 16, compens. oe. 6:
23. with three-branched clades;

24, with simple and two-branched clades.
$25,26$. Groups of microseleres from centrifuge-spicule preparations; magnified 540 ; u. v. phot. Zeiss, 4. monochr. 6, q. oc. 10:
a, microrlabd; b, small, most probably forcign, sphaeraster; e, large acanthtylasters; d, very young aspillasters.
27.- View of the largest specimen; natural size; phot. Zeiss, anastig. $180 / 112 \mathrm{~mm}$.
2.- Part of the surface of an adult aspidaster; magnified 1800; u. r. phot. Zciss, q. monochr. 1.7, q. oe. 10 .

Erylus oxyaster Lendenfeld.

Fighures 29-35.

29-35.- Microscleres and groups of such from centrifuge-spicule preparations: magnified 600; u.v. phot. Zeiss, q. monochr. 6, q. oc. 10:
a, (Figs. 29-32, 35) microrlabds;
b, (Fig. 35) large diactine oxyaster;
c, (Fig. 3.4) large triactine oxyaster with one ray reduced:
d, (Figs. 32, 33, 35) large oxyastens with three or more fully developed rays;
e, (Fig. 32) small oxyaster with numerous rays.

PLATE 4.

PLATE 4.

Erylus oxyaster Lendenfeld.

Figures 1-43.

1-23.-. Megaseleres; magnified 30; phot. Zeiss, planar 20 mm .:
1, apical view of the cladone of a dichotetracne;
$2-5$, apical views of cladomes of dichotriaenes:
6, 7. pointel, straight, or slightly curved amphioxes;
\& pointed, angularly bent amphiox;
9, blunt, slightly curved amphiox (amphistrongyte);
10,11 , styles;
1.-14, amphiox-derivates, strongly angularly bent near one end, like monaenes;
1.5, 16, amphiox-derivate with a vertically arising braneh-ray, like mesomonaenes;

17-19, amphiox-derivates with two or three branch-rays, like meso- or amphiclades;
20 , side view of a plagiotriaenc;
21, side view of a triacne with one simple and two bifurcate clades;
22, 23. side views of dichotriaenes.
24.-. View of the sponge; natural size; phot. Zeiss, anastig. $480 / 412 \mathrm{~mm}$.
25.- P'art of a superficial, paratangential section showing a pore; magnified 200; phot. Zeiss, apochr. \&, compens. ox. 6.
26-34.- Microscleres and groups of such from centrifuge-spicule preparations; magnified 300 ; phot. Zeiss, apredir. 1. compens. oc. 6.:
a. (Figs. 2(6, 2S-33) microrhabds;
1), (Fig. 27) large monactine oxyaster;
c, (Fig. 2s) large diactine oxyaster;
d, (1 igs. 26, 30) large triactine oxyasters;
c, (Figs. 30, 32-34) large oxyasters with four or more rays;
f. (Figs, 29, 30) small onyasters with numerous rays.
3.5.-The umbilical face of an aspidaster; magnified 300; phot. Zeiss, apochr. 1, cor -ns. oe. 6.

36,37 . - Part of the surface of the umbilical face of an aspidaster; magnified 2000°.. . . phot. Zeiss, q. monochr. 1.7. (1. oc. 10:

36, focused lower; 37, focused higher.
3s.- A ray of a large oxyaster; magnified 2000; u. v. phot. Zciss, q. monochr. 1.7, q. oc. 10 .
39, 70.-A small oxyaster with numerous rays; magnified 2000; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
39, focused lower; 10, focused higher.
41-43.- Aspidasters; magnified 150; phot. Zeiss, apochr. 8; compens. oc. 6:
41, rare, nearly circular aspidaster;
42,43 , ordinary, clongate aspidasters.

SPONGES OF THE PACIFIC, II. ERYLIDAE.

PLATE 5.

PLATE 5.

Erylus rotundus Lendenfeld.

