SMITHSONIAN INSTITUTION.

UNITED STATES, NATIONAL MUSEUM.,

PROCEEDIN(is

OF THE

UNITED STATES NATIONAL MUSEUM.

 WITRDRAWN

 WITRDRAWN}

SMATHSONLAN INSTHUTON LIBBARIES
Volume XXVIII.

PUBLISHED UNDER THE DIRECTION OF THE SMITHSONIAN INSTITUTION.

WASHINGTON:
GOVERNMHNT PRINTINGOFFICE.
1905.

NORTH AMERICAN PARASITIC COPEPODS BELONGLNG TO TIIE FANILIY CALIGIDE.

PART I.--THE CALIGINÆ.

By Cuablen Branch Wilion.
Department of Biology, State Normal sihool, Westfield, Massuchusitts.

intronection.

The present is the third paper in the series based upon the collection belonging to the L'nited States National Musemm.

The other two papers treated of the Argulidie and were published, the first in Volume XXV, and the second in Volume XXVI of these Proceedings. Acknowledgment was made in them of valuable assistance received from rarious somres. particularly from the United States Bureau of Fisheries. That assistance concerned the present family even more than the Argulida, and the author feel that any suecess which may have been attained in working out the habits and life histories is due almost entirely to the courtesy and assistance extended by the Bureau of Fisheries.

Additional sourees of material will be found mentioned under the historical summary (p. 48:2).

This seeond family, the Caligidae, includes about thirty genera, which separate maturally into gromps differing as much in their habits as in their morphology, and thus constituting well-marked divisions. (See key on p. 532).

The genera here treated include all of the first group, the Caligine. which have thus far been found in North American waters, and five species. including one which is the type of a new genus, from foreign localities. The North American species are twenty-three in number. of which thirteenare new, numely: C'alignsimptimecolatus, ('. schistomy,
 megacephentus, Leperphtheiriss lomgipes. L. echocardsi, L. dissimulatus, L. parerientris, L. bifurcutris.

Of the five non-American species included in the Museum collection four are new to science, mamely, Culignes teres. from Lota, Chile; Lepeoplitheirns imominatus, from Cornwall, England; Lepeophitheirus
chilemsis, from I 4 ota, ('hile, and Ilomoniotes pullietu. the type of a new gemms, locality man!own.

In addition to these serentern new suecies the present paper gives

 Kroyer, while it corrects or largely supplements the amatomical details and reetifies the sysmatic position of seven other peedes,

 and ('atigux mentrodonti haird, the last a non-Ameriáan species.

Herealso are presented for the first time a comparative anatomy of the different -peries of (inligns and Lepmyletheirns, amb artificial keys for the determination of all known speries moler the sereral genera. In the development are given for the first time figures of a metamanplius and the details of its anatomy. And there is introduced the first contimons life history of any species helonging to the family together with a comparison of the life histories of sereral species and at least two genera.

This subfamily, the (aliginar, is partioularly interesting hecanse the gemus ('aligns, which is the type of the entire family. in one of the oldest among the parasitie copepods and formerly included many specios which are now referred to other genema. Among these were some which resembled the trone (ialignis very closely, exeept that thery lacked the lumules or sucking disks on the frontal plates. From these
 not gemerally acerpted at first, and the spere ies of both genera continued to be included moder ('aliffis by many anthors up to the appearance of Kroỵars exarllent memoir in lstis.
 in the eollection of the Vienma Mnsemm. Like Leproplitlo irms it lackis the lamales on the frontal plates. amel henee Kroyer. Who was the first
 and it was mot motil Leti. that it was established as a distinct gemme hy Heller.

Of the othere two gencras, one. (allifuches, is simply a Cetigns with the free segment elongated into a neek amd the gernital segment and abolomen modified slightly, while the appendages are identical in the two. 'The othere gemus is the new one Momomene and ditfers only in having the genital regment corered with a forsal plate. It has mot thas fin lexen fombe in North Americun waters. but there is mery polability that it will he at some future time.

These genera are rery chasely related to one another therefore and
 freely they furnish an exrellent group to contrast with the Arendide on the one side and the Pandarime on the other. The Argulide are
practically nondegenerate，while the Pandatime are very evidently degenerate：this gromp therefore forms a commeding link between the two and enables us to discover and emphatize the initiatory steps in degeneration．

They thas possess the greatest posibible erologe ieal interest，and at are－ ful study of their habits and mode of life can not fail to yield valuable facte and suggestions．

HISTORICAL．

The first accounts that amb be refored to these generat with any degree of certainty are those of（itmner（1765），Stroem（LTie），and Baster（176is）．They deseribe and figure some parasites which they call fish liee，hat evidently they entirely mistook the mature of the ani－ mak，since they regarded the egestrings as antemme and printed their figures upside down．

But the figures were anduate enough to show that these were really parasitice copepoels betonging to the family mader dismssion．Mïllere in 1766 showed that these＂antemas＂were rges strings，and he atso foumbland described the trme antemme．But he blundered in regard to the eyes as badly as his prederessoms had done in regath to the anten－ me，mistaking for them the surking disks on the frontal plates and fail－ ing antirely to find the trone eres．Ilence lo introducod his spedimens under the genus name bimmenlus．a name which survived for many years．Skhber（17テム）deseribed and pictured one of the（＇aliginae under the name \quad（inisers lutossm：he also delineated the antemme and many of the otherappendages correctly and his figure is right side ap． Müller in asecond paper（178．）corrected his previons error by dis－ cosering that the sucking disks were not eyos．Ho then reatized that these copepods could no longer be elatsed in the heterogeneons group known as Bimocnlon，and accordingly founded for them the genms Cetligus．

But agan he blundered，for the very name＂trlls us that he did not find the true eyes，but considered these patasites to be blind．

Stroen（1762）was the first to study the habits of the genera from living specimens．and he hats given us many interesting observations． A few additional data have been given hy Leab（1ヶ18－1t），Lamarek

 Hesse（187t．1ssio），and＇T．Scott（1s：4，1900）．

But although this list of mames looks quite formidable they hate really given us almost nothing upon the hathits and derelopment of the gromp．Dohnston established for the first time the extermal difler－ ences in the sexes of（inlighs by deseribing in detail at male and a female of（＇alignis antrise fiom the cool．

But the life history was so little known up to 18.22 that one of the developmental stages. the chalimus stage, wats regarded as an entirely distinct gemme and several species were deseribed by rations authors. F. Müller (1802) and Hesse (15:万), however, explained the chatmos correctly, and recently A. soot (1901) haw given a hrief life history of Leperophtheirnes pectoralia, in which the chadimms was still further explained. But seott states plainly that he has not worked out the changes which take place in the dereloping embryo, so that we are still left with only a general knowledge of the metamorphoses and without a single :uthentic life history.

The work of American anthors upon these genera is somewhat superior both in quality and quantity to that upon the Argulidie.

Thomas Say, in his aceount of the Crustacea of the Conited states. published in the Journal of the Academy of Natural Siciences at Philadelphit in 1s1s, mentions two parasitic copepods, P'andurus simutus, found on the dogtish. and another which he calls Binocmlns comeletus: on Cilllienmesses, the latter being evidently a species of culigns. Following him came an admirahle monograph by Dana and lickering
 account of a single species published up, to that date and which remained without a rival until Scott's memoir just mentioned (1991). The subserguent American papers came at considerable intervals. Dana published several, which were entirely systematic, from list? to 1856. Smith in 1874 recorded all the species found in Vineyard hound and adjacent waters, while Rathbun gave (1884) an annotated list of the speries fomed in Americom waters, and in 1857 described a new species of Trebins from Vineyard somnd. And yet out of more tham 100 species belonging to the genera here considered only 7 have been reported frem North America and if from the West lndies. It is time, therefore, that the lists were thoroughly revised. for these parasites are ats common upon the fishes of om onn coast as they are in Europerat waters.

The following aceome is drawn from all the someses bere mentioned and many other pullished papers; from the records of the United States Bureau of Fisheries: from manseript motes ly R. R. (iurley on The Vermine and Crustacean Parasites of Fresh-Water Fishes; from very valnahle mansaript notes and drawing by Richard Rathbm. J. II. Emerton, ,I. II. Blake, amd S. I. Smith, all of which were kindly: turned over to the author ber Mr. Rathbun; and last of all from the author" own personal investigations exteriding over sereral years.

ECOLOMiV.

Adrancing from as study of the Argulide to that of Cutigux and it: ansociates the first thing to be moted, since it is the key to most of the changes we mert, is the fict that the female of these species carries
her egge about with her like most of the copepods. This habit neeessitates several departures from the conditions fond existing among the Argulida.

In the first place we must look for a greater difference between the sexen hoth in their morphology and in their habits.

The genital segment of the female is considerably larger than that of the male, and usmally the first antemac are larger and stonter. On the other hand, the second maxillipeds are larger in the male, and the ablomen is often composed of two segments, while the fentals has only one. The increase in the genital segment of the female, together with the heary egge cases which she has to carry, restrict her freedom of motion.

And hence while both sexes can swim about freely it is only the males which can be expected to compare favorably with the Argutida in this regard. This sex difference is particularly emphasized during the breeding season or just at the time when there is the greatest incentive for free swimming. That this restriction of the female's motion is at least faromble to degeneration can not be doubted. But at the same time we have to remember that all the copepods save the Argulide are burdened in the same way, and yet all frec-swimming forms are able to combat the condition successfully. The condition in itself, therefore, is scarcely enough to be regarded as the first step toward degeneration; we must seek something more.

In ordinary free-swimming forms the female. arem whem burdened with her egge strings, must move ahout in search of food. In fact, she needs food more then than at any other time.

Again, in the Argulidre, the female deposits her eggs upon some conrenient surface away from the body of her host. and such deposition becomes not an incentive merely, but an imperative demand for free swimming. The males follow the femates at these times and also search for them from fish to tish.

Caligus females, on the eontrary (and the same applies to all parasitic general), arrying their eggs about until they hateh, find the surface of the fish's body one of the best possible pesitions to secere geocl aeration for the eggs and to diselarge the naplii when they are sutticiently matured.

Finally these parasites feed upon the hood of their host, or at least upon something which they oltain white upon the houtis body; henee bemaining here they are nearest the source of their food supply. In short, all the inentives are for remaining, rather than leaving the host and swimming about, and adult females almost always remain upon the fish, even during the periods when they are without egge strings.

The only indurement in these forms to free swimming on the part of the femate would be that which is common to all parasites. plant
and animal alike mamely. the original seared for a suitahbe host. But this operates in developmental mather than in adult stages. and it is a significant fare in this eombertion that nearly every female of these genorat wheh has been captured in the tow has been immature

The merehanieal himdrance atforded hy the egg-strings. together with the strong incentives just enmmerated for remaining upon the body of the host. may be fairly considered as constituting the first step toward degeneration. Iat ns now look at the mode of locomotion in these gernora in ordar to diseover the serond step.

1, (\%) (OUTTION.

There are two modes of locomotion as in the Argulidae a freeswimming amd a wettling motion. Tho presene or absence of the batter has a greater signitionnee than has hitherto been aceorded to it.
 be seen that the latter are really the better swimmers. This is due to the increased surfare of the first there pairs of leges partionlarly to the large lanima or apom which eomerets the third pair aceros the ventral surface of the body. 'These lege furnish a swimming organ which propels the coperoce thromeh the water with strong and swift movemente. ()ften the motion is so erratio and persistent that the animals serm to have faily gome mad. dashing frantially abont. turning summersalts. masherg for a distamere along the sides of the atparimm, or souttling back downwad acrose the under side of the surface film of the water. Equipped with such a swimming apparatus it would naturally le supposed that they would put it to fiequent use. hut we have abrady seen that ther lack the incentive. Asamatter of fare mature females of hat one or two -pecies have erer been taken with the mates at the smbacee.

Furthermore, as will appear in the deseriptions which follow, these
 most rommonly serured. The other semes here treated do not show as much inclitation to frer swimming as Cialigns and there are but one or two sery doultfal records of their apture in the tow. Indeed.
 tions that \cdots Co peophthe irns thromghont the remainder of its life and moder normal eomelitions remains on the same fish that it attached itself to at the begeming of the walimus stage." And the same might probably low sad with regard to Ammetros and Thathin.
W^{W} hen we comsider the amombt of surface towing cond acted every
 scareity of these parasitic forme can onty mean that at leas the mature female atre mot aredetomed to swim fresely at the surface, but only do so mader extreme provocation.
such a change in habits. constituting ats it does a long step toward that tixedness of position which precedes radical degoneration, must have some adequate canse. These three genera have practically the same swimming apparatas as (thofos, and if it is never used there must be some preventive influence which operates in their case but not in that of Culigus.

In the anthors opinion this intluence maty be found in the presenee of sucking disks on the frontal plates of (raligns and their antire absence in the other genera. Their presence gives to ('aligns the same seuttling motion as a legnlme ohtains feom its timst maxillipeds. In this way they move abont over the surface of their hosts with great rapidity and upon the slightest provocation. But the other gemera, lacking the sucking disks, are dependent upon the second antemme and the maxillipeds for locomotion over the surfare amd cam not consequently more abont with any rapidity. For this reason they do mot rhange their position as often as Caligns but rematin a long time fixed in one place. Indeed. When an attempt is made to remove them from their host, only the males and immature fremales move about in order to reatpe. Tha matmer fomates nsually settle down im sitm amd only dinge the more tightly. When remored from their hosts and ph aced in atuaria these genera settle upon the botton or sides and remain stationary for fong perions, in marked cont mat to the restlese artivity of ('aligus. This tixity of position can not hehp reating unfarorably upon any tondency toward free swimming which might still be retained by the copepod.
'To reapitulate, then, we find that none of the Argulida exhibit degencration or even any tendency toward it. They have all retained completely both the absility and the inclination to swin freely and to move about over the body of their host.

Among the Caligime the genms Culigus possesses eron more ability than frgulns, and the males and immatore females retain pratically the same incentires. But for the mature females every influener operates toward remaining upon their host, and they are very seldom (at)tured swimming freely. All the species of (thligns, howerer, still move abont orer their host's body upon the slightest proveration. Other genera, being destituto of lmmles, lack the ability to move about on the boly of their host with any freedom.

This atce as a still stronger damper upon their movements. and although they retain fully the ability to swim they almost nerer exercise it. They not only remain upon one host all their lives, hut they ako fasten themselves in a single spot and stay there contimomsly. They thus exhibit the initial stages of degeneration, whose next step is to be a partial lose of the ability left umsed.

While spraking of locomotion mention mast be made of a pernicious habit common to many of the Caligine. This consists in crawling up
the sides of the dishor atharime ation as posible above the surface of the water and remaining there till thoromghly dried, and, of course. dead and worthless. For this reason it is very difticult to keep sumb pecies allive for any length of time. Exen to carry them from the collecting gromed to the laboratory, or to keep them alive while being examimed, it is mecessary to carefully stopper the bottle or to cover the dish, so that the air above the water shatl be so saturated with moisture that the copepods can mot dry in it.

Fortmately this disagreable hathit in pratically eonfined to the gemma ('uligfos. and the other genera make quite tractable subjects for atparia. This is particularly the ease with Leperebletheroms and A. heott states that L. petomelis may be kept alive ${ }^{\circ}$ in sea water for mpward of six weeks after remoral from the fish."

PREHENSION.

The organs of prehension inclute both sucking disks and claws: the former are confined to a few gemera; the latter are common to all the genera. The arehed earapace, also, in all the genera, arts as a large sucking disk, its margin being pressed close to the surface and the contart sealed with water and slime. This comstitutes a secondary organ of prohension, vastly more effective than in the drgulide. since its margin is made continnons posteriorly by the broad lamina connecting the third swimming leg's. When flattened against a surfate by museular contraction and then reloased it workn very powerfully.

The claws constitute the terminal joints of the second antemme and the second maxilliperts, the entire joint functioning and being capable of strong flexure upon the latsul joint.

It seems probable that these different organs of prehension are used in diflerent loealities upon the fish's hoty. The lumules and the suction of the earapace affort the principat means of prehension on those protions of the ontside surface of the host which are corred with seales. There is an integmment over the seales, to be sure, and in many of the fish which serve as hosts the seales have small spines upon therir free surfaces. But the integument is so thin and the spines are so smatl and weak that they aflord hat a feeble hold for elaws. There is no chance to bury the elaws sulliciont! to withstand the ordinary friction of water, to saly mothing of that of sand or mud. which must be overeome on the rentral surface of such tish ats the flomender. skate. ete. The fins. on the other hamb, have no sates and the eorering integument is firmer and thickre and aflowes an admirable material in Which the clatio may fully bury themselves. So that although the tail and other fins mast, from their movements, sulbect the parasites to comsiderable additomal frideron. this is more than counterbadaned by the superior hold which they atford. The blood ressels also are more
easily accessible in the fins tham under the sater. These two reasons are sufticient to explain the preference of copepol parasites for such Iocalities.

It might be inferred that in those genema which are destitute of lumbes there would be a some what stronger development of the clatws. Posibly they are a little larger and stonter, bat the difference is very slight, and after careful examination it does not seem sutticient to warrant any statement.