Figs. 1, 3, 11-13. - var. typica Lendenfeld. Form D. Northeast Hawaii.
Figs. 2, 4, 17 . var. typica Lendenfelo. Form B. Kauai.
Figs. 5, 26-28, 31. - var. cidaris Lendenfeld.
Figs. 14, 15. - var. typica Lendenfeld. Form C. Kauai.
Figs. 16, 30. - var. typica Lendenfelo. Form A. South Molokai.
Figs. 18-22, 32. - var. megarhabda Lenoenfelo. Form A. South Molokai.
lïg. 23. - var. megarhabda Lendenfeld. Form B. Kauai.

Erylus caliculatus Lenoenfelo.

Figures 6-10, 21, 25, 29.

```
    1-7.- Apical views of triacne-cladomes; magnified 101); phot. Zeiss, apochr. 16, compens oc. 6:
    1,3, of Erylns rofundus var. typica from northeast IIawaii (form D);
    2, 1, of a dark specimen of Erylus rotundus var. lypica from Lauai (form B);
    5, of Erylus rotumdus var. cidaris;
    6, 7, of Erylus caliculatus.
S-10. -Side views of triaenes of Erylus caliculatus; magnified 100; phot. Zeiss, apochr. 16, compens.
        oc. 6.
    11 15.- Amphioxes of Erylus rotundus var. typica; magrificd 100; photo. Zeiss, apochr. 16, compens.
        oc. 6:
    11-13, of a specimen from northeast Hawaii (form D);
    14,15 , of a light specimen from Kauai (form (').
16, 17.- (iroups of megascleres from spicule-preparations of Erylus rotundus var. typica; magnified
        100; phot. Zeiss, apoelsr. I6, eompens. oc. 6:
    16, of a speeimen from Nouth Molokai (form A);
    17 , of a dark specimen from hauai (form B);
            a, sharp-pointed amphioxes; b, blunt amphiox (amphistrongyle); c, style.
    15-23.- Rhabd megascleres of Erylus rotundus var. megarhabla; magnified 100: phot. Zeiss, apochr.
            16. comprens. oc. 6:
    1s, an amphist rongyle of a speeimen from South Molokai (form A);
    19-22, amphioxes of a specimen from South Molokai (form A);
    23, an amphios of a specimen from Kauai (form B).
\(21-28 .-\) firoups of spicutes from spicule-preparations; magnified 100; phot. Zeiss, apochr. 16, com-
        pens. oc. 6:
    2.1, 205, of Erylus caliculatus;
    26-2s, of Erylus rotumbus var. cilaris;
            a. (Figs. 21-2s) amphioxes;
            c, (Fig. 2 V) style;
            d, (F゙ig. 26) triaene:
            c, (Fig. 27) microrhabs;
            f, (Figs. 24, 27, 2s) aspidasturs;
                g, (Figs. 24, 27) acanthtylasters.
29-32.- Views of whole specimens; phot. Zeiss, anastig. 480/412 mm.:
    29, Erylus caliculatus; natural size;
    30, Erylus rotundus var. hypica from South Molokai (form A); magnified 1: 1.08.
    31. Erylus rotundus var. cideris; magnified 1:1.13;
    32, Erylus rotundus var. megarhabrla from South Molokai (form A); magnified 1: 1.08 .
```


PLATE 6.

Erylus caliculatus Lendenfeld.

Figures 1-13, 19-23, 26, 2S, 29.

Eryius rotundus Lendenfeld.

Figs. 11, 1s, 21, 33 -35. - var. megarhabila Lendenfelo. From A. South Molokai. Figs. 15-17, 25, 30-32. - var. typica Lendenfeld. Form B. Kauai.
Fig. 27. --var. typica Lendenfeld. Form A. South Molokai.
1, 2.- Nicrorhabls of Ery/us ralimutus: magnified 600 ; u. v. phot. Zeiss, q. monochr. 6, q. oe. 10 .
3.-Small oxysphaeraster of Erylus caliculatus: magnifiel $6(6)$; 11. v. phot. Zeiss, q. monochr. 6, q. oc. 10 .