This methed of prehemsion by daws renders it more difficult to remove the parasite from its howt. Culligns comes off masily, hat it takes a decided pull to loosen one of the other generan and often the posterior part of the bedy will be tom anay frem the anterior withont weakening the hold, as noted loy Scott.

Long experience has tanght that the bost way to remove these parasites intact is to slip one end of a pair of broad-tipped forceps well under the carapace and lift the copepod off cuickly an one would a limpet.

Comected with prehension are the varions devices to prevent slipping backward upon the fishis borly. We mise in this group the spines upon the rentral surface of the carapace and the ronghened plate with its posterior teeth on the basal joint of the second maxillipeds, which were so common amongst the Argulidz.

But we find instead a small plate that often bears spines upon the basal joint of the first swimming legs, and a sternal fork. The broad lamina joining the third lege also, when applied closely to the surface. must act an a powerful preventative to slipping. And these creatures need something that is powerfal for they are often found upon the rentral surface of such fish as the flomeder, halibut, plaice, and skate which frequent the bottom and often hury themselves entirely in the sand or mud.

The friction at such times must be very great and tax to the utmont both the flattened form and the prehemsile powers of the paranites.

HOSTS.

In general the Plemonectide and Gadide are the most frequent hosts of the Caligids. hut many widely divergent families and genera are represented in the host list. They may be fomed anywherempen the extermal surface or in the gill cavity of their host. while a few speries are commonly foum inside the mouth, the mont notable instance leeing the new species of Caligns from the Bonito. On the outer surface they often prefer the fins, esperially the peetorats since these furnish good opportmities for attachment and food ats ahready explained. And then as the parasite usmally seek the maderside of the tin it must aloo the protected in great measure by the latter from the friction of the water or mud through which the tish in passing.

Many speries show a tendeney to congresate in certain plates to the almese materexalasion of ther rest of the tishis bexly, ats in the ease of

While many of the spectios stick to one partientar host there are others which ehange hosts from time to time and which are able like the Arenlida to live temporarily "pon ahoost amy fish that may be

 the flomdere and reot are regular hosts, atm an examination of a rery fere tish is almost emetan to reval the presence of this parasite. It the right sexsems also the chatimas stages of developement may be
 other hoste there is often a reeorel of only a single speremen which was aidently atraggler amb took that particular lish mat it could find somothing boter.

F(o)

These parasites fored upon the hatere of their hosts which they ohtain in the same mammer as did the Arenlids by burowing moder the sacalos or pioredge the kim on the fins with their maxillipeds and probored. This hood. filling the rontral digestive system, maty often be seen ats a dark streak throwh the body. and is sometimes very prominent in

When taken from the tish those seremens manally live the longest whirh have the most blood in them: the latter seems to digest showly and may often be seren for several days in the intestane.

Mamy anthors write that these parasites. or sonme of them at least, feed upon the musus of the fishs hody and that mo hood has erer heen found in their stomathe.

This statement seme to rest entirely upon the fare that no red eolor ean he sean in their digestive organs. A. Soott says of Leperphthrians pertorelia. " when taken disertly from tho living fish and plated under. the miosocenge it rarely shows eren the faintest tram of red coloring matter in the alimentary eamal."
bat the same author eoncluder on the mext page that this specios feerls (0) some extent on hood, and a little later he adds." they do mot hesitate to "at their rombades when these become feehle." F ar amimals which will do this muens must be a bather tame and inaderpate food.

It is dillientt to determine what the food reatly is ant there are ser eral ronnderations which will help us to form at rational judgment in the matere. In the tirst platere it makes a differenee what pat of the fishis locely the parasite is taken from, whether it shews any red in the digestive orgems or ant.

If taken from the will "avity the red is mearly alway prominent. whike it arklom apperas in these imtividuals taken form the ontside of the berly. come peeces are alwats fomed in the gill eavity and they
always show hood in the alimentary camal. Other speces aro always foumd on the outside of the body and they are the so-called muchs eaters. But therearestill other speries. like (ialigns rofmer. whichmaty be fond in cither place, and in them we find the same ditlorence.

In explanation we mast remember two facts: The gill abity is the absiest plate to get hood on the fish's body. and it is very possihle that such a speceies as (t. mpere may slip into this cavity to get its food and then slip ont agatn to the exterion of the body. Consequently when taken in the gill eavity it would have just finished eating. while on the onter surface of the body the blood may have had time to partially digest.

The second fact is that all these genera are supplied with powerful
 one pair of these glands are situated in the anterior part of the carapate and pour their fluid upon the food ats soon ats it strikes the stomarh. Only freshly arated bood, in or near the fishes gills, has a deep red color: that in the capillaries of the skin and fins is not very red when swallowed. Henoe it wonld not take very much of a digestive Huid to remore the color entirely.

It is rery suggestive to note in this comnertion that the adnat Lerneans. in which the food is so red as to leare no doubt of its mature, have no digestive glands. During derelopment, howerer, there is a digestive gland, and the contents of the alimentary camal are not red. It is searely possible that the young larmean ats macos while the adult eats hlood.

Again, if these creatures are seeking mume for food why do they not choose such fish as are most bomotifully supplied with it! And how does it happen that they always hont ont these platers upon the fish: body where the skin is mproterted and the thimest! There is more mande on the sates than amywhere elise; why shonk they choose the fins or the inside of the operenlum! Finally, the month parts of specios, which it is clamed eat mucus, are similar in crery particular to those of spocies which are acknowledged hood-surkers. The eating of minens, then, mmst be an acpuired taste, and it is difficult to madersand how an amimal with its month parts fitted for sucking blood should be content to merely sip mucus while it still retains enongh of its old blood-sucking hahits to choose the places on the tishes body bent aderpted for that purpose.

These parasites are very susepghthe to any incerase in temperature, and a rise of a few degrese will speedily prove fatal.

This is the chief somree of difticulty in keeping them alive in aquaria. A. Foott gives 16 (. as the limit for Lepeophthmims pertoralix, and experiment has shown that otherspecies do not ditlor much from this. A general arerage of all the species experimented with wonld ratise this limit slightly, to 18 or 20 (

On the contrary they can withstand a very great decrease in temperature. Seott stater that the atuaria containing Leperphtheirus furtormlis were fozen several times withont injury to the parasites. Ahhongh this experiment hat not been tried upon other speries, there is no feason to doubt that they could withstand as serere cold. Repeated triak have shown that the hest way to keep these creatures alive for any lengeth of time particularly during hot weather, is to pack the aquatium or bottle in ice. Those species which are otherwine prone to "raw up ont of the water are much less likely to do so, hat seme content to romain lemeath the surface. Possibly this disagreeable habit may be connerted ordinarily with a rise in temperature of the water in the alluarium.

S゙MIIARY。

1. The females of the genera here dismased carry their eggs about with them. This necesarily restricts their freedom of motion, but not to a greater extent than in freeswimming forms.
2. Idded to the restriction, howerer", is a lack of incentive to free swimming, since the parasite obtains its food upon its host and finds there the host position for the acration of its eggs.

These two conditions combined constitute the first step toward degeneration.
3. These genera are really hetter swimmers than the Argulida, owing to the increased surfore of theirswimming legs, particularly the third pair. But they do not exereise this ability nearly as often as the Argulida, for the reasons just stated.
t. In addition to their free swimming, the ('aligus species also exhibit the same senttling motion as the Argulidae, and it is accomplished in a similar mamer hy means of the sucking disks on the frontal plates.
\therefore. In other generat the pucking disks are absent the souttling motion is impossible, and we find still less of an inclination for free swimming. Carefnl ohservations indicate that these genera remain throughout life upon the same fish to which they attached themselves in the chalimus stager.
6. As another conserpence of the lose of the seuttling motion they remain for long periods in the same position upon their host, moving only upon strong prowocation. This tixity of position constitutes a second step towatd degeneration.
7. For prehension we find the sucking disks in ('aliftis. and stout flats mpen the second antemma and the second maxillipeds in all gencrat. The edge of the ampace also, supplemented by the broad lamina combecting the thitd swimming legs, is thattened against the supporting surface and functions as alarge sucking disk.
\therefore. To prevent sliphing bakkard under friction there are weak phines mon the bases of the first swimming loge, and a stout stemad
fork hetween the lases of the second maxillipeds. The lamina of the third swimming legs also renders effective service in this direetion.
:3. These genera show a decided preference for the Plenronectidie, and the (iadide as hosts, but such of them as practice free swimming may be found upon almost any host temporarily. Many of the species, so far as ohserved are contined to a single host.
10. These parasites feed upon the blood of their host in a similar mamer to the Argulide. They are very susceptible to heat, and an increase of temperature of only a few degrees is quickly fatal. On the contrary, they can withstand very severe cold, even freezing, without apparent injury.

MORPIOLOGY.

A. Errtronl. -The types upon which Mäller founded his genus Culignis in 1 oss included sereral genera heside the true (inlignis. Indeed, the only species amongst his types really helonging to the genus was Culigus: cortus. Hence his genus diagnosis was very broad and would have included practically all our North American Caliginae. In the present morphology the statements have been made equally inclusive and are to be understood as embracing all North American Caligine unless otherwise limited. The body of a Culitys is made up of fonr parts or sections, a cephalo-thorax, a free thorax, a genital segment, and an abdomen. The epphaton bears seven pairs of appendages, namely. antennules, antemne, mandibles, first and second maxille, and first and second maxillipeds. The three anterior thoratic segments are fused with the cephalon so that the cephalo-thorax hears three pairs of swimming legs in addition to the appendages just enumerated. The free thorax consists of a small segment carrying the fourth pair of swimming legsand the genital or reproductive segment. The latter has in both sexes a pair of appendages which in the male are rery evidently rudimentary swimming legs of the fifth pair. In the female they are often soreduced as to he recognized with difficulty, hut their presence is suftirient to show that this segment must he regarded as a portion of the thoma if we are to be consistent in our nomenclature of the erustacea. Hence, while retaining the designation "genital segment, "alrealy in general use. it will be understood that this is really the fifth thoracic segment, the second free one. it varies greatly in shape in different species, in different stages of derelopment in the same speejes, and in the two sexes. In the male and in immature femater it is always smaller and often approximates the abdomen closely in size. But as the female approaches maturity it increases greatly and becomes usially much larger than the abdomen.

Firthermore, in undereloped forms of both sexes the rudimentary fifth legsare relatively much larger than in the mature individual, and may commonly be sen a a par of lare lobes or processen clariy
diflerentiated from the remainder of the genital segment (5, fig. 1). As development progresses these lobes become assimilated more and more with the bofly of the segment, until at the last they are oftentimes invisible exerpt from the ventral surlater, and them only after caroful rxamination.
()wing to this extreme variation in size and shape the greatest care mast he exomed in comparing dillerent seremens for purposes of clasitication. The individuals compared mast be alike in sex. in maturity, and eren in the period of pregnaney if the size or shate of the genital segment is to have jts full significance. Fortumately, one breding seasom follows amother so rapitly that the female is mever Ieft for any long interval without her

 EHWARINI, KHOWIN: THE FIFTH I SIR WF SWIMMIN: LEGS AT THE PONTERIOR (OH: NERSOF THE GENITAL, SERMENT, It, l., ANAI LAMLNE; 5, RUDDMENTARY FIFTH LEGBN. egestrings. Honce, in collerting these parasites, fully ripe fomales are very largely predominant. (On being preserved the egge cases become rery bittleame break ofil easily Int examimation will quickly reveal the fart that they hawe been present. which of eonurse is all that is reguired. In the Key which is given latere (see p. 5.55) the shape of the genital segment is made one of the timal means of determination after the other more important omes hare been exhamsted, and eren then it mas not be given too murh prominence.

The lengeth of the egos stringe and the size of the eges vary greatly in diflerent species and in dillerent individuals of the simes speceies and the best that rath be done is to give the general arerage 'The siza of the regs is always a hetter gollde than the number.

Like the genital segment, the abdomen is memally simple but sometmos two-jointed. this comdition oromring more frequently in the male. There are two speedes of Caligus also in which it is threr-jointefl, (? cormphatmer and ('. antmstutus, and another in which it is fomr-jointed. ('. alinucros. (see Plates VII and IX.)

The abolomen is terminated lyy two procesises, one on either side of the mans, and ach fumished with three or four plumose seter (a. l, fig. 1). These processes have been given different names hy dillerent authors. Milue Fdwards calle them " lames camtales:" Kröyer desigmates them ats "hatevedhatengene" in banish, while in his Latin diagnoses they are simply "uppendiess:" Heller speaks of them as
"hdhwazanhange, " in his Latin diagonoses ats "appendieres candales." Clans calls them "Furcalanhange," in Latin "Poliolar candaliat" Gerstacker designates them as " Endyatol (F゙ura):" while basonttsmith speakn of them as "audal platen."

There are sereral objections to these names. In the first phame, most of them preserve in some form the old name of "tatil," given to the abdomen, which was entirely a misnomer.

The nse of "furca" of" "fork" is even worse. for we already have a furea upon the rentral surface of the carapace, and the repetition of the name for a very diflerent appendage rould not but breed confusion. Why not apply to them the term "anal," since they are always situated beside the amms, and thus get a term to which there conld be no objection as a misnomer amd which would le free from any danger of confusion! Let us call them, them, amalates or laminat, as we "atled the appendages in the Argnlidar, simitar in position hot diflerent in shape, anal papillat.

There is thas a cephalon bearing seven pais of appendages, a thoras of five segments, each bearing a single pair of appendages, the fiss three united with the epphalon, and an abdomen of from one to four segments, the last of which bears the paired amal laminar.

The cephato-thomx is strongly flattened dorso-rentratly and is covered with a hard shell or "arapace, which serves to protect the softer parts andermeath. In structure this shell is like that which eovers the anterior portion of the horly in the Argulder, but its shape is considerahly different.

In the first place, the anterior antemae, instead of heing cone aled bemeath the carapace, form a wide artionated homber aross its anterior margin, their free ends standing out prominently on either side.
 and Parcepetelus- the frontal plates thus formed warry lipon their anterior margins sucking disks or lmmes. In the other genera they we perfectly plain.

These lumules often stand out prominently and, with the plates themselves, give a squared appearane to the anterior margin (Plates V, VI, XII). This is nsually incroased by an incision at the center where the two plates meet, of by an emargination extending for wome distance on either side. In rare instances just the reverse takes place. and the frontal margin is made pointed hy a protrusion of the pates between the lamules in the form of a beak or rostrum (Coligne hatmelomix, impitans, and momraymmes). Either form presents a sharp contrast with the evenly rounded anterion margin in . Irtulns.

Again, instead of a single median posterior simus, there are two. one on either sidn, leaving merlian lone between them, which is msually half the entire width or more.

Proc. N. M. vol. xxviii-04-32

But the regions of the cephalo-thorax are practically the same and are very similarly arranged in the two.

As bomdaries of these regions we find grooves similar to those in the Argulide but differently armaned, not

Fig. 2.-ADUlt female uF Caligus METABILIS, SHOWING THE BODY REGIONS ANI) THE AREAS OF THE Carapace, A., AbDOMEN; C. A., CEPHALIC AREA; E. S., EGri-stringis: F. P', FRONTAJ, PLATES; F. S., FREF THORACIC SEGMEAT: (i. S., GENHTAL SEGMENT; L. A., LATERAL AREAS: T. A., THORACIC AREA. merely in the different genera, but in different -pecien as well.
la general they may be described as fol lows: A pair of longitudinal grooves, one on cither side of the mid-line, more or less parallel with it and removed some distance from it, correspond with the sides of the horsestoe suture in the Argulide.

But they extend backward farther. reaching the posterior margin of the lateral lobes, while they do not reach forward to the frontal margin. They form the sides of a large letter H and are comerted by the third groove tramsersely at or just posterior to the center of the carapace (fig. 2). The carapace is hinged along these sutures and capable of some motion upon them. as in the Argulidia. On the outside of the lateral grooves are the lateral areas, extending back in a lobe on either side of the carapace much narrower than in Arqurlus. (L. A.).
The transverse suture marks the juncture of the head and thorax so that the central region in front of it is the cephalic area((C. A.), while behind it is the thoracic area (T. A.), the former being usually the larger. These three groores are present in practically all the genera and species. In addition there are others which oceur with more or less frequency. One of these is a horsenoe-shaped groove extending from the suture between the carapace and the frontal plates backward around the eves.

It is similar in shape to that in the Argnlide, but as the eyes in the two families are entirely different it does not correspond in morphological signiticance.
There are also grooves at the bases of the free portions of the first antemat which extend inward on the carapace for a short distance. while others apear often in the anterior portion of the lateral areas.

Rarely a second transerse groove is found in front of the crosthar of the If as in C'alighns liemulonis and (: aliuncus and in Ciloionntex menatux (See Plates IX, NYILl, XIX, XXIII).
The frontal plates (F, P.) are soparated from the carapace in all the genera here comsidered by an irregular groove made up of several symmetrically arranged curves.

These frontal plates are really the hasal joints of the first antenmar. as can he readily seen in following the development, and they thus correspond in function to the hooked claws on the base of the first antenner of the Argulide.

The two plates do not quite meet at the center, but are separated anteriorly by deep and very narrow simus which marks the former position of the tikment for attachment in the chalimus stage and hy a slight projection of the carapace from which this filament emerged. On the ventral surface at the lase of the suture there is an oral opening surrounded by a narrow fringe of chitin. This represents the median sucker which is considerably developed and forms an important organ of adhesion in the early chalimus. stages (s. fig. B). Its usefulness is almost entirely superseded in the adult Celigus by the sucking disks which develop during the later chalimms stages, but in the other gener: it may serve as a "first aid in securing the animal to its host," ans suggested by A. Scott (1901).

In favorable specimens a chitinous

Fig. 3.-The memidn sucker of (aliger RAPAX. f. f., FRONTAL FILAMENT: M., ANTERIOR MARGIN OF FRONTAL PLATES: S., SUCKER.
 rod (f. f.) can be seen passing batk from this sucker toward the eyes. This rod is the remains of the filament, and at its imner end may be seen the gland which seereted the substance of the filament.

The sucking disks, which in Culignes serve both for prehension and locomotion. are of peculiar constrution, resembling not the body or basal portion of the sucking disks in Argulns, but rather the free membranons border. They consist of a short and rather flat cone of membrane. often split for a considerable distance down the rentral or anterior side.

This suture is often so wide that a cross section would take the form of a horseshoe rather than a circle. The membrane is supported by a very few tramserse and by many longitudinal ribs of chitin, all of which, however. are simple hairs or threads and not the complieated allairs fomed in the Argulide.

This come is often patially or aren almost completely concealed by the border of the frontal phate in a domal view, so that it is only by tmrning the amimal orer on its hack that ome could be sme whether it has lumates or mot. 'Phis is the condition with the entire gemera (íali-
 like (.. dliop hamme.

The earapace bike all the rest of the body. is covered on hoth the dorsal and rentral surfares hy a thin raticle. At the marem where these two cuticlen come together they are fused and form a wide, perfeetly tramsparent hombre along the frontal and lateral edges. Being smonth and flexible this horder can be applied very abocely to the supporting surface and forme therehy a tight joint which greatly aids in prehension, as abrady noted (p). ti6).

The eyes are situated on the median line, abont ome-third the distance from the front of the carapare. 'They are two in mumber, so closely apporoximated as to be partially flattened. and are embedded in a mats of pigment which lies wholly beneath the arapate. Each consists of a spheriaal mass of pigment flattenerl on the inner side. where it is separated from its fellow hy a thin layer of chitin. lined with the same pigment.

The lens is spherical and projects alout half its diameter from the outer or anterior margin. Behind the lens is a retina made up of a single row of relatively lane cells, which are lined on the inner side with a layer of pigment. 'This pigment is ustally black or very dark wine-red in color, while the lens is colorless and perfectly transparent.

Ln quite a momber of species, scattered throngh all the different genera, the eyes are insisible (in preserved specimens) to eren the most areful serutiny. But it seems probable that they are merely coneraled hy overlying pigment and not really lakemg. 'This point can be determined only by a study of sections which are not at present arailahle.

From a study of the early development we finl that these pyes are originally placed much farther back in the carapace and are separated bey areater distance from sabh other. and that they afterward migrate forward and inward toward the mid lime. until they are so thoromghly fused as to appear an one re with two lenses.

The free thoracia segment is small in nealy all the species; it represents the fourth thoracie segment of free-swimming copepods and carries the fourth pair of swimming legs attached to its onter margins (F. S. fig. 2). In all the species figured. with one or two doubt-
 the earapace and genital segment. esperially where it joins the former, as to appeab like a wasp waist commerting the two. 'This appearane is heightened in rialigulas by a considerable lemgthening of the segment. The rare instances in which it is figured as double instead of
 teri) are very dombtful and the probahility is strongly aganst them.

For instance. while Kröger's smaller figure of ('. pronluctus shows two segments, bama's enlarged figure of the genital segment of the same species shows also the fref segment as single. In several species (Caligus imituns, mommentli, and mantom) the sides of this segment are indented as if for another joint, hut there is no actual division and the eases just mentioned are probably the same.

Indeed, if these or any other species really had two free segments, this would be sufticient ground for a generic rather than a sperific distinction.

The genital segment (G. S. fig. 2) is not, as its name would imply, the seat of the reproductive organs proper, but merely of the ducts leading from them, in the female the internal oviduct, and in the male the vas deferens and the spermatophores (see figs. 32. 33, 3t).

But since in the female the convolutions of the oviduct contained within the genital segment are the place where most of the development of the egg occurs, it follows that this segment is usually plump and swollen. Its shape varies greatly and is indicated for each of the different species in the keys on pages 555 and 615. In many of the species the walls are so transparent that the structure of the internal organs may be conreniently studied through them.

The abdomen (A. tig. ν) is always narrower than the genital segment (except in Caligus hirsutus), often markedly so, and is usually shorter and simple. In certain species. howerer, it is murl longer (C'uligus. macrurus, pelamydis, scombri, and strmmetei), and it is also sometimes segmented, this occurring oftener in males than in females. And then the ablomen in the male is relatively longer than in the female, so as to give this sex a narrowed, drawn-out appearance, contrasting strongly with the plump, stotky figure of the female. The extermal eggenses (E. 心. fig. 2) are cylindrical tubes, the substance of which is secreted by a shell gland situated in the genital segment and opening into the internal oviduct very near its exit from the segment. The cylinder is divided into segments by eross partitions, one between every two eges, so that often when the namplii have estaped from the egess there is left behind a sort of moulted skin which retains the exact form of the originsl, but is entirely empty. When full these egrg "ases are the most I otent influence to check the ability of the female to move about freely. Oftentimes they are relatively rery large, and in one species, Culigns diaphomus, the two strings taken together are nearly as large as the entire body.

There are twale pains of appendages, namely, two paits of antemme. one pair of mandibles. two pairs of maxilla, two paims of maxillipeds, and tive pairs of swimming legs, all on the ventral surface except the
tirst antemme (an'. fig. 4). These latter are attached to the frontal margin of the carapae and project sidewise from the body. Each is made up of three joints; the basal joint is the largest and is in the form of a lamima or pate, which hears a lanule on its margin. The median joint is larger than the terminal and bears tactile plamose sete on its anterior and onter margins. The terminal joint is usually more or less club-shaped and fumished

Fig, fa.-Ventral surface and appendages of an ADULTT FEMALE LEPEOPITIIEIRT'S EDWARINL. aH'., FIRST ANTENNE: all'., SECOND ANTENNE: f., FURCA: m., MOTTH; mX'., FIRST MAXILLEE; MX"., SECOND MAXILLE; mX1'.. FIRST MAXILLIPEIN; mXp' . SECONI) MAXILLIPEIS; 1, 22, 3, AND \&, sWIMMING LEGK. with short and sharp spines at and near its tip. These antemme should be very highly sensitive, if their innervation is any ariterion, for a large nerve enters each from the supra-esophageal ganglion, and, dividing and subdividing, sends a branch to the sucking disk of the basal joint, to earh plamose seta of the median joint, and each spine of the distal joint.

The second antennw (an") are attached to the ventral surface just posterior to the bases of the first. They are each two-jointed. the basal joint being short and stout and plentifully supplied withstrong muscles. The apical joint is modified into a stout preheusile claw. which fits into a anp or socket hollowed out of the rentral surfare of the carapatce near its front margin. In the genera under disenssion these antemse haw become entirely prehensile in function. and, with the second maxillipeds, they are the chief organs of attachment in plates where the skin is atceswible (fig. 5).
The mandibles are wholly inelosed within the mouth tube; they are bery slender, stylat-shaped and nsually four-jointed.

The apical joints are visible through the mouth opening; they corve in toward each other and are either serated or arenated along their imerrerges, the number of teeth being twelse to sixteen.

In Lepeophtheimes the outer margins are smooth, but in C'eligus. they are sometimes cut into very small aronte teroth. eighteen to
twenty in mumber (fig. 6). The bases of the mandilles are attached just inside the lateral chitin rods of the lower lip, and are comected with the rentral surface of the carapace by stont muscles. There are no traces of mandihular palps.

The first maxilla (mx', figs. 4 and 5) are situated near the hateral margin of the carapace, just outside of, and a little posterior to, the bases of the second antemme. Each consists of a single joint in most of the species, hut of two joints in a few species of Calignes according to the descriptions given. In both sexes they are swollen at the base and taper toward the tip; in the female they are short and blunt and apparently of no service.

In the male they are much longer and taper to a slender, sharp point at the apex: each maxilla is also curved over toward its fellow on the opposite side and thus forms a claw similar to that on one of the second antemere (tig 5). And their function would seem to be similar, although we must remember that they are shorter and weaker than both the second antenne and the second maxillipeds and so could not reach the host's body until after these others had been buried in the skin. Possibly they may serve in both sexes to irritate the wound and so stimulate the flow of blood. In some species of Culignes and Lequeophetherimes two minute setex are attached

Fig. 4b,-Ientral surface and appendagen of an AIHLT MALE LEPEOPHTHEIRUS EIDWARISI. (FOR lettering see Fig. 4a.) to the hasal part of each maxilla which A. Seott considers to represent the exopodite or palp (e^{\prime}, fig. it $)$.

The serond maxille (mx", fig. 4) are placed at the sides of the mouth just outside of the suctorial tube. Each is made up of a single joint. stout at the base and slender toward the tip.

In Caligus and closely allied genera the terminal portion is modivided while in Lepeophtheirus and its near relatives it is bifurcated.

This terminal pertion represents the exoped and in many eperies of
 (e $e^{\prime \prime}$. fig. 7), with two setae on its

Fl4. 5.-THE SELON1 ANTENN.E ANH THE FIRST MAXILJ.E OF TIIE ADULT (ALIGUS BONITO. I'PI'ER FHiltre, The male; LOWER, THE FEMAJE. apex attached to the hase of the exopod (Lecymplitherirese pertoredis,

The mouth opening is. terminal or termino-ventral and may bo rither circular in outline ((culignes brunito, Lequerplithirirus almomelvi). tramsersely elliptieal (Cinlignus rotfmer), or even strongly lunate (Couligers curthes. Lequenplitheirus pertoralis).

Whatever its shape it in atways surrounded by a fringe of long hairs. Often in the incinion at the center of the under lip, is a small tuft of hairs comsiderably longer yet. In living specimens these hairs are seen to be motile and they must assist in drawing the blood up the mouth tube ly making the joint at the mouth opening tighter.
The framework of the month is quite complicated and consists of two sets or series of rods running lengthwise, comected by others

Fig. 6, - Douth parts, a, DORSAI. sURFACE of MoUth TVBF, of Lepeophtheiris hippoglassi: b,

which are transieps. There is first a long rod on cithersite, ruming the cutire bength of the framework along the lateral margine and furnishing the requisite suppert for the whole maso (r, tis. 6. and r^{\prime}.
fig. 10). These rods are inclined toward each other as they proceed away from the ventral surface: their proximal ends are bent sharply and sometimes carried a short distance along the ventral surface of the (carapace as in Caligus curtis. They are articulated at the bend this made and again near the tip, making them three jointed. At the basal joint they are also articulated with the ventral suffer of the carapace, and the muscles which elevate or lower the whole mass are fastened here.

The short terminal joints curve inward and nearly meet at the mid line ('aligns: bonitos. Lepmphtheirms edmetrelsi). sometimes they are reenforeed here at the tip by other small rods which run in toward the

 FIRST MAXILLAE: MN" . SECOND MAXILLAE.
mid line parallel with the first (Cinligun months). The lower lip is stretched over this framework from side to side and projects somewhat in front of the small anterior roods. It is divided at the center, and the edges thus formed are fringed with a tuft of hairs fully twice the length of those which fringe the rest of the mouth opening (fig. 6). In Ale dion there is a slit at either side instead of a single slit at the center, and the fringe is not much lengthened.

In the membrane of the lower lip, between the marginal rods just described. lies a complicated jointed framework of short rods which help support the membrane. Their number, arrangement, and whee
varbe greatly in the diflerent speroes as well as in the gemera. In (ítligns antus there is a long rod on either side of the mid line the two being appoximately parallel to the very tipe where they bend in suddenly together and are mited for a short distamee along the mid lime (m, tig. S). Commected with this mited portion are three short thanserse rods (t). All of these rods are narow and eylindrical in shape (Pickering and Dama, 1s38).

In Caligus rofor, there is a large V-shaped rod at the base of the lips (r^{\prime}), and another ($\mathrm{r}^{\prime \prime}$) at the tip, the lmses of the two Viseing toward each other and their sides being combected he a series of short, almost spherical rods (s. lig. ! 1). The V-shated pieces are strongly flattened

Fig. S.-Ventrad. surfare of the mouth tube of AN alullt Califics cretces. (After Pickering ANI, DANA.) m, LONGITUHNAL (ENTRAL RODS IA FRAMEWORK GF LOWER LIP; t, TRAN゙SYERSE RODS.

Fig. 9.-Vextral yiew of the moutir tvbe of ('ALIGES RAPAX IN A LATE ('HALIMT'S STAGE. r, ROI ON LATERAI MAR"IN OF LOWER LIP; s, V^{\prime}, $v^{\prime \prime}$. SHORT ROIN FORMING THE FRAMEWORK OF THE IOWER LIP.
and much wider than thick. and might well be called laminae instead of rods.

The membrane forming the upper or dorsal portion of the mouth tube may be called the npper lip. Like the lower lip, it has a chitin rod (r^{\prime}. fig. 1年) along either lateral margin, but in this instance, instead of being comered at the tip, by short transerse rods, the chitinons. edge is contimuns around the anterior margin (fige , 6) .
The proximinal ends of the rods are onlarged and fiexed, but not an sharply as those of the lower lip, and to them are attached museles for moving the lip. There is no central framework in this dorsal membrane, but the latter is stretched from one marginal god to the other. In Cilligus curtus and Lepmoplitheines alrapdsi the anterior portion of the rhitionos margin is bent back in the form of a semicircle into which fits a more or less circular thap (f) of soft membrane whose front
edge is crenated and fringed with long cilia（fig．（6，a）．This flap is flexible and capable of more motion than the remainder of the lip，lout to call the latter＂immovable＂（l＇ickering and Dana）is certainly mis－ leading．The whole mouth tube moves together and freely，and cer－ tainly the dorsal portion of it is as movable as the ventral．In Coflignis rapare the anterior portion of the chitinons margin，instead of heing concare，is convex like the lower lip，and projecting in front of it is a narrow flexible membrame flap，with its front edge incised at the cen－ ter and fringed throughont with cilia（fig．10）．

The statement of Pickering and Dama that the month＂appears to be composed of the rpper and lower lips，mited with the different parts of a pair of maxilla＂（183s． p．T3）can not stand．Those an－ thors made no attempt at any explamation of the position or connection of the maxilla re－ ferred to，exeept to state that they corresponded to the first par of maxilla in decapod crusta－ cea．And even this was not stated directly，hut in a roundabont fash－ ion，for they found a single pair of appendages which they said corresponded to the second max－ illæ in decapod crustacea，but which they called the first maxil－ lipeds．They proved to be in reality the second antenne；it must have been，therefore，the first maxille which they thought were combined with the upper and lower lips．But we have at－ ready seen that looth pairs of maxillae are fully accounted for

Fif．10．－Dorsal surface of the moutil tube GF Caligis rapay in an adrascet chativers stage． r^{\prime} ，ROD ON LATERAI，MARGIN OF FRAME－ WORK OF CPPER LIP． ontside the buceal tube．And A．Scott has shown by the immerration in Lepeophtheirns fertorulis that the claws which Pickering and I nama considered as appendages of their＂first maxillipeds＂are really the first maxille．

Of the two pairs of maxillipeds，the first are situated abont halfway between the apex of the mouth and the lateral margin of the carapace． Each one of this pair is two－jointed，the hasal joint moderately stout while the longer terminal joint is resy sender and terminates in two or three short and stont spines．Their function is probably that of keeping the month clean of forejgn matter hy a sort of combing motion（fig．11）．

The second maxilliperk arise near the mid line，a litthe posterion to
the first. Fateh is made up, of two joints, the hesal of which is murh swollon and liberally supplied with stout museles. While the apical one is a pownefal claw colved over inward athe ratrying a spine on its immer margin (tig. 12) .

These are the ehicef organs of prehension,

Fiti, 11,-Fifint maxileirei) (of
 as already moted, and are msnally moth larger in tho male. Their relative size. howerer. raries greatly in the different speries and genora; in one they are evidently the whef meliance for rlinging to the bost or to the female; in amother the second antenmat are so much onlarged and the first maxille in the male are so stont that these maxillipeds evidently share the honors at the least.

Leperophthe irns inmomimetess is a good example of the former, the basal joints of the second maxilliperds being so large as to fill the rentral portion of the carapace (Plate XXY'Ill). And rielignt.s sellistomy,r is a grood example of the latter, the terminal claw of the werond maxillipeds being small and rery weak while the second antemat are lage and stont (Plate VI).

In many other species the two are just abont equal in strengeth and efficiencr.

Between the swollen basal joints of the second maxillipeds arises the fura or stermal fork, which consists of a stont chitin plate whose tip is hifid, much like an old-tashomed bootjack.