1,5.- (iroups of microseleres from a centrifuge-spicule preparation of Erylus caliculatus; magnified 600; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10: a, microrhabels; b, acanthtylasters.
6-13.- Leanthtytasters of Erylus caliculatus; Magnified GOO; 14. v. phot. Zeiss, q. monochr. 6, q. oe. 10.
11.- Ciroup of mieroscleres from a centrifuge-spieule preparation of Erylus rolundus var. megarhabda from houth . Hokokai (form . A) ; magnified 600; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10:
b, acanthtylasters; c, small oxysphacraster.
15, 16. - Ieanthtylasters of a dark specimen of Erylus rofundus var. Pypica from Kauai (form B); magnified (th); u. v. phot. Zeiss, 4. monochr. 6, q. oc. J0.
17 22.- Ispidasters; magnified 6(M); u. v. phot. Zeiss, q. monorhr. 6, q. oc. 10:
17, nearly adult aspidaster of a dark speeimen of Erylus rotundus var. typica from Kanai (form B); IN, adult aspichaster of a specimen of Erylus rotundus var. megarhabla from South Molokai (form A); 19, adult, cirenlar aspidaster with numerous protruding rays of Erylus caliculutus;
20. young, circular aspidaster with few protruding rays of Erylus caliculatus;

21, adult, reniform aspidaster with numerous protruding rays of Erylus caliculatus;
22, young, smooth, reniform aspilaster of Erylus caliculatus.
23.- Superficial, paratangential section of Erylus culiculatus; magnified 30; phot. Zeiss, planar 20 mm .
21. Radial seetion through the superfieial part of Erylus rolundus var. megarhabda from South Molokai (form A); magnified 10; phot. Zeiss, planar 50 mm .
25.-- Radial section through the choanosome of a dark specimen of Erylus rotundus var. typrica from Kauai (form 13) ; magnified 20; phot. Zeiss, phanar 20 mm.: a, radial lundle of rhabol megaseleres.
26.-Radial section through the superficial part of Erylus caliculatus; magnified 30; phot. Zeiss, planar 20 mm .:
a, rackial bundle of rhabd megaseleres.
27.- Paratangential section, a small distance below the surface, of Erylus rotundus var. typica from South Molokai (form A) ; magnifiel 100) ; phot. Zeiss, apochr. 16, eompens. oe. 6: a. group of triame-cladomes.

25, 29.- Radial sections through the choanosome of Erylus caiculatus; aniline-blue:
28, magnified 200; phot. Zeiss, apochr. S. compens. of. 6 ;
29), uragnified 100; ; thot. Zaiss, apoelr. 16, compens. oc. 6 .

30-35. Microrhabek of Erylus rotundus; magnified 6en) ; 11. v. phot. Zeiss, q. monochr. 6, 1. oc. 10:
30-32, of a llark specimen of var. lypica from Kauai (form 13);
33-35, of a specimen of var. megarhabila from south Molokai (form A).

SPONGES OF THE PACIFIC, II. ERYLIDAE.

15

6

en

12
13

14

25

24

27

29

Erylus rotundus Lendenfeld.

Figs. 1-10, 12-45, 75, 76, 79.
Figs. 16, 16, IN, 54
Figs. 17, 14, 4! -51, 53.
Figs. 19 -2 1, in, 56.
Figs 2:-24, 26, 27, 30; $37-59,16 ;-3$
Fís. 25, 25, 29, 60-6.7.
Figs. 17, 52.

- var. cidaris Lendenfed.
- var. typica Lendenfeld. Form B. Dark specimen. Kauai.
- var. typiea Lendenfeld. Form A. South Molokai.
- var. typica Lendenfeld. Form (!. Light specimen. Kanai.
var. megarhabda Lendenfeld. Form 1. South Molokai
- var. megarhabda lendenfeld. Form B. Kauai. .
- var. typica Lendenfeld. Form D. Northeast Hawaii.