It varies consideran! y in form and relative size in the difierent speries. athed for some allthons it surpes on this arooment as a serondary basis of classitiration. It is frempently of considerable servier in this diree-

Fig. 12.-The second maxillipetn of the adelt
 A LAI:GE BUNY IPLATE BS THE BASAL TONT: LOWHR FIGURE, THE FEMATE. tions duld in one or two canco is sufliciontly different to serve as the distinguishing chatacteristic of the speceres. Witness the double bifureation in Leperphetherms hip-
 potes ant in (inliefus plotytursi, ant the entire abseme of this appentage in the gemus Ahtion (ser Plates XX. XXIII). Sereral mes have been sherested for the appendage. I. ('. Thompson thinks that it
may act as a suppert or erntell on which to ratiee the booly of the parasite high enough from its host to render the we of the swimming feet and mouth organs possible. But there are sereral eomsiderations which render such a function quite improbable. In the first phace the parasite uses its feet when on it, host simply to keep the water beneath the arapace agitated for purposes of respiration: and there is space enough for this, ordinaly, whont raing the caramate at all. Again, the raising of the carapace and balaneing it upon this fork would weaken the parasite"s hold enough to rember any suden or mooked for friction dangerons. And then, if the fork were to function ats a support there would certainly be need of some muscular arrangement to adjust, hold, and remove it, ats occanion demanded: but thare are no such muscles in comection with this fork, and, so far as can be determined, no means of arljnstment whaterer.

And, finally, there would be wery little demand for such a support. becanse whon the terminal claws of the second maxillipeds are driven into the skin of the host the parasiters body is ordinarily mased to a greater distance than the longth of the stemal fork, and loy straghtening the basal joints of the wame appendages it can be rased still farther without in the least lonsening its held.
A. Scott, in the memoir aheady referred to, writes that the function of the furca is monown. But it seems at least possible that it may be used for the purpose already suggested, to prevent any slipping hackward upon the host when the parasite has lonsened its clans and is moring about orer the hout's body.

It would thas correspond in function as well ats position with the papillated area and the spines upon the basal joints of the serond maxillipeds in the Arguldar. Its position between the hases of the second maxillipeds. it backward indination and the entire absence of spines or papillated areas upon the maxillipeds themselves give at least a probability to this view.

Of the swimming legs the first and fourth pains are uniramose in nearly all the genera while the remaning pais are biramose. The genns. Alebion has the legs all liramose, hat the fometh pair are rudimentary. As will be seen from the key there are several otheremera not represented in North Amerian waters which have all four pairs biramose like Ifdion, while Codistes and Luethenin have the first pair only uniramose, the other three being hiramose.

In the first pair the hasipod is simple and considerably larger than the terminal joints, exeept in Cilligmeles, where it is the same size. It frequently carries upon ite posterior ventral surfite one or two spines whose bases are enlarged and which are inclined backivard (fig. 1:3). The exopod is well developed, two-jointed and in line with the hasipoct. The terminal joint is often appropriately called the "hand" on atcount of its shape.

It arries on its outer margin there claws of alout the same lengeth, at the outer posterion cormer a long phomose xeta or a spine konger thatn the elans, and on its posterior border thee stont phomose sete. Occasionally one of the termimal clams is dereloperl at the expense of
 (toligueles meturerphollux.

In the genns filoingotse two of the claws are emionsly moditied into a three-pronged fork.

One or two secies have heen reported in which there were no
 prontuctux).

The endeped of these firet legs is rudimentary and is represented in some -pecios by a mimute joint bearing setie (Lepenphtheirms pectoralis)

In the serond pair of legs hoth exopod and endopod aro well dereloped. two- or threc-jointed, and plentifully smpplied with plmose setie.

These latter point inward on cither leg and are of ten long enongh to overlap on the mid line, thus forming a very effertive swimming lamina. These legs are almost exatly alike in all the genera. The large batipod carries on its posterior margin a stont phmose seta, inclined backward and inward at an angle of ahout tor . The hatal joint of the exopod is longer than wither of the other two jointe and carries a plormose seta on its immer margin and a stont spine at the outer distal corner (tig. 1t). 'The second joint is short, with a plumose reta on the inner manem and a spine at the onter distal corner. 'The terminal joint is almost cireular in outhe and carrion a row of six plamose seta around its edge and a spine at the onter corner.

This exoport is in nearly the same line as the basipod. but the endopod is hent inward matil in ('alifys and Lepeophotheires it is at right angles to the hesipod. while in deloropetes and Llethom it is nearly parallel with it. But rmming in the opposite direction. The basal joint of this emblopot is short and carries a single plomose seta on its inner margin. 'The second joint is the longent of the three and usmally the widest, and carries two phmose sete at its distal end. The ciremar.
terminal joint is set into the onter distal corner of the serond joint, which is much narrowed at the end for this purpose. and it carries a row of six phomose seter aromed its margin. The endopod is never armed with spines. like the exopod, in any species.

In the third pair of legs the basipods are widened out into a broad lamina, those from either leg meeting and fusing at the mid line into a single solid apron the entire width of the thoracic area, and often nearly equaling the width of the carapace (fig. 15). This forms a powerful fiviming organ and at the same time assists greatly in prehension by closing the posterior edge of the campace and enabling it to act as a large sucking disk. In addition to these two functions, the lamina is also inclined backward, and being stiff it must make a powerful prop to assist in the pereention of slipping hackward. The exopods and endopods of this pair of legs are very small and are attached to

Fig. 14.-Second swimming lef of ádult female Caligus bonito, ventral strface.
the outer margin of the basipod lamina, nsually some little distance apart. In some species, howerer, they are so close together the to be almost fused. The endopod in one or two jointed, the hasal joint being very short and almost hidden by the edge of the lamina, while the terminal joint is circular. The exopod is two or three jointed, the basal joint armed with a stout claw on its rentral surface, the two terminal joints being the halves of a small ellipse. In some speciethe two terminal joints are elongated and appresed close to the margin of the hasal lamina. Both rami are plentifully supplied with plumose seter and fringed with fine hairs.
These first three pairs of legs are comected across the mid line by sternal plates which increase in width from in front backward. Those of the second and third pairs are fringed with hairs along their posterior margins, while in the first legs this margin is smooth.

The fourth parir of legs are very different from the others, and they Vary greatly in the different speries and genera, thus furnishing often
 theirns, and allied generat they eomsist of a basipod manally as lomg an all the remaining joints put together, and ane, two, or three jointed exopoed with no trace of an endopord.

The exopod is really alwars three-jointed, hat in development the joints often herome so thoromghly fused that all trate of the original division is lost. Each exopod joint bears at its outer disfal eomer at sharp spine, manally straght, and the terminal joint ends in three bines of mequal length, the imer one being the longest. In several rpecies there are short semicircular fringed lamine at the bases of

Fig. 15.-Third swimming leg of adelt female Calif: bonito, ventral view.
 etc.). In (iloimposes there is a continnoms fringe of short, stiff spines along each joint. on its outer margin,

The size and length of these legs is even more variable and we can find all gradations from the mere rudimentary stmmpe in the gemera

 momis, ete.). In a ferw sereies the spines on these leges are widened and flattened into laminat covered with hairs ((inlimes hiswhtus. ('. plutytrapisi).

The fifth lege are rudimentary and are attached to the pesterion end of the genital segment. They comsist of a short lamellat hasipod, terminated by two or three short spines or sete (or, tig. 1). These fifth legs are usually more prominent in the mate than in the femate, where they are often reduced so much as to be practically lost.

1. The body of the (aligids here discussed is mate up of three parts or regions - a cephalo-thorax corered with a "atapare, a free thoma of two segments the posterior of which is the genital segment. amd an abdomen of from one to fomm segments.
2. The exphaton heats seron patsof appendages, namely: 'Two pairs of antemne, one pair of mandibles, two pairs of maxilke, and two pairs of maxillipeds. Eath of the fire thorax segments carries a single pair of swimming legs, those on the fifth segment being rudimentary in all the genera, while the fourth pair are also rutimentary in - l/form and $/$ isemdocalignas. The abdomen has no appendages, but carrios at its posterior and the paired amal lamine.
3. The earapace is oral or elliptical. Articulated with ite anterior margin are the frontal plates or modified hasal joints of the first
 Symestins., Immointer, and Iommpetalis- these frontal plates are provided with lunutes or sucking disks. The atrapace is divided by grooves or sutures into four areas-the cophalic, the thoracic. and the right and loft lateral aleas-the principal grooves being arranged in the shape of the letter II. 'The posterior part of the boty is msually much narrower than the carapare.
t. The first antenna are rery fully innervated, and thas herome highly sensitive. The second antema carry hooks or claws on their terminal joints, and are modified into stout prehensile organs. partienlarly large and strong in the male. The first maxillipeds are weak and apparently useless, mese it be to keep the month parts elean. The second maxillipeds are large and well developed, and, with their terminal claws, form the ehief organs of prehension for holding the parasite on its host.
4. The eyes are simple and paired, hat are fosed together on the median line instead of being separate, as in the Argulide. The month parts are modified into a proboscis for sucking up the food: the single pair of mandibles are concealed within this proboscis, while the two pairs of maxilla are outside and free from it. The first pair are simple, but rudimentary, and have migrated to a position near the margin of the carapace behind the second antemna. The second maxilla are simple in those genera which have homules on the frontal plates, but wre bifureate in the remaining genera. They are situated close to the proboscis on either side.
5. Situated upon the rentral surface, on the mid line, betreen the bases of the second maxillipeds and the first swimming leg', is the furca or sternal fork, consisting of a stout chitin plate whose tip is bifid much like an old-fashioned bootjack. It points backward, and its use is probably to prevent the amimal from slipping while on its host.

Proc. N. M. vol. xxviii-04-33

F. INTERNAL MORIDOHOGI.

Butly motl. The boely wall is made up of three layme (1). the outvide layer of whin cello forming the exoskeleton or cuticle (e. dig. 16): (2), the cellatar " hyperdermis" (h): (3), the comenetive tissue lamina which lines the entire body wall and supports the atimentary canal and

other organs (c. t.). There is mon contimous body savity, but only a
 monlic currents. Fiuthermore these lacmae are so situated that no extemsive cireulation in ally where pesible. but there is instead a series of limited cirenite which interlare with one another.

JIINENTARY (INNAJ.

The month opens direstly into at short. "urved deophacus, which paseos backwand between the supaa and inframophageal ganglion. along the dorsal surface of the lattere and enters the tentral surface of the stomath a little behind its anterior end. It in vere narrow throughout itw entire length and is easily overlooked in both longitndinal and tramserse sections (ose. hig. 17). The stomach is many times the width of the asophagus. hat is only a little wider than the intestine. It is situated dose to the rentral surface of the earapace and stretches from just behind the eyee beckward along the mid line at least to the center of the thomede area (st.).

It is somewhat wider in front than posterionly, and is also raised away from the ventral surface above the posterior end of the inf rattrophageal ganglion. This raised end is produced into a median lobe or caecmom, reaching forward orer the exophagus and between the ovaries or testes. The stomach tapers miformly toward the posterior end, where it opens directly inter the interstine (i). There is a constriction at this point like the begiming of a shimeter musele, bat the "pening can met be closed. The intestine, therefore, is a direct continnation of the stomach: it erlarges considerably just back of the stomath. then contracts in the fourth thoracie segment. enlages again in the
genital segment, contracts as it enters the aldomen, enlarges in the abdomen, and contracts finally to form a short rectum in front of the

Fig. 17.-LONGitudinal section OF LEPEOPHTHEIRU'S SHOWING RELATION OF INTERNAL ORGANs. (After A. Scott.) a, ANUS; b. s., BLOON SPACE; c, FILAMENT DUCT; c. g., FLLAMENT GLAND; d, IDUC OF DIGESTIVEGLAND; E, EYE; i, INTEATINE; m, MOUTH; ml., MCscle; 11, VENTRAL NERVE; O, OVARY; OU., TESOPHAGUS; r, RECTUM sbg., 'sUBLESOPHAGEAL GAN(iLION; 5 Pg.,SUPRAEESOPIHAGEAL GANGLION; st., STOMACH. amus. The latter is terminal amd situated between the anal laminae (fig. 18).

At the anterior end where it leaves the stomach the intestine is on the ventral sur-
intestine appear circular in outline．But as development progresses and the reproductive organ mature，they gradually encrote upon the digestive tube and compress it．The ovaries or testes being located above the anterion part of the stomarh，push the latter together side－ wise and also push it downard，the result being that it assumes the

 （AFTER A．SCOTt．）b．s．，BLOOD SPACES；c，CHITIN EXONKELETUN；m，MUSCLE；mxp．，MAXilLLPEDS； 11．VENTRAL SERVEN；O，oVARY；o．1．，（oHHHCT；s，STOMACHI．
form of a triangular prism，with one of the angles toward the dorsal surfiace（tig．19）．

In the genital segment，on the contrary，the convolutions of the ovi－ duct are helow and outside of the intestine，and consequently push it together sidewise and upward．The result is again a triangular prism， bout this time one of the angles points downward and a flat side is in contact with the dorsal surface（fig．2（1）．By the time the sexual organs are fully mature there hats been a strong compression of the digestive organs．

Figt，20．－fiross segtion of the genital segment of a Lepeophtheirts．（After A．Scott．） b．s．，BLOOD SPACE；C．g．，CEMENT GIAND；i，INTESTINE；M，MUSCLES；n，NERVEM：Od．，OVIDUCT； Oザ，ハVA．

The wall of the digestive canal is not smooth，but is constricted trans－ versely at fairly regular intervals．When examined in the living ：mimal this wall is seldom at rest，but shows a series of peristaltie movements passing intermittently along from the stomach to the intestine，or vice versa．The action usually continues in the same
direction for some time and is then reversed. Under its influence the contents of the stomach and intestine are thoronghly mixed and brought in contact with every portion of the digestive surface. As there is no valve between the stomach and intestine. the contents of the two can pass back and forth withont hindrance.

The alimentary canal is lined with endoderm, which is continuous with the eetoderm at the mouth and amus. While the general structure of this endoderm is distinct from that of the ectoderm, there does not, seem to be very much differentiation in the difterent body regions. It is almost exactly alike in structme thronghout its entire longth. But in both the stomach and intestine it is thrown up into longitudinal folds which inerease the digestive surface.

In both Caligus and Lepeoplitheirus these folds increase in size as they pass backward from the anterior end of the stomath and attain their maximum in the genital segment, after which they decrease toward the rectum. Comected with these folds and usinally most abundant alongside their crests are momerons gland cellis. which. doubtless, secrete a digestive juice, since they stain differently from the remainder of the endoderm.

Comected with this alimentary canal are two pairs of digestive glands, which probally function something like the salivary glands and the liver in higher animals. The first pair is sitnated in the anterior part of the carapace and is made up of three portions.

Fif. 21.-Digestive glands in LepbophTHEIRUS. (AFTER A. SCOTT.) d. HOTR: g^{\prime}, ANTERIOR (GLANDS; g's, POATERIOR GLANDS; i, intestine: s, stomaldi. The smallest of these is median, and situated just in front of the mouth tube. The other two portions are larger, and are located sometimes close to the lateral margin of the carapace, just behind the first antemate (Leperphetheirns pectoralis. g^{\prime}. fig. 21), sometimes much nearer the median line (C'aligns tromitu). A duct (d) extends from the anterior portion of each lateral division across to the side of the median division, and the hatter gives off at it, posterior end, just below the usophagus, a third duct, which passen backward and enters the anteriore end of the stomach.

The second pair of digestive glands ($g^{\prime \prime}$) is situated at about the center of the thoracic area, on either side of and dose to the median line, and about opposite the posterior end of the stomach.

Both pairs of glatus are dark brown in color, hut while the finst pair are partially or wholly conceated among the museles and appendages of that portion of the carapace. the seeond pair stand out ronspicuonsly in dorsal view, sume they are close to the dorsal smfate. In some species they are puite small and shaped like a comma, the large, romeled body lying upon the upper surface of the intestine. while the curved tat bends around laterally to the ventral surface of the intestine. where it gives ofl a duet leading to the posterior end of ther stomath.

This is the eomdition in Lepeophtheirns pectormis, while in cirligus mymer the gland is much larger, horseshoe-shaped, and entirely free from the intestine. thongh lyinge dose to it. The duct here is given ofl from the onter am of the

 horseshoe, tums downward and then forwatrd to enter the stomtoh (fig. 22).
lu many of the other species and genera these glands are of a decidedly different shape if the brown bodies visible in the thoracie areas are any eriterion. Thus by a reference to the plates of the new species here published it will be seen that in L epertpr h_{-} thrirns edmoredsi. L. Iongipes, L. chilensis, and L. 1 morvirentris as well as in Chelignes mamyelix these brown spots show as quite regular oval or elliptical bodies thattened on the inner sides. In Gitrionnetesormetnes they are very regular ellipses without being flattened at all. In Celignos lomito they are very small and seem fused on the mid line into a bean-shaped boty. In three speries of Catignelatifoms, welis, and alimmens- they aro comma-shaped with the small end pointing forwad, and in the last pereesesteonomward. In fieligns mutelbilis they are eren malike in the two sexes, having a chath-abape in the make, the two chabs being strongly curved with their small ents towaid the front and their coneare sides towad eadel other. In the female they have the shape of a spherimal triangle, the apices pointed batekward. with a small spherical enlargement on the outer side at about the conter.