Erylus caliculatus Lexdenfeld.

Figures $11-15,31-41,74,77,7 \mathrm{~s}$, so.

1-10.- Branched amphiox-derivates and oxyastrose rhabd-clusters of Erylus rohudus var. vidaris; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6:
$1-3$, long amphioses with two or three shorter branches;
1 10, onyastrose rhabed-clusters.
11-1.5.- ()xysphaerasters of Erylus caliculatus; magnified 2000; u. v. phot. Zeiss, q. monorhr. 1.7, q. oc. 10 :
11, an oxysphaeraster with thicker rays, focused higher;
12, the stme, focused lower;
13, an oxysplacraster with thinner rays, focused high;
14, the same. focused intermediate;
i.5, the same, focused low.

16-21.- Aspidasters of Eirylus rotundus var. typica; magnified 300; phot. Zeiss, apoehr. 4, compens. oc. 6:
16, of a dark speeimen from Kanai (form B);
17. IS, of a specimen from South Molokai (form 1);

19 21, of a light specim‘n from Kauai (form C).
22-30.- Aspidasters of Erylus rotundus var. megarhabila; magnified 300; phot. Zeiss, apochr. 4, compens, ос. 6:
22, 23, young aspidasters without protruding rays, of a specimen from South Holokai (form A);
$24,26,27,30$, adult aspidasters of a specimen from south . Molokai (form A);
$25,25,29$, adult aspidasters of a specimen from Кauai (form B).
31-41. - Apilasters of Erylus caliculatus; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
31, a wery young, eircular aspidaster showing the fine ratial rays forming the dise;
32--35, young, circular aspidasters with few protruding rays;
36, 37, attult, cireular aspilasters with numerous protruding rays;
$36-40$, young, reniform aspidasters with few protruding rays;
41, adult, reniform aspidaster with numerous protruding rays.
42-45.- Aspidasters of Erylus Totundus var. cilaris; magnified 300; phot. Zeiss, apachr. 4, compens. or. 6 :
46-80.- Microseleres and groups of such from centrifuge-spicule preparations; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
46. Is, 54, of a dark specimen of Erylus rolundus var. lypica irom Kauai (form B);

17, $\boldsymbol{5}_{2}$, of Erylus rotumlus var. typira from northeast Hawaii (form D);
49-51, 53, of Erylus rotundus var. typica from South Molokai (form A);
55, 56 , of a light specimen of Erylus rotundus var. typiaca from Kauai (form C);
57-59), 66-73, of Erylus roluedus var. megarhabd, from South Molokai (form A);
60)- ($5 \overline{5}$, of Erylus rolundus var. meyarhabda from Kauai (form B);

74, 77, 75, 80, of Erylus caliculatus;
7.5. 76, 79, of Erylus rotundus var. cilaris;
a, (Figs. 46-51, 53-57, 60-75, 77-s0) microrhabds; b, (Figs, 52-51, 56-60, 75-74) acanthtylasters; c, (Figs. 52, 60, 74, 76) small oxysphaerasters; d, (Figs. 56, 60) very young aspidasters; e, (Fig. 56) adult aspilasters.

PLATE S

Erylus caliculatus Lendenfeld.

Figures $1-12,15-20$

Erylus rotundus Lendenfeld.

Fig. 13. var. megarhabda Lendenfeld. Form A. South Molokai.
Fig. 11.-var. cidaris Lendenfeld.
1.- C'entral part of a young aspidaster of Erylus caliculatus, showing the rays which form the dise; magnified 200); u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10.
2-12.- Acanthtylasters and parts (rays) of such of Erylus caliculatus; magnified 2000; u. v. phot. Zeiss, \%. momocher. 1.7. ч. oc. 10:
2 , a ray of a sery large acanthtylaster;
3, a small, rather regutar acanthtylaster, focused high; 4 , the same, focused low;
5. a large regular acanthtybster, focused high; 6. the same, focused low:
7. : small acanthtyster, some of the rays of which are eonsiderabty shortened, foeused high; δ, the same, foeused tow:
!). 10, single rays of small acanthtylasters;
11. part of a small. particularly thin-rayed acanthtydaster:

12, part of a small, particularly thick-rayed acanthtylaster.
13-17.- Marginal parts of aspidasters; magnified 2000; 11. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
13, of an adalt aspiclastre of Erylus rotundus var. megarhabed (form A) from South Molokai;
11. of an adult aspidaster of Erylus rotundus var. cidaris;

15a, of a young, still quite smooth aspidaster of Erylus caliculatus;
15 b , 16 of young aspidasters with only few protruding rays, of Erylus caliculatus;
17 , of an adult isppidaster with numerous protruding rays, of Erylus caliculatus.

1) 20.- Portions of the surface of the central parts of aspidasters of Erylus caliculatus; marnified 2000;
11. V. plot. Zeiss, q. monochr. 1.7. q. oc, 10:

1s, of an aspidastar not quite fully developed;
19, of a fully de veloped aspidaster, foeused high;
20 , the same, focused low.

QL Harvard University. Museum
1 of Comparative Zoology
H35 Memoirs
! 3

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

STORAGE

[^0]: ${ }^{1}$ J. E. Gray. Notes on the arrangement of sponges. . . Proc. Zool. soc. London, 1867, 492-558.
 ${ }^{2}$ W. J. Sollas. Tetractinellida. Rept. voy. "Challenger," 1898, 25, p. cxlvii-cxlix.
 ${ }^{3}$ W. J. Sollas. On the geodine genera Synops Vosmaer and Sidonops, a correction. Proc. Roy. Dublin soc., 1859, 6, p. 277.
 ${ }^{4}$ R. v. Lendenfeld. Die Tetractinelliden der Adria. Denk. Akad. wissensch. Wien, 1894, 61, p. 179.
 ${ }^{5}$ R. v. Lendenfeld. Loc. cit., p. 150.
 ${ }^{6}$ R. v. Lendenfell. Tetraxonia. Tierreich, 1903, 19, p. 117.

[^1]: ${ }^{1}$ A. Dendy. Report on the sponges. Rept. pearl oyster fisheries. 1905, pt. 3, p. SS.
 ${ }^{2}$ J. Thicle. Kieselsehwämme von Ternate I. Abhandl. Senekenb. gesellsch., 1900, 25, p. 46, pl. 2, fig. 16.

[^2]: ${ }^{1}$ Rhabdome length not known.

[^3]: ${ }^{1}$ For instance in ('inarhyra vertex, see R. v. Lendenfeld, Tetraxonia. Ergeb, Deutsehe Südpo-lar-Expedition, 1901-1903, 1907, 9, p. 318.

[^4]: ${ }^{1}$ R. v. Lendenfeld. Die Tetractinelliden der Alria. Denk. Akad. wissensch. Wien, 1894, 61, p. 138, ff.

[^5]: ${ }^{1}$ H. J. Carlcr. A descriptive account of four subspherous sponges. Ann. mag. nat. hist., 1869, ser. 4, 4, p. 4, pl. 1, figs. 13, 13a.
 ${ }^{2}$ E. Topsent. Éponges de la Mer Rouge. Mém. Soc. zool. France, 1892, 5, p. 23.

[^6]: ${ }^{1}$ In all cases these average maxima were obtained as follows:- first the averages of the dimensions of the threc largest amphioxes of the (adult) specimens from each of the nine stations were taken. From these special maximum averages (of three), which are given in the subjoined table, the averages were again taken. These latter averages (means) which appear in the subjoined table in the column headed "from all stations" are the "general maximum averages."

[^7]: ${ }^{2}$ In this and the following tables the specimen from Station 4228 is a young specimen; those from the other stations are adults.

[^8]: ${ }^{1}$ R. von Lendenfeld. Tetraxonia. Tierreich, 1903, 19, p. 100-101.