In Leperphthecirns hipgenfosi they lave the form of paragraph

pointing diagonally outward. And finally in Coulignes tomes med Lepe"plithe irne disximenlutns: they appear to be made upo of two parte. ditlering considerably in size, the smaller part being anterion in the caligns and posterior in the Leperphetherirus apeceics. A section of one of these ghands shows it to be divided into small lobules much tike a pancreats. and in the center of earh lobule caln be seen the divisions of the duct for collecting the secretion.

THE BLOOI AND (IROTLATION.

The blood is made up of a colorless fluid in which floats mumerons corpuseles also colorless. These eorpmeles are of different sizes and shapes and are eren capable of being changed in shape to accommodate the diameter of the spaces throngh which they pass. There is no heart nor blood ressels of any sort. The cirentation is entirely lacunare and consist, of an irregular pulsation or streaming of the blood back and forth through the saces left around the internal organs and museles, and between the lands of comective tissue in the body wall. The propelling agent of these hood streams seems to be the peristalticmovements of the alimentary camal and the repiratory movements of the rectum. And since the peristaltic movemente pase from the anterior to the posterior for a portion of the time and then are reversed, so in like mamer the bood streams contimue to flow in one direction for a short time and then slacken and reverse. And, again. since the movements of mether the intestine nor the rectum are uniform or contimons, so those of the hood current are sammodir and irregular. Often atso, partimatarly at the times of slackening prior to reversal, the motion consisti, of a simple oscillation back and forth. without any definite movement in either direction.

The couse of the bood streans varies so much in the different species that it would lo necessary to deseribe each separately. The only
 and for Lepeephtherirns pertoralix by A. seott (1901), and these vary in many essential particular:-

The following general statements will apply to all the species so far observed. There is a central current along the median line under the almentary canal. A pair of lateral currents start from the region just hehind the eyes. and each flows outward and backward to the tip of the lateral lobe on ite side. It then turns forward along the lateral margin of the carapace till it reaches the museles comected with the mandibles where it turns toward the median line.

A second pair of lateral currents start from nealy the same region, course backward throngh the thomere area and the free segment into the genital segment. Here they turn outward, following the reproductive organs to the posterior end of the segment, where they turn
atomed inwad and meet on the median line heneath the intestine. The general comse of these matin currents is the same, but the details dillor greatly. As Pickering and bama well way, they "are merely main directions, and the blood flows into them or from them through all their extent." The points where the main currents break up into smaller currents and the courses of the latter ako vary greatly. liak-
 line where there is a valualar aetion, functioning somewhat as a heart in this cirenlation.

One of these is situated at the apex of the posterior thoracie joint: there are here three valyes, one in the center ventrally and one on rither side dorsally, the dorsal and rantral valves opening alternately. The pulsations are regular, and from 30 to f^{\prime} a minute. The secoud point is betweren the hasal joints of the second antemare. (Pickering and Datmat (atl them the first maxillipeds.) Here there is a single membranous valve playing hack and forth and thas preventing the return of the blood that has passed it in either direction.

It must not be inferred that these two deseriptions are characteristic of the two genera and that lalifus speries have the valres while Lepophtheirus species do not. This wonld not be true: the descriptions merely serve to indicate the amount of diversity to be found in the detals of circulation.

After examining a larger number of species while alive it may be found adrantageous to publish these details in a future paper.

RESPIRATION.

There are no independent organs of respuration, but Hartog. in 1s80, described the anall respiration in ('y/dopses, ('antherermpteres, and allied generat and sugested that the hood of these parasites may he aerated in the same way. That this is the actual condition the present anthor has proved in several instances. And first, as noted her A. Scott (1:101, p. 21), the ehitin exoskeleton is so thick over neally all the hody that very little aration could he effected throngh it, while the endoderm lining the rectum is thin enongh for this purpose.

Then there are the necessary musces for such respiration, dilators rumning from the abdomen wall to the rectum, while the peristaltir movements, rommon to the rectum as to the rest of the alimentary canal, serve for the contraction. These dikator museles are figured by Clans (186t) for Leperophtheires thompermi (which be calls cialighes bionerlidelis) in l'late XXXIII, fig. Sof his memoir They are said to be present in Lepmphtheime fuctoralis by A. Seott (1001, p. ent), and they have been oberved by the present atuthor in Leporphtherems
 create a strong presmption in faror of the existence of such respirat tion, and it was only left to actually ohserve it in the living anmal.

Such observation has been made in the three sperefes last mamed and the respiration was seen to be exactly like that deseribed by Hantoge for Coydops, save that it was not as regular.

It ean be seen to best adrantage in late chalimms stages, in which the walls of the ablomen are matally very tramsparent, while the movement itself seems more vigorons.

When the rectum contracts during peristaltic movements there is left only a linear eavity along the mid line. Then the dilator musedes immediately pull the rectum out to its full wilth, at the same time opening the amal valves for an instant. This action fills the reetum with outsicte water. Which then operates by endos mose throngh the thin reetum wall.

This same method of respiration is as normal to the namplii of these parasitic forms as it is to those of the free-swimming genera. and the anthor has repeatedly observed it also in the metanauplins of Culignes raparer and in the chalimus of the same species, as well as those of Culigus curturs and Lepeophtheimes ed-

 (AIIGUS RAPAX IUCRING RESPIRATION. aremersi. The fact that it is thas the only method of respiration thronghont the period when the legs are as yet undeveloped, and that all the musdes coneromed in it remain in the mature form, furnishes strong circumstantial evidence that it is the method also in the other forms here described, hut in which it has not as yet been actually observed.

MUSCULAR 心YSTEM.

Copepods belonging to the genera here considered are as a general rule so transparent that their musulature can be determined with very little eflort. And then the museles are so plainly striated that there is very little danger of mistaking them for any other tissue. Indeed. the striation in the museles of Caligns curtus were among the very first observed in any animal, and their diseovery here by lickering and Dana was about contemporameons with that in human mosele hy Doctor Hodgkin. (Pickering and Dana, 183s. p. S1, footnote.)

The frontal plates are flexed by two short and sleuder muscles, situat ad in nearly the same plate in all the genera directly behind the lumules, attather to the posterior portion of the plates, and rumning
berkward amd inward. They bend the frontal plates downward, and

There are three pairs

Fhi. 2l.-MCSCHIATURE OF A MALE ('ADHES CURTLS. AFTER

 MFNT IN1, AHOMEX; F, EXTENSORA BETWEEN THE GENITAK

 of umberes which operate in prorlueing flexion brtween the exphaton and the thorax along the eroses-hat of the H -shaped groove already desoribed. 'The shortest of these three patis sure the mearest to the median line and marly paralled with it (h). The second bair are very much latwer and extemed from the middle of the aross-bat frontward and ontwarl. at am amgle of tiodegrees. to the very edge of the (arapate (c).

The third pair are again nearly parallelwith the mid lime but much farther away from it that the first pail (d).

The muscles for the extem-ion of the free (fombth) thomax segment, the genital regment. and the abodomen arise side by side in pairs near tho median line in the posterion portion of the thoracie area (o). The outer pair we the short(est and terminate beal the conter of the fourth segment, controlling the movements of that segmont. The pair next inside of these are the longent and externd themgh the gemital segment and into thr abdomen.

The third or imer pare terminate in the genital segment.
In comenection with these we find shorter moselos farther hate arising nean the ernter of the genital segment and terminating in the
abdomen (f). These of course produce flexion between the two segmente in which they are situated.

The combined action of all these musters produese a latemat motion of the posterior segments of the body, tlexion, extensiom, or a thlesenpies contraction of the different body regions. In addition to theme musedes the thoracic area on either side of the mid line is provided with a

 MEN; g, PROHOCR FLEXION BETWEEN THORACIM ANH LATERAL AREAN; h, i, MOTOR MHS'LES UF THE
 I, MANDHBLE MOTORS; M, MOTORK OF SEOONI MAXILIAE.
number of mundes. some extending forward, others batekwatd, and still others laterally. If few of these are for producing flexion between
 deseribed in flexing the thorax on the cephathen (2.). It is the eombined action of these museles which aredes or depresses the camatace and which makes of it an organ of prehension in the form of a large. suck-
ing disk. But ly far the larger portion of these thorax muscles are the powerful locomotor agents which operate the second (h) and third (i) swimming legs and wake of them the chief propelling organs.

Each of the appendages and the month tube are also plentifully supplied with muscles, both flexors and extensors, and a good idea of the service performed by each may be obtained from an examination of its muscle supply. The anterior antenne have two extensors and one flexor. The powerfal muscles used in the second antemat for clasping are quite similar to thowe in the second maxillipeds (fig. 26) and nearly fill the basal joint.

They are much larger and stronger in the male than in the female. Wro have already seen that the appondages themselves are larger in the mate and form the chicf organs for elasping.

There sure four short and narrow muscles attached to the base of the proboscis framework ly means of which the

Fic, 26.-Mldecclattere of tile sECOND MAXILLIPEDK OF ('ABIGUS RADAX. latter maty be elevated to a right angle with the rentral surface (j). Othermuseles extend posteriorly and laterally and assist in the elevation or depression of the tube when sucking up food (k).

The museles controlling the mandibles are surprisingly large and strong and fairly prove that these appendages are vigoronsly used in the process of eating. which is hardly concoivable if the creature feeds on murus. They extend ont ward and hackward obliquely to the very margin of the catapace abont opposite the first pair of legs. (1).

In the female the muscles of the first maxilla are as amalland degenerate as the maxilla themelves; but in the male they are much better developedand must give these appendages a strong clasping power. The muscles of the second maxillie are better developed than those of the first, and they are larger and stronger
 (atc" (iii).

The mincle of the first maxillipeds are rery meager in both quantity and chality, and, with the weak structure of the appendages, show plamly that they are not of much service to the animal. And Piekering and bana are probably right when the bestow upon them the apeellation "rudimentary." A good idea of the musculature of the seremed maxillipeds (an be ohtained from tig. 2t. These are the principal clakping organs, and the museles which operate them are both large and stout, particularly the flexor of the teminal claw. The linst theer pains of feet possess a complicated mosculature as is well shown in tig. 2. which makes them powerfol propelling organs.

But the fourth pair，even in those species in which they are relat－ tively large（ Loperphitheirns Immipes，etr．），are motahly defective in muscles．Hence，they can be hut little used by the coperpod，and the
 rudimentary stumps，con not suffer much ineonvenience from their loss．The muncles of the alimentary canal and those used in respiration have heen already described．

NERVOU゙ 内゙STEM．

The nervous system is composed of two central ganglia and the paired nerves which arise from them．One ganglion lies above the resophagus and the other below it，but the lateral commisures con－ necting the two are solarge that it would be more strictly correct to speak of the ganglia as fused together with a small opening through the center for the pas－ sage of the resophagus（lickering and Dana，p．89）．The upper．supranesophat－ geal ganglion or hrain，is about half as large as the lower and gives ofll from it－ anterior end three pairs of nerves（fig． 27）．

The first or immer pair（1）are optic nerves and arise from a small optic lohe produced on the dorsal surface of the ganglion．

They are very short and their roots cross so that each eye is supplied by fibers from both sides of the brain．

In Lepeoplitheirnes the second pair（2） arise just outside the first and go to the first antemne．They are much larger than the preceding pair and subdivide into a number of branches，which supply hoth the plumose setie upon the hasal

 THEIRLS．（AFTER A．S＇OTT．） joint and the simple tactile setie upon the terminal joint．From the size of this nerve and the detail with which every seta is innervated it is very evident，as A．soott has well stated， that these first antenma are important sensory organs．A branch from this second pair of nerves extends inward to the gland which secretes the filament for attachment during the ehalimus stage．This branch is not noted by Scott，but is mentioned by Pickering and

1) ana: but the latter are of course, mistaken in interpreting the gland itself as urrous tissue. Furthermore, the second nerves in cilligus
 the terminal joints of the first antemme, but to the fromat plates, and thas correspond with the fifth pair described bescott. The present author has not had an opportmity to examine either of the specios deseribed by these authors, hut from

 (AFTER DHKERIN: AND DANA.) an examination of other species of hoth genera it is fairly certain that the branch spoken of comes from the seeond pair of merves, although ite destimation may raty slightly in different genera. The remaining third pair of nerves (:3) arise from the angle- of the granglion ontwide the recond pair and pasis to the mecomd antemar. 'They are larger than the recond pair, which would seem to indicate the impertince of there second antemar ar organs of prehension. In their passage to the second antemar these merves pasw moder the second pair:
Theen are all that are given ofl by the upper gamolion. From the frontal amd lateral margins of the lower gamglion arise seren pairs of nerves, while three other pairs are given ofl from the posterior cond and form a sort of -pinal cord, thus making thirteen pairs in all (fig., 关). The ten pairs from the lower gambion supply the remander of the atpendages and the body muscles. The first of them, the fourth pair (t) in sequence, arise noar the center of the anterior margin, and pass along the musales of the erophagis mentil they reath these of the mandibles near the base of the month. We have already stated that the mandible masclen were surprisingly large. These nerves are also of good size.

The fifth pair (a) have their origin near the anterior amgle of the yangion and pasis forward to imervate the frontal plates, ruming under the nerees geving to the first and werond anteme.

There other pairs, the sixth, werenth, and righth. arise elose together in L, pernh hitheires at the anterior angle just outside the fifth pair. The sixth pail (6) imervates the first maxillie, the seventh ($)_{\text {) }}$ the
second maxilla, and the eighth (8) the maseles of the lateral area of the carmpace.

The ninth nerves (9) arise from the anterior lateral marem as a single pair, each of which soon suhdivides into four branches which go to the first maxillipeds and adjacent museles.

The tenth pair (10) have their origin in the posterior part of the lateral margin and, subdividing into three bramehes, pase to the second maxiltipeds. These nerees are very large and indicate again the importance of the appendages to which they go ate prohemsile organs.

At the posterior end of this rentral ganglion are given ofl the elerenth, twelfth, and thirteenth pairs. The cleventh pair (11), which are on the outside, gro to the first legs amd adjaeront muscles. The twelfth or middle pair (l2) innervate the second legs and the muschas
 are so dose together as to be distingushed with some difliculty. They extend bateward side hy side along the mid line of the hodre through the free segment and into the genital segment, wher they separate considerably, passing into the abdomen at about the centers of the right and left hatres. Each nerve grome off a hameh to the third and fourth swimming leg on its side, a kare hranch in the genital segment. which courses along the lateral margin and terminates in the fifth leg. and on entering the abdomen divides into two branches. one passing to the amme and the other to the amal lamima.

In Celfags the structure and arrangement of the ganglia and their nerves is almost identical with that in Leperphthrimes, but the distribution as given by Pickering and Dana for ('. contros ditlers in sereral particulars.

Of the three pairs given off by the superior ganglion the first is the same, but the serond gees to the frontal plates, while thr third groes to the terminal joints of the tirst antemme. On the inferior gimgion an extra pair arive close bexide the fourth pair, which immervate the pooboseis. The fifth pair go to the second antemat insteal of the frontal phates. All the other pares are idential, swo that the sixth, serenth, and eighth paiss are mited at their roots and appear as branches of a single norve rather than three separate pairs. There is abo an extra pair close to the tenth which help to innervate the second maxillipeds. Thus, out of thirteen pars ten are identical in the two gemera, while the other three innervate the same regions but are interehanged, the nerve entering the frontal plates being tirst in (bligns and last in Leperphitheimes.

It must be remembered that Pickering and Dana mistook the mature of several of the appendages, notathly the antemas. 'They materstood that the first antemar, or their rudiments, were situated in the central incision of the frontal plates, while the actual first antema they considered as the second, and they called the second antemme the first
maxillipeds．Thair judgment of the course taken by the sereral nerves may well hare been biased by these mistakes．The present athor has had no opportmity of rerifying or diaproving their statements hy an examination of the same aperies．

The similarity in the structure and use

Fig．： 29 －Female reprontotive ORGANS OF CALAGEX BONITO． （1）RAWN BY EMERTON，）（．g．， CEMENT ARAND：C．C＇，EXTERNAL EfG CAsEK：O，W゙ARY：い．d．，ovi－ HCOT；S．R．，SEMEN RECEPTACLE． of the appendages of all the genera here considered render－it probable that their imervation is partically the same．differ－ ing only in minor details．

REPROIOCTCTVE ORGANK．

These consist in the femate of a pair of oraries，a long，more or less convoluted oriduct commerted with each，a pair of semen receptacles．gland for secreting the material of the external egg cases and these cates themselves（fig．wis）．

The oraries（o）are large oral or kidner－ －haped bodies situated on either side of the anterior portion of the doral surface of the stomach．When fully developed they extend from the first swimming lege to the hase of the second maxillae and cem be phanly seen through the carapace in dorsal riow．Each gives off ant oviduct （o．d．）from the ventral surface at the an－ terier margin（tig．S3日）．This duet rums backward in nearly a straight line through the thoracic area，the free segment，and into the genital segment．As soon ats it enters the hatter it increasestuickly in size and also becomes convoluted．The number and ar－ rangement of the convolutions rary consid－ eratly in the diflerent species as well as the gencra，as may be seen by tonsulting figures．

In general，the convolutions attain their maximum number and size just before the extrusion of the external egg caves．and as soon an the latter are fully formed the oviduct has become nearly straight．This condition is retained at least for some time subsefuent to the hatehing of the egge and the throwing ofl of the egge tuber．since the adult females are often fomd in the condition shown in tig．：31．

On the rentral surface of the convolutions can be found an oblong， nearly transparent gland，closed at the anterior end，and at the poste－
rior end comected with the owidnct just in front of the extermal opening. This organ is a cement gland (c. g., fig. 29) and secretes the material forming the external egg tubes.