[^9]: ${ }^{1}$ E. Topsent. Spongiaires des Açores. Résult. Monaeo, 1901,25, p. 70.
 ${ }^{2}$ A. Dendy. Report on the sponges. Rept. pearl oyster fisheries, 1905 , pt. 3, p. $\mathrm{S7}$.

[^10]: ${ }^{1}$ J. S. Bowerbank. Contributions to a general history of the Spongiadae. IV. Proc. Zool. soc. London, 1873, p. 3, pl. 1, figs. 1-8. W. J. Solus. Tetractinellida. Rept. voy. "Ch:ellenger", 185s, 25, p. 252.

[^11]: ${ }^{1}$ O. Kieschnick. Silicispongiae von Ternate. Zool. anz., IS96, 19, p. 529.
 ${ }^{2}$ N. G. Lindgren. Beitrag zur kenntniss der spongienfauna des Malayischen Archipels. Zool. jahrb. Syst., 1898, 11, p. 346, plate 18, figs. 10, 18, plate 20, fig. 5.

[^12]: ${ }^{1}$ E. Topsent. Étude mongraphique des spongiaires de France I. Arch. zool. expér., 1894, ser. 3, 2, p. 326.

[^13]: ${ }^{1}$ R.v. Lendenfeld. Die Tetraxonia. Wissensch. ergebn. deutschen Tiefsee-Expedition, 189S-1899, 1907, 11, p. 200 ff.

[^14]: ${ }^{2}$ S．O．Ridley．Spongiida．Rept．voy．＂Alert，＂ 1881 ，p．472，foot－note．

[^15]: ${ }^{1}$ E. Topsent. Spongiairs des Açores. Result Monaco, 1904, 25, p. 67, plate 4, fig. 7; plate 9, fig. 5.
 ${ }^{2}$ II. J. Carter. Report on speeimens * * * from the Gulf of Manaar. Ann. mag. nat. hist., 1850, scr. 5, 6, p. 134 (Sep., p. 4S8), plate 6, fig. 38a-h (err. f).
 ${ }^{3}$ H. J. Carter. Loc. cit., p. 154 (Sep., p. 508).
 "S. O. Ridley. Spongiida. Rept. voy. "Alert," 1884, p. 480, plate 43, fig. b.
 ${ }^{5} 1^{\prime}$. I. Sollas. Tetractinellida. Rept. voy. "Challenger," 1888, 25, p. 261.
 ${ }^{\circ}$ R. v. Lendenfcld. Tetraxonia. Tierreich, 1903, 19, p. 111.

[^16]: ${ }^{2}$ R. v. Lendenfeld. Die tetractinelliden der Adria. Denk. Akad. wissenseh. Wien, 1894, 61, p. 138. Tetraxonia. Tierreich, 1903, 19, p. 113.
 ${ }^{2}$ R. v. Lendenfeld. Die tetractinelliden der Adria. Denk. Akad. wissensch. Wien. 1894, 61, p. 146.

[^17]: ${ }^{1}$ The aspidasters are those spicules of the Erylidae which were previously termed sterrasters. They are distinguished from the sterrasters of the true Geodidae by passing, during their development, through a stage with perfectly smooth surface which does not occur in the development of the sterrasters of Geodia and its allies, and also by their flattened, dise-like shape.
 ${ }^{2}$ W.J. Sollas. Tetructinellida. Rept. voy. "Challenger," 1885,25 , p. exlvii.
 ${ }^{3}$ J. E. Gray. Notes on the arrangement of sponges.... Proc. Zool. soc. London, 1867, p. 192.
 ${ }^{4}$ R. v. Lenilenfeld. Tetraxonia. Tierreich, 1903, 19, p. $\$ 4$.

[^18]: ${ }^{1}$ H. J. Carter. Report on specimens dredged up from the Gulf of Manaar. Ann. mag. nat. hist., 1850, ser. 5, 6, p. 136.
 ${ }^{2}$ W. J. Sollas. Tetractinellida. Rept, voy. "Challenger," 1888, 25, p. 239.