This is undoubtedly " the flat, cylindrical organ, usuatly as hroad as the extermal oviduct, and lying along the central portion of the abdomen," referred to by Pickering and Dana, and whose function they could not interpret.

Its shape differs considerably in the different genera and species, and will be deseribed for each, so far as known.

The general features, however, are the same for all species. It consists of a long and thattened tube, which is decidedly club-shaped in most species rather than eylindrical. It is memally

Fig. 30.-OVARY of Caligus bonitu ENLARGED, o. d., OVIDUCT. inclinet inward toward the mid line and reaches forward nearly to the anterior margin of the genital segment.

The lamen of the tube is marrow and surrounded by a very thick

Fig. 31.-(ienitial segiment of LepeophTHEIRES KHWARD* JUNT AFTER THE HATCHINA OF TIEE EGAS ANH THF THROWING OFF OF THE EACR-CASES. O. U. (1) UTERI: H., UTEREC' and tramsparent wall. It is further divided into flattened cells by tramsrerse partitions, the cells being strongly rounded at the edges and thus looking very similar to the eggs. So great is this resemblance that the glands, though perfectly visible in many species, are casily mistaken for a part of the convolutions of the ariduct. But they can be casily distinguished ly the fact that in most species the central hmen in considerably narower than the oviduct, while in all species the anterior end is closed.

In seetions the orary is seen to be made up of a long, marow tubuk coiled w, into a dense smarl or thein. The tubule is madde up of a structureless membrame lined with germinal epithelium. The latter gives rise to the egges, which are formed in the lumen of the tubule, and which, when suttieiently developert, break through the walls and pase into the oriduct.

It first they are very small. simply mateated cells, framsprasely oblong, and mot quite filling the lomen of the marow portion of the duct (e, fig. $x=3$). As they pasis backward they incrase in size and grachatly actuire a vitellime membrane somewhere in the penterior
 partieles, so that on emerexing into the genital segment and sudelenty increasing in diamoter, the colls fore somewhat ame apear ats a contimons grambar mass in which it is pratedeally impossible to distinguish either rell walls or murleus (※. tig. 32). Very quickly, howerer. this mass begins to differentiate

Fiti. 32, -Genital sefinent of Caligl's mapax, b, Efifis FULLY FORMEL ANH READV゙ TO BE PC\&HEH OTT ENTOTHE

 ZATBON: g, EGASFLSED TOCETHER ALST AFTER ACOUIRLNA, THE Y゙OLK PSIRTHLEN. again into separate oggs, in earh of which the rolk or mutrient material separates from the white or amimal material. 'The eggs are now flattened together morre and more strongly throngh the pressure generated by their growth and tinally herome biscuit-shaped as they approath the external operning (b). This posterior portion of the oviduct is called by lathke the uterus (1 , tig. 31), and Claus remarks that the name is well applied. since the eges remain here a long time. The oviduct is considerathy narrowed just before reaching the external opening, and the egges must be altered in whipe as they pass through. During the passage each egge in fertilized by sperm from the serm receptacles. whose duct opens into the wituct very (lose to the rxternal opening.

This operning of the oviduct to the exteriors. which to follow ont the momenclature of Rathke and (lams might well be called the os beri (o. 11. . fig. : $\quad 1$) is situated on the rentral surface of the genital segment rery chase to the posterior end. and matally just above the rudimentary fifth loge.
()n emerging to the exterior the eggs suddenly widen to mearly twice their former diameter, and are correspondingly diminished in
length (e., fige. S2). In addition to forming a cylindrical tube in which the eges ate arranged like a roll of lozenges, the erment gland atso permsont a layer of its secretion between every two adjarent aggs. This forms a membranous partition and divides the egge tube into a series of narrow compartments, in cach of which is a single egg. which does not quite fill the spare, teaving room for the subsequent development of the larva.
The spermaries or sperm receptacles (n. 1.) consist of a salk on either side extending from the of nteri obliquely inward and forwand to the median line where it joins it, fellow from the opposite side (fig. :33). A canal, the ragima (vat.), leads diagonally backward and inward from the center of the posterior margin of each satek and opens to the exterior on the posterior margin of the genital segment along-

Fifi, 33.-semen receptaclis and vagina of a female Lepeophtheirl's. (l'arthy after ('lal's.)
 RIEA; V, VULVA; Va, V'AGINA: 5, FIFTH LEGS.
side the mid line. This is the vulva or sexual opening (v.) and just inside it the ragina is enlarged considerably for the reception of the spermatophores (s.). These spermatophores are white in color for nearly all the species. They do not always enter the vulva, but may often be found upon the extermal surface, usually in the immediate vicinity of the vulsa hut sometimes elsewhere. On species like Lepm-
 show up very prominently against the dark backgromot.

A single copulation takes place just after the close of the chatimus stage, and at that time these semen reeptaclen are filled by the male. Their contente prohably sutlice for the fertilization of all the cogs the female lats, during her entire life.

The sexala organs of the male are very simila in position and arrangement to those of the femate (fig. 3t). They consist of a pair of
tester, a long vas deferens leading from ach, and a pair of spermatophore reerptacles in the genital segment. The testes (t.) are orate or combal bodies sitmated in masions corresponding exactly to those of the ovaries.

They are considerably smaller than the ovaries and each gives ofl from its antrriod end a duct. the vas doferens (v. d.) which leads directly backward without any convolutions into the genital segment. Here it enters the outer horder of the sermatophore receptacle (s. r.) at or posterior to its conter. Ealch

Fig. B1.-GEXTAL organs of a male LepreopitileiRUS EDWARINI. ('. \&., CEMENT ALAAND; '), OHENLNG OF THE SPERMATOPHOTRE RECEPTACLE, S. r., TU THE EXTERIUR: t, TEATIS: V. d., VAS DEFERENS. receptacte is oral or elliptieal in shape, situated about in the center of its own half of the genital segment, and opens to the exterior near the posterior angle of the segment. On the ventral surface of the reepptacle, or a little to one side of it, is a mall (ement gland (c. g.) which secretes the viscid substance composing the covering of the spermatophore.

In the receptacles the sperms are gathered into oral spermatophores, each of which is covered by the viscid secretion from the cement gland, in which condition they are pushed out of the rereptacle and into the ragina of the female. As A. seott remarks, the spermatophores do mot always reach the ragina, and being viseid they stick to the female's body wherever they may tonch it. We thus often find them seattered in little bunches or clusters in varions places all over the ventral surface in among. the appendages. This was probally what the carlier observers mistook for "ugss, after they had decided that the true egge salks were antemar.

> NTMMARI.

1. The body wall is made up of three layers, the ontside cuticle, the median cellular tissue, and the inner eonnective tissue which forms a lamina supporting the various organs.

2 . The alimentary camal in pactically a straight tube ruming from the month to the amm, with the regions but slightly differentiated in
structure. It is made up of a narrow esophagus, a very mueh wider stomach, a long and wide intestine, and a short and narrower reetum. Connected with the camal are two pairs of digestive glands, one pair in the anterior portion of the carapace noar the margin, and the other in the thoracic area near the mid line.
3. The alimentary camal is constricted at faily regular intervals, and in the living anmal is in almost constant peristaltio movement, the waves passing alternately backward and forward.
t. There is no heart nor any organs of circulation. The hood is driven about through the lacume between the internal organs ly the peristaltic movements of the alimentary canal just referred to, and by the respinatory movements of the rectum. In Cialigus cantus. Pickering and Dana discorered vabular action at two points, the apex of the posterior thoracie joint and hetween the basal joints of the second antenne. No valves have been thas far seen in other species.
5. Respiration is anal, the posterior portion of the rectum being supplied with the necessary museles for the pulsating morement.
6. The muscular system is very highly developed, and ban be seen clearly through the tramsparent corering. All the muscles are plainly striated.
7. The nervous system consists of a supra- and an infra-esophageal ganglion connected by stout rommissures, and the paired nerves anising from them. There is no spinal cord nor any rentral chatn of ganglia.
8. The female reproductive organs consist of a pair of ovaries situated on either side of the dorsal surface of the stomath. From each an oviduct leads back in nearly a straight line into the genital segment where it is strongly convolnted, ant tinally emerges to the exterior at the posterior margin of the segment. The oviduct is namow at first and the eggs are simple nucleated cells. On entering the genital segment the duct widens suddenly and its contents become fincly granular with yolk particles, and more or less fused. But the egge quickly separate and clear in the convolutions, and finally emorge in a long. single row of lozenge-shaped forms, each occupying wheartmont of its own in the external eger cases. The egos are fortilized as they iswe from the genital segment by sperm from a pair of perm receptackes situated in the posterior part of that segment.
9. The mate reproductive organs consist of a pair of testes smaller than the ovaries, but situated in an exactly similar position. From eath a vas deferens leads back into the genital segment, and there enters one of a pair of spermatophore receptades situated in the center of eath hatf of the segment.

Here the sperms are gathered into bunches or spermatophores, corered with a viscid substance, and in this condition they are sulsequently squeezed ont of these receptacles into the vagina of the female.

SYSTEMATIC.

IIINTORIC ${ }^{(1)}$.
The first which ean really be called a classitication of the patasitie copeporls wat made hy Burmeister in 1833 and included only 23 out of the sol and more genera known at the present day.

The eroup was divided into families on the hasis of the presence and structure of the antemme and segmented feet.

Each family was divided into genera upon a diflerent basis, that for the Caligider consisting in the presence or absence of eyes and the structure of the formeth thoracia feer.

The next important classitication was by Milne Edwards in his great Work on the (rustarea in 1sto. We raised the momber of generat of these parasites to B. and divided them first according to the fusion of the head and thorax, and the structure of the antemar. 'They were then subdivided hy the presence or absence of dorsal plates on the fres thosade regments, while tho Catheida were classified by the strurture of the form legs. This resulted in throwing all the forms with dorsal plates on the thorax into the Pandarinar, irrenoective of their mations in other particulams.

As there were only ? gemera known at that time in the ('aligitae, 2 of which. ('halimmes and Stogrefme, were purious, such a division amswored wrll enough, and it loated each genus just where it stands at the preswent time.

A third clasification was puhlished hy Nteenstrup and Lïtken in 1sigh, and by Nombman in 1s6t. the two being identical.

They increase the mamber of generato gs, of which en helong to the Caligidat they divide them first aceording to the structure of the egge sarks and the arrangement of the eggs.

The serond subdivision is on the basis of the degree of fusion between the head and thoras, amd on the presence or alosence of a carapace. In the fannly Caligidae the classitieation is based on the structure of the form the fert the preseme of dorsal plates on the free segments of the thorax, and the presence of limules on the frontal plates.
 a much more elaborate analysis of the genera belonging to the (aligider, which he increased to ef in number.

For this amatys he makes mse of (1) the structure of the rostrum ame "palps" (seromd maxillat): (2) the degree of fusion botween the head and thorax; (3) the presemee of domeal plates on the free thoras segments: (t) the presence of limules: (5) the structure of the fourth thoracic feet.

In the following year, 1866, there appeared the first number of Bronn's Thierreich, in the fifth rolume of which, under the Copepoda,

Gerstacker published sereral years later another attempt at the systematization of this group. His classification is based almost entionely upon the structure of the appendager and the genital segment, and has remained the accepted classification up to the present time. Fon the paper published by basett-Smith in Ls:9 (all scatedy be falled a clasification; it is rather an enmeration of speries with portions of the symonyms.

In (ierstacekers work there are certain errors which can be corrected, and additions which must be made in order to bring the group up to date. The hatter is espectally true of North American genera and species, several of which were omitted by Gerstaceker throngh lack of identification.

The matne also, Nogagina, which he suggests for his second sulbfamily,
 is really male up entirely of the males of other genera. Itence it has no right to be contimed at all, much less to be taken as the type of a sulfamily. Any attempt to preserve this old gemmen mest be really the introduction of a clasifitation lased entirely upon males into the midst of another which womsiders both sexes equally.

Furthermore it does mot serm that (iemstarekers arragement shows as clearly as might be done the gradual tramsition from non-degencrate forms like (inligus and Lepeophtheirns through these which show the becgimings of degeneration, like (ilosionertos and Aldrion, down to I'andurns: and (teronsw which are manifestly quite degenerate.

The monograph published by J. I). Dana in 185. 2 on the (rustacea of the Wilkes Exploring Expedition contains the only attempt at a classitication of the parasitic copepods thas far made by an American. lle divides the group into three tribes according to the structure of the cephalothorax, the presence of a carapace, and the structure and arrangement of the thoracic legs. He separates the second of these tribes, the Caligoidea, into three families aceording to the segmentation of the first antemas and the structure of the maxillipeds. The second family. the Caligidar, he subdivides into four subfamilies on the structure of the month parts and the extermal egeg tubes.

The elassification here presented, like all its prederessors apprepriates the best in those which have gone before, enpectially that of Gerstaecker, adds the new generat and species up to date, and such North American forms as have been omitted. It can mot clam originality sinee it diflecre chiefly in arrangement, hat it is hoped that this change in arrangement will show hetter than heretofore the relationships between the genera.

FAMILAC CALIGIDE

Gampace hroad and usually compressed. Cephatuthorax incomphetely segmented. the free thomacicesments often partially werlapped or hidden by dormal plates. Anterior antemae shor, clubshaped, with two or there frew jointe, their hasal segments anchyowed with the anterime border of the "arapace. Posterior antenne in the form of a simple hooked claw, not extending beyond the emapace. Month in the form of a more or lesis clongated suctorial heak, formed out of the upper and moder lips and inclosing the toothed mandibles. Naxilac free, both pais rudimentary, the first pair sometimes lacking. Maxillipeds also free and in the form of hooked claws, the first pair weak, the serond math stronger and used for prehension. First four pairs of thomacie legs masully himmose. hut the first and fourth pairs frequently minmone; the fifth pair rudimentary and often invisible dorsally or entirely lacking. 'Two simple eyen fused on the median line, often lacking. Generative organs paired in both sexes: fomakes with two corl-like egge tubes, nually quite long: egge in a single row. Male misually maller than the femate and both sexes permanent patasites upen lish.

1. Thres anterior segments of thoma fosed with the head; fomrth and genital segments free.
2. 'Two anterior thoracie segments fused with the head; third, fonth, and genital segments fre - .
3. First thoracio segment onty fused with the heal, the others free; one or more of them with paired domal pates; all four pairs of legs biramose. - 2. Fourth segment withont dorsal plates or any appendages except the fourth legs .nıbfamily Cdibine.
4. Fourth regment with a pair of dorsal phates which usually overlap the genital
 8. Frontal plates distinet; egre cares visible their entire length.

5. Frontal plates fused with the carapate; egg eases comvoluted, entirely hidem. subfamily Cecroplad.
The genera belonging to the Catigina are disensed in the present paper: those belonging to the other subfimilies are left for subsequent

Gubfamily C'AIICiINAH.

Carapace broad and always flattened dorso-ventrally: free thorax segment without plates or appendages of any sort exept the fourth pair of legrs. (ienital segment enlarged, but ismally smaller than the rampare; never mulh larger exeppt in the gemus Rehetus. First and fourth thoracic legs miramose, second and third birmose: fifth pair rudimentary hat often visible an a pair of small papilae at the pose erior cormers of the genital segment. Adults active, most of the females as well as the males capable of swimming about freely.

1. First and fourth thoracie legs miramose; retond and third pairs liramose........
2. Fisst legs only uniramose; second to fourth biranose; frontal plates without lunules (Guistis (bana, 1sion).
3. Fourth lege only uniramose; first to third biramose; no lonules; genital segment with two homy, dentate processer, as in the genus I'mularms.

Calinu (van Beneal(m, 1s!22).

1. All four pairs of thoracie lese biramose; rami two-jointel; momuks.

Dysyamus (Steenstrul and lätken, 18ti1).
2. Frontal plates provided witlı lunules; serond maxille simple, spine-like.....

』. Frontal plates withont lunules; seennl maxilae bifureate or simple......... .
3. (ienital segment simple, without plates or processes, and not elongated. . 4 .
3. (ienital segment without plates but prolonged posteriorly into procesen nearly as long as the abrdomen
. 6
8. (ienital segment surrounded by a two-lobed membranous wing; abdomen with winge aks

I'arapetelus (Steenstrup and Lätken, 1861).
4. Free segment short; genital segment usually smaller, never much larger, than (arapare, aus thattened .ร.
4. Free segment produced into a long nerk; genital segment many times larger than carapate, cylindrical

Eehrtus: (Krïyer, 186:3), p. 611.
f. Fourth legs normal; furca and first maxilla present and well defined.

5. Both furea and first maxille wanting; host, the mollusk Vimtilus.
subgenus. .- tuchicalipus (Stelbing, 1901).
5. Fourth legs rudimentary, consisting of haval joint only, no exopol.
*ulgemus. . Psenderaligns (.1. Fiontt, 1901).
5. Carapace fonortionally very small; genital segment chongated; abomen longer than rest of booly; second maxillipeds large and massise.
suhgemus. . Stitnophitus (van Beneden, 1852).
6. Four of these processer; the free segment short.

Signstius (strenstrup and Lïtken, 1861).
6. Only two processer; the iree segment prolmged into an elomgate neck.

Coligotles (Heller, 1sti5), p. 60s.
7. Genital segment simple. without \quad lates or furesses.
7. (ienital segment without phates, but prolonged posteriorly into two processes twiee as long as the segment itself; secomd maxilla simple; no furca.

Diphyllomaster (Brian, 1899).
7. (ienital segment covered with a fused dorsal phate extending batkwand over part of the alxdomen Itmomentes, new semus, p. $6: 61$.
8. Carapae homizontal, not folded; ablomen nomal.

Leperphtheirus (Nordmann, 1N:3), p. 615.
8. Carapace normal, not fokded; abdomen entirely wanting.

Amuretes (Heller, 18(5i5), p. 15ti.
8. Carapare deeply incised at the renter anteriorly; the two sides iolded together... Itrmilin: (Iteller, 1sifis).

ONTOMENY.

The life history of the varions genera here included is practicallyidentical, so far as it is known. The development of the egg up to the time it is extruded has already been given, and we have seen that each egg was fertilized as it passed out.

Since the "gye than is sereroted only as there is a demand for more -paterend is extended by the pressum of the issuing egegs it follows
 the rege at right amglos to that axis. Fath egessumes a biscoit shape, with the exerplion of the one tirst extruded, which is hemixpherieal.

The form is usually farly symmetrieal, the pressure being equally distributed, hut sometimes an ege will get thattened on one side more thath the other (ser tig. 䍂).

The germinal area is about in the center of the proximal side of the bincuit in the great majority of cases. But here again thereare excep)tions and oceasionally an egg is reversed as

 MA(iN1FIED.) it issues and the gemminal area appeats at the center of the distal side. From this conter the embryo spreads gradually matil it covars the that temed side and extends down over the adge of the hisenit, so that in advaneed development the appendages ean be distinctly seen on the edges of the reges under a high power (see fig. 35). Not ouly are the germinal areas thes all mpon the center of the proximal sides of the reges. but the symmetry is carried still farther in the fane that the longitudinal axes of the embryos are very closely parallel. This bringe the corresponding appendages of the diffrent embryos in longitudinal rows along the sides of the ege tubes.

The eges alloo change in color with addvancing development. At tirst colorless or with a yellowish tint, they gratually asime the color of the pigment which is to distinguish the nauplins when it timally becomes free.

This rolor varies in different species and is readily visible to the naked eye against a white hatiground for some time previons to hatrhing. If the livinge copepod be phaced in a porcelain dish and examined with a hand lens the color shows to good advantage. It is so constant in the same specien and so distinct in many of them as to aftord a good supplementary evidence of identity in fomales carying fully dereloped egex.

There is mo regular breding vason. Females with fully developed egge are found alongside those with eger strings only partially extruded or with none at all. And oftentimes a single fish will yield these different adult forms and several chalimus stages. But while there is this great irregularity in the breeding season of different individuals,
the period of incubation is approximately the same for all members of the same speeies. And so far as known it does mot valy mosh in diflerent species, although no judgment of value can bo drawn on this point without more extended ohsorvations. Eight woeks is requirod in Cenliguss refper, and from eight to ten weeks in Laponhtheirus pectomalis.

Hence while the stage of derolopment reached by the varions individuals fomm on amy given tish may be widely ditlerent they are just as likely to correspond closely. And there are eertain times when at given state of development is more likely to be found than at others. Nearly all the chalimms stagen med in the present paper wore ohtained from eommon flomaders amght between the midelle and the last of August at Casco Bay on the Mane coast. The seaton would be a little earlies in the vicinity of Wroods Hole.

Again the whole of the embros in the egeg tubes of a given female bateh at practically the same time only an hom or two between the first and the last. This greatly facilitates the rearing of the embryon throngh sute essive monlts, as the material roguires very little sorting.

If a female is captured with egag nearly but not fully ripe it is patctically cortain that the embryos will issue before the mothers death. But of rourse in such cases the peremtage of survival is extremely limited. If it is thesired to rear the embryos females shoud be selected whose egeg tubes have the derpent color, and an almost total failume may be simply due to the immature condition of the egegs and not to the environment.

Lsually each egg motures separately, and the inclosing membranc of the ege tuhe splits opposite the eqg. allowing the maplins to wriggle ont. There is thas a break in the tube for catch of the regs and nearly all the breaks are on one side, hut in spite of this the empty rases are usually left still attached to the female after the last larva has escaped. But sometimes, in the haste preceding the death of the mother. when thero is scant time for the hatehing, of when the rggs lack considerahly of being fully ripe, the result is very ditlerent.

The struggles of the manplii in freemg themselres first break the tubes off from the genital segment of the mother and then tean them all in pieces. leaving nothing hut fragments weattered far and wide.

As soon as they are fully free the muplii swim to the surface and towad the light. Each has the typieal natulins form, wrate or ellip)tical in outine, strongly thattened dorso-ventrally, and with thre pairs of appendages representing the first and second antomme and the mandibles (fig. 36). The body is very simple and without segmontation, heing made up of a cellular exterior surmonding the general hody arity, through the center of which passes the primitive digestive tube.

The latter consists of a mouth opening on the rentral surface just behind the bases of the first two pairs of appendages, and a straight tube with no differentiation of parts.

In the body eatity is a fluid representing the blood which circulates somewhat. On the domal surface close to the anterior margin is the median era and the first traces of the nervo ganglion. Both the eye and the dorsal surface of the ganglion are well pigmented. This ganglion represents practically only the future supratersophageal one and the estphagis does not pass through it. The infra-esophageal portion of the gation (see p. 552) appears with the development of the appendatgers.

The anterior part of the body is transparent and throngh it can be seen the muscles whirh move the appendages. 'They extend backward oblifuely on aither side from the hases of the appentages to the median line a little back of the senter. They are fatintly striated and rery well developed, furnishing powerfu motors for swimming.

The posterior portion of the booly, a little less tham hatf, still retains much of the nutritive material from the ege, by means of which the maplius is to be momished during several moults motil it can seek a host and get its own food. These yolk granules make this portion of the body opaque and nothing of the internal structure can be seen
through them. On either sile at the center are two large spots of the pigment, which characterizes the partioular species. This varies decidedly in color and pattern in the different species thus far examined and will probably furnish a useful means of identification.
There are other much smaller spots of the same pigment, which vary somewhat in location in the diflerent species, but are nsisally found. one on either side, close to the posterior end of the body, and a median mpaired spot just ahove the eye.

Of the appendages the first antenne are uniramous and terminate in two long plumese seta. They are often carried dose together and pointing straight forward in front of the maplins. The second

Fig. 37.-Early nauplits uf Cabfile bonito, borsal view; phimett chnamon brown ja a continuols bine arouni the margin of the bobly.
antemax and mandibles are biramons, the exopod font-jointed, cath joint bearing a long plumose seta, the endopod with a single joint terminating in two similar setar. These three pars of appembage propelled ly the powerful musides atready noted make peflicient leromotor organs, and the muplii move rapidly. And even at this cally stage some difference can be sern between the maphii of the dittorent speces. Those like Coligns reprer, which are very active in the adult form, begin this activity in the early maplius, white others appear comparatively shggish.

Near the posterior end of the body there is a pair of appendages

Which manally peint obliguely batkwad．and ame of perndiar shape． （＇ylindrical at the base for abont one－fifth of theire entire lengeth they then thatten antero－posterionly and broaden stighty into the shape of a spatulat of patore cotter．

They are not segmented and not readily movable：they seem to be used as a kime of hatancing organ when the manplii assume an upright position in the water on coming to rest．

The miformity in the shape of these hataneers as well as that of the boxy of the mamplii and the three pates of appendages is grood evi－ dence of the close relationship of the genera here eomsidered．

If a femalo be captured with eges nearly or quite matured it is an easy matter to secure nallolii by kepping her over night in cool water． But to rear the natuplii sucersifully in a rery diflerent matter for many

In the tirst phace they are extremely sensitive to erem a slight rise in temperature and of contse can not be krpt in ant aratrium of romning water，and as they alvance toward the chatimns stage they require freshly armaded water far more than in the mandius stage，which it is exceedingly diftient to supply proporly．A groat mamy ditlerent methods have been tried，but the lost surcess thas far has been ohtained bey kepping the larva in floting apuaria or bage of cheese cloth，immersed in the ocean．The month of the bex is open and it is forated at a sullicient beight abowe the surfate of the water to prevent the washing out of the larvad．

As the latter maturally swim at the surface this insures just the right temperature．And if they eat anything prion to the metanaplins stage，which is rery dombful，apparently chough food gets in through the meshes of the rheese eloth to keep them alive．In this way the
 species of Leperphtheirms．L．chermblis，have been carried through neveral monlts．

But of comse when they reach the stage at which they would ordi－ marily faston mon some host，all artificial methors fail，and we mast depend for farther material mpon a arefal examimation of the tishes boty．To athiere any sucers demands a knowledge of two things， the particular host or hosts preferred hy any given parasite and the time of breeding．By securing a plontiful supply of the host just after the parasites eges have hatehed one may be reasomably sure of finding some larvar attached to them．

But obvioms the securing of these marly stages will requite a rery minute exammation of＂res？part of the fishe boly，since the larva apparently fastens itself to the first place it happens upon，and may show no indiations whateror of a preforene for particular localities， which later in life becomes very marked．Espectally is this true of smoh sereies as frequent the mouth and gill cavity．（＇alignesponitw in
the adult stage is mever fomm on the outside surfare of the booly of on the fins, but those are the very plates most amsily areresible to the fonng metamaphins and where consequently it monst be somght.

And then the larvad aro so smatl as almost to require a hamd lens for recogntion, and their color is so similar to that of the fishes berly as to atford them ample protection.

Ahout the only way to deteret them in most easen in to take the fish directly from the water, and while it still retains a tilm of water orer the entire ontside of the botly hold it up to the light in such a way ats to get the rays reflected from the surface. The latra, being attached loosely, stands off from the surface and hreaks the reflection. If the

Fig. 38,-Natplius of Califes honito nearly ready to modet into a methnatplits The pigment, which at first was in a contintoes bing, is now broken tp. \entral yiew, SHOWING LABRCM.
fish has been dropped to the gromed or into the hottom of a boat there is very little nse to seareh it for derolopment material.

In view of these ditlientties it is not surprising that so few larval stages have been secured hitherto, or that investigatoms orerlookert all but the lareest and most adranced embryos.

As has been stated the mamplius at first is entirely masemented. with the three paris of appendages gromped aromod the month near the anterior end of the body. The first moult ocems during the first thirty-six homs, usually in the night; the matulus emerges with its body considerably elongated and with the evident begimings of sogmentation posterionly. The division hetween head and thorax is planly indicated in the clear edge which borders the (anapace (fig. :37).

Behind this are two other sutures indieated in the same mamer and also be perceptible groowes in the hoty wall itself. There are also traces of another joint farther back, very whe to the bataners on either side. The pigment, which is chatacteristic of the specios, and which at first was gathered more or lese in the regions indicated, now spreads along the sides of the borly. while the two spots near the anns fuse acress the mid line.

The condition of this pigment as to whether it is a contimums line or a series of irrequar soots varies greatly eren in the same species; now the one condition prevals, now the other.

 THE XEW APPENDAGE 'AN BE PRAINLY SEEN AT THE PONEHOR ENH OF THE BODY,

The appendages remain unchanged, but between their bases on the rentrak surface the hage shield-like labrum becomes more prominent. The spines also mear the tipe of the culopoce of the two pesterion pairs of appendage are larger than before the mott, and they show "1, plainly in a ventral viaw (tig. 38).

Hitherto the larva has twen very active, but on getting ready for the serond moult it becomes more sluggish and moves about showly. It also pay* lese attention to the light and gradnally weeks the bottom of
the aquarimm. At the same time the tirst antemar begin to show signs of segmenting into two joints, and upon the rentral surface of the posterior part of the body mumerons fine lines appear (enving from the outer edge inward and backward toward the amus (fig. 3:9).

These represent the setie of the new appendages which are to appear with the second moult. This moult ocemes during the second thirty-six hours and the larva comes forth radically changed in many particulars. The body has elongated more tham 50 per cent, while it has broadened scarcely half that amount, with the result that it appears murls natrower than before (fig. +11). The pigment now covers a wider space along the margin and in more uniformly distributed. The median maphins cye has disappeared and instead we find the pair of simple ceres fused on the median line which are to characterize the adult. They are situated farther hack in the carapace and in front of them a large mass of pigment extends the entire width of the carapace. This latter is much more clearly defined and now coorers about two-thirds of the entire body. There are twó free thoracie segments, batch bearing the rudiments of a pair of swimming legs. and each more or less fused with the head.

They are followed by a third segment, and this in

Fig. 40.-The metanauplies uf Califits bonito, dorsal riew. Pigment uneven and a flsty-brown color. turn by an abdomen. The latter is short and terminated by a pair of blunt amal lamine (fig. +1). Each lamina carries on its inner margin a stout two-jointed seta. The shorter hasal joint has a row of delicate hairs upon its inmer margin. while the longer distal joint is plamose. Opposite this seta on the end of the lamina there is a long slender ipine, and on the outer margin are three shorter curved sipines.

This alters the appeame of the larva completely, but the greatest change has taken place in the appendages. The locomotor organs of the nauplius have entirely disappeared, and in their place stand appendages which are evidently the rudimentary

Fig. 11.-ANal Lamine of the metaNAUPLIUS OF CALIGUS BONITO. forms of those formd in the adult.
The first anteme are now distinctly twojointed, the basal joint carrying a single seta at about the center of its anterior margin, while the terminal joint is tipped with from seven to nine short phmose sete irregularly arranged (fig. t()). Furthermore instead of projecting direttly forward in front of the body, as they did in the namplins, these appendages are now appressed close to the anterior margin of the carapace. Their basal joints lie in exactly the position afterwards occupied by the frontal plates, and are already partially fused with the carapace. The terminal joints, which are somewhat elongated, project at right angles to the body axis in the same position which they occupy in the adult.

The second antenme have changed aven more. They still retain their biramous chanacter, but have berome prehensile orgams instead of locomotor (fig. 42). Each consists of a long and very stout basipod from which project the shorter terminal segments.

The latter are fused for a distance and then separate at nearly right angles. The exopod is considerably the shorter of the two and is terminated loy a short rudimentary spine.

The endopod is much stouter and terminates in a single curved claw, nearly as long as the endopod itself, and bent over ventrally until its tip points in toward, and nearly touches, the ventral surface of the basipod. These are manifestly intended for clasping orgrans and in furtherance of that design they extend forward in nearly the same position as that

Fiti. 42.-The seconi) Antenne of the metanal. Plit's of Caligu' bunito. occupied by the first antemat of the maplius. Moreover. the larva keeps mapping them vicions, giving a forward and downard rake in the evident culdaror to hook them into something. They must be
the organs by means of which the larva is to obtain its first hold upon its host.

Just posterior to their base is the mouth. which possesses the same framework and mouth parts as in the adult, although the mouth parts are not yet fully developed. On aither side of the mouth, close to its base, are the second maxilla, which are also very madimentary (mx.", fig. 43). There is no basipod; the endopod consists of a single conical spine, longer and more slender than in the adult, while the exopod is made up of two small circular chitin plates close to the hase of the spine.

The first maxilla can searcely be distingushed as mimate protuberances close to the margin of the carapare opposite the month. The first maxillipeds (mxp.') are much shorter and stouter than in the adult, especially in the terminal joint. They are tipped with three strons spines or claws arranged in a row, the two inner ones being pectinated like the hind toe of a night-hawk's foot.

The serond maxillipeds, on the rontrary, wre much longer and more slender than in the adult, and again this difference is most marked in the terminal joint and claw (mxp."). They are so much elongated that they project far beyond the edge of the carapace and stand out prominently in a dorsal view.

The claw, even at this early stage, is furnished with the small accessory spine on its imer margin, which is found in the adult.

Evidently these appendages are to

Fig. 43.-Mofth-I.arts of The metanal PLILS OF CALIGUS BoNito. m, MOUTH; mx' .. AE('ONI) MAXILLA; MXP'., FIRNT MAXILLIPEDS; mXp".. sECOND MAXILLIPEDS. sorve with the second antennat as prehensile organs. They are especially serviceable in this elongated state during the chalimus stage, as will be noted later. (sce p. 54t.)

Each of the two free segments of the thorax hears a pair of rudimentary, birmons appendages whose terminal joints are fringed with phumose setie. It was these setie seen through the skin of the nauplius Which gave rise to the longe 'arved lines on the ventral surface at the posterior end of the hoty just prior to this third stage. The appendages represent the first and second pairs of swimming legs of the adult. but differ much from their ultimate form. The basipods are rery short and stout, wedge-shaped or ohlong, and armed with short spines at their distal ends. The first pair are united across the mid line by a wide and
stronge stermun, which is thickened along it anterior elge (fig. 44). The stermm uniting the second pair is very short and is made up of two heart-haped plates indined toward each other and mited at their tips and for some distance along their adjacent sides (fig. 45).

The endopools and exopods of the two pairs of legs are quite similar and each consists of a single joint, hroadly lamellar and fringed distally with six large plumose rete, making them strong swimming organs. In the arangement of these

Fig. H.-Fibst swimming lege of metanate Plif's of (ALIGI's RoNito. VeNtRAL VIEW, - HoWING connerting ventral plate.

At the third moult, which occurs after about the same interval as the others, there is little adrance sabe in a fow changes toward the adult form. The firstantemaenow become three-jointed, the basal joints long and marrow and turned bank on and artioulated with the anterior margin of the carapace.

It is plainly erident that they setae may be seen an indication of the future segmentation of the appendages. Upon the third free segment maty be found a pair of small projections, unsegmented and mobranched, which are the rudiments of the third pair of legs. Each carries at its distal end several short spines.

Fig. 15.-Gecond swimming legs of metaNaUPliUs of Caliges bonito. Ventral VIEW, SHOWING CONNECTING VENTIAL IDATES. are to become the frontal plater. Between them, in the very front of the head there appears a large median gland which seretes the material for attachment during the following chatimus stage. (See fig. H6.) This gland is heart-shaped, the larger emb being anterior, and is close to the doreal surface of the carapace. A duct lead from the gland to a point at the very tip of the carapace between the hases of the first antema.

The second antemma and seeond maxillipeds retain their prehensile function and have changed but little.
There has been a fusion of the first and a partial fusion of the second thoracic segments of the previons stage with the cephalo-thorax. The third segment has elongated; the rodimentary third legs have developed into a pair quite similar to the first and second pairs of the previons stage. Upon the posterior end of this segment appear another pair of rudimentary protuberances whichare to develop into the fourth legs.

The genital segment still remains fused with the abdomen, and the two have inereased considerably in size.

The time has now arrived for the larva to seek it, host, and, when onee found, it fastens immediately to the host's hody. Just how the host is found remains a mystery, but certain facts are self-evident.

In the first place the mauplii and metanauplii swim freely at or very near the surfare, while the fish which are to serve as their future hosts, do not frequent the surface. None of the surface fish when examined are found infested with parasites of the genera here considered, with one or two exceptions. And these are forms which are peculiar to the fish on which they occur.

There is nothing, therefore, in the nature of an intermediate host; the larva does not fasten itself upon the fi-h which is nearest at hand and remain until it can seek its proper host.

It finds in some way the very first the fish it wants and mon which it is to he found when fully dereloped.

Most of the genera here considered

 R.APAX. infest fish which live at or near the bottom, the Ciadidex, Pleuronectidae. ete. And erery form of development from the earliest metamanplins stage throngh to the sexually mature adults may be found upon the same speries of fish by careful searel at the right seasom.

At some time, therefore, during the two metamplins stages the
larva mast leave the surface and seek the botom, remaining there until it can fasten itself to a host.
The passage from the surface to the bottom must form one of the eritical periods in its existenc ${ }^{\text {, and eren after it gets there the chances }}$ are not very farorahle for finding a

Fig. 47.-Chalimes of Caliges rapax.
(THE NEXT Mullet AFTER FIG. Hi.) suitable host within the brief time necessary.

These metanauplii seize the fish with their seond antemme, stretehing them forward side by side and driving the terminal claws deeply into the fish's flesh through its skin.
The antemie are so long and the hold obtained is so firm that the larva stands out from the surface of the skin in a manner very suggestive of the chatimus stage with its long frontal filament. Furthermore the antema, being very close together and along the median axis, allow almost as much freedom of motion as a single filament.

After one or two moults in this stage the lava emerges as a chalimus and puts in operation the median frontal gland with its secretion, which has been developed as a means of attachment. The way in which the larva handles this gland, produces the filament. and fastens itself to its host has never been directly observed. But the author was fortunate enough to see a young chalimms refasten itself after being torn away from the tail fin of a flomder. In all probability the origimal method was very similar, if not identical. The larva seized the fin with its second antemme, piercing the skin and obtaining a good hold on the fin ray. The posterior part of the hody was then raised upon the second maxillipeds, depressing the anterior margin until it tonched the fin at the point where the fluct from the median gland opens. The gland then poured out its seceretion, which was thick and viseid, and stuck firmly to the fin ray. The carapace was moved about in such a way as to spread the secretion over a larger surface. The larva then released its, hold with the antemae and at the same time
seemed to push itself buckward with its maxillipeds. In this way the secretion was pulled ont into a longe slander rod or "ord, nearly an long as the hody of the larva.

The secretion seems to harden instantly and furnishes a strong and very flexible means of attachment daring the monts which intervene before the adalt stage is reached.

If one of the fin lays be examined under the microscope the filament (an be seen to penetrate the skin and to be attached along the side of the ray for some liftle distance, as noted by Scott (1901). Often the tip of the filament is spread out into a broad dise, giving it a firmer hold around the ray.

Just how the secretion is brought in contart with the fin my could not be determined, but it has aheady been noted that the second antenna, in grasping the fin, penetrated the skin and took hokl on the ray. It seems probable that in spreading the seceretion about some of it may enter the openings thus made and come in contact with the ray. Its own adhesiveness would be sufliciont to fasten it recurely on hardening.

In all the specimens collected the tip of the filmment has heen so firmly fastened to the host that it could not be detached. In every instance the filament either broke at the center or was torn out of the chalimus's carapace when an eflort was made to detach it. And the only way to obtain the fastening intact is to cut off the ray and preserve it with the chalimus still attached.

The larva is frequently attached to a seale rather than a fin, and in such cases the filament pieres the contis covering the soale and is flattened into a disk upon the surface of the soale itsolf. The idea in every instance seems to be the attachment of the distal end of the filament to something that will not give way. In rare instances the young may be found attached elsewher upon the host, or even to some portion of the body of an adult parasite. as noted by Hesse (185s).

The chalimms can pull itself down to its host at any time by means of its long maxillipeds, and in this way ohtain its food. The stage is one of great interest, both on account of this peculiar means of attarhment and also historically.

Originally diseovered by Burmeister, it was deseribed by him in $18: 31$ as a new genus of the Caligidax, and sereral species were afterwards added by the same and other anthors. But the more carefnl observers were quick to suspect its real relation to other members of the family, and Kröyer very arly suggested that it was only the young of Caligus, or some elosely related form. Mäller (1852) and Stein (1852) soon proved this satisfactorily, and subsequently Hesse (185s). Gerstaecker (185:), and Nordmann (186t) eonfirmed the conclusion.

Of these writers Hesse had the motion that the mother rohmarily
attablod the romg to her own body, in order to render them material assistamere He deseriber the "tilet" which fastens the embreo to its mother, and drsignates it as the "cordon frontal." It is long and flexible anough to allow the yomg an indmpendent action and to permit it to apply itself to the fish upon which both the mother and the young live.

It is a bery emions and interesting repetacle, says Hesse, to see these embryos, esperially those of 'Trobins and Colithes, which swim with considerable facility, following the erolutions of their mother, like a small boat towed hy a large ship. This liason of the two indiriduals reases as soon as the gomg are able to procore their own nombisment. the ropture taking pate about the time of the seeond or third monlt.

This idea of voluntary attachmont was strongly denied by (iepstacker and Nordmam, while Stein, who wrotesix years before lesse, and whose work the lattor sutirely overlookerl, also contender that such attachment is proly acoidental. 'That this is the true interpretation is evident from many considerations.

In the first place the larse hateh as free-swimming manplia. positively heliotropic. and therefore frequenting the surface, while most of the fish which are to serve as their hosts live at or near the hottom, as already noted. We have atso seen that the larvat monalt at least thee times hefore entering the chalimos stage, learing the surface and becoming negatively heliotrophe after the second moult. Hence each of them mast seek out its own host, and there is not one chame in a thomsand that it will thed the same host upon which it was horn.

And the probability of finding its own mother still upon that host would be even less. Indeed the finding of its own mother under any cirenmstances after a free-swimming period, no mattor how short that perionl might be, presmposes, if the mion is to be wohntary an ability on the part of either mother or ollspring to recognize the other! Such recognition would he at least an amomaly among parasitic crustareat.

But even if we grant that the larra might find its own mother, still the act of attachment can not be performed by the latter: it is wholly the work of the larva itself, as we have just seen, and must be comtrolled hy instimet. Abd it comld hardly ber baimed that instinct gended the larva to the body of its perent, sime this would meressitate some advantage to result from the mion. Such an adrantage woukd be ditficult to prove, and eren if it were established we should still have to explain the fact that only one or 1 wo latra ont of thonsands followed their instinct and availed themselves of the advantage. We can only conchule that such a mion by mo means pores a close relationship between the adnlt and the larva; that it is purely areidental and of rare oecurrence.

Fig. 48.-Chalimis of Caligifs rabat. (One moult later than fig. 47.)
The changes which take place during this fourth mont and those which subsequently occur in the several monte of the chalimus period are very suggestive in many ways.

The carapace, which is at first spuarely truncated posterionly (fig. 46) and decidedly spindle-shaped, gradually develops a lobe on either side and widens considerably into a form which is ohovate or elliptical (fig. f8). The first three segment, of the thorax fuse completely with the head and the sutures, which

Flg. 49.-FULIy inevelopeb chalimus of female CaligiU mapax fiom flounder. Dorsal VIEN. sulsemuently separate the regions of the carapace. appear and become fairly well developed. The free segment of the thorax is still very long in the early chalimus stage, but rapidly shortens with every moult. The genital segment and the abdomen begin to separate by the second chalimus moult, the abdomen at first being several times the larger (fig. 47). But before the close of the chalimus stage the genital segment has increased until it is the larger, white the ahdomen has narrowed somewhat, and the anal papillae with their setae have lengthened considerabiy (fig. 49).

The eyes in the early chalimus stages are relatively large and situated far back in the carapace, nearly at its center. They move steadily forward with every moult mutil they reach the adult position at a point abont one-third of the length of the carapace from its anterior erge. But the appendages move forward at the same time so that the eyes remain all the while just ahove the month.

The first antenne still remain three-jointed, and in the later chalimus stages lunules gradually de relop upon the hasal joints in such species as are to possess them. This is the final proof that these bawal joints become the frontal plates.
This fact, which has all along needed the testimony of development in order to demenstrate it fully, now that it is established, entirely changes the homology of the antemne. So long as the frontal plates were regarded as a pertion of the carapace. no homology in structure or function between the intennar of Cialigns: and those of Argulus was
possible. But as soon as we recognize in the frontal plates the basal joints of the first antemme, such a homology becomes not merely possible but very complete and significant. In both families the first antenna are three-jointed, the basal joint being enlarged and moditied to serve a prehensile function, while the two terminal joints are much smaller and wholly tactile. In Arymlus the prehension is aceomplished by means of a stout hook developed at the distal end of the basal joint, while in Cultigus the same result is attained by a surking disk or lumule.

The second antemar in Argmlus are largely tactile, only the basal joints being preheusile in function, and even these have nothing lout stout spines to assist in preventing the copepod from slipping back-

Fig. 50.-APPENDAGEs OF THE EARLY CHALIMUS stage siow ing mode of nevelopment. anº., second

ward. But in Culigus the entire second antenna becomes prehensile (fig. 50, an ${ }^{2}$.), the basal joint with a stout spine pointing lackward, as in Argulus, while the terminal joint is developed during the chalimus period into a strong sickle-shaped elaw, operated by powerful muscles, and fully capable of rendering material assistance to the maxillipeds in piereing the skin of the host and obtaining a firm hold.

Both Baird (1850) and Pickering and Dana (1838) described these second antemae as the first pair of foot-jaws, the former without making any comparisons, the latter claming that they corresponded to the second maxille in decapod erustacea, a manifest error.

The first and second maxille develop somewhat toward the close of the chalimms period, but as they are rudimentary even in the adult no marked development is posisible in the larva.

The other month parts and the four paim of swimming legs develop steadily toward the adult form, with no marked changes at any one moult. The only features worthy of note are in the development of the first and fourth pairs of swimming leg.

In carly stages the lirst pair (fig. 50, 1) have a well-defined endopod, much smaller than the exopod to be sure, and consisting of but a single joint terminating in two small seta. Later this mudimentary romperdamost entirely di, appears, its place in the adult being indicated he a long, slender seta.

The fourth lege are made up at first of two short and wery broad disk-like segments. totally milike the long and slender adult form (4). Furthermore, there are no seter any where upon them except at the tip of the terminal joint where four very short and stubly ones stand in a row. With almont the first chalimus mont. however, the nature of these legs changer radically, and they quickly narrow and elongate, at the same time acfuring suta upon all the joints.

With the hegiming of the chalimus period the digestive organs change into the adult form, and the reproductive organs appear. The latter grow rapidly in the male and have attained their full development by the close of the chatimus period, but in the female they remain rudimentary until fertilization, which takes place only after the larva have become free swimming. The genital segment in the female remains small, deeply lohed posteriorly, and with the fifth legs showing prominently for quite a long time after the close of the chatimus perioul.

The nervous system starts in a large ganglion just heneath the dorsal surface of the carapace, posterior to the eye. This ganglion is elliptical in shape, the mes heing situated just above it, anterior end. A pair of nerves, corsesponding to the tirst pair in the adult, extend from the interior cond of this ganglion to the eyes. From the poisterior end in early chalimms stages two or three pairs of slender nerves extend a short distame backward but do not reach beyond the carapace. This one gatughiom aridently corresponds to parts of both the supare and infra-tesophageal ganglia in bater development. As the young copepod grows hy sucessive moultings, and the rarious appendages appear in regular order, the nervous system abo develops. In this way for each of the appendages there appears at the proper time the pair of nerves which are to imervate their musles mitil the whole system is compteted. After a study of these foms extending over areral years it may be stated with a fair degree of acermatey that this period of attachment to the host laste from four to six week. During that time, to judge from the material collected, there are at least five moults, if not more.

At the elowe of the perios the appendages have become fulty developed, and with the last menlt the filament separates just at the
frontal margin of the canapate, leaving a notch where it emerged, and nsually a portion of the filament itself projecting from the base of the noteh and extending backward into the carapace to the ghand. These remains persist all through the adnat life and are an abding evidence of the redation between chalimus and adult.

SUMMARY.

1. The eggs as they are extruded to the extorior in the exge tubes assume a biscoit shape with the germinal area at athout the center of the proximal side. The embryos develop until they cover this side and extend down over the edges of the biscuit, their longitudinal axes being closely parallel.
2. As the embryo develop they lecome pigmented the pigment varying in color and arrangement in different speceien, and in this way atlording good supplementary evidenee of identity.
3. Eath egg ruptures separately, and the membrames of the egge tube split just opposite the embryos, allowing the lattor to wriggle out, and leaving behind the membramons framework of the egge tabes the same size and shape as before and still attached to the female, but empty.
4. The nauplii swim to the surfuce and toward the light as soon an they are free. Each has a typical namplans form, ovate or elliptical in outline, strongly thattened dorst-ventrally, and with threr pairs of appendages representing the first and second antemme and the mandibles.
5. The first antemme are miramons and terminate in two long phomose setar. The second antennte and mandibles are hiramons, the exoporl four-jointed, each joint hearing a long plumose seta, the endopod with a single joint terminating in two similar setar. Nar the posterior end of the body is a pair of spatula-shaped balancers.
6. The first moult occurs during the first thirty-six hours, manally at night; the namplins emerges with its body eonsiderably elongated and with the evident begimmings of segmentation posteriorly. The appendages remain unchanged.
7. The seeond monlt oceurs during the second thirty-six hours, also at night; the mamplins emerges radically chamged. The median eve has disappeared, and instead we find a pair of eyesfused on the median line, as in the adult. The carapace is more clearly dotined, and coveraboat two-thirds of the boty: there are two free thoracic segments. eath bearing the rudiments of swimming legs. followed hy a third segment with even more rudimentary appendages, and this in turn by the fused genital segment and abdomen, the latter terminated by a pair of blunt anal papillie armed with setar. For appendages this lava possesses first and second antemma, first and serond maxillie,
mandibles, a month tube or proberis, first and secomd maxillipeds, and three pairs of rudimentary swimming legs.
8 . The third monlt oecurs at ahont the sume interval as the others. The first thoracic segment has been entirely, and the second partially, fused with the head. The third segment has clongated and the rudiments of the fourth thoracic legs appear upon its posterior ventral surface. The genital segment still remains fused with the abdomen, but the two have increased considerably in size. The first antemme have become three-jointed; the other appendages remain unchanged, save that the swimming legs adsance toward the adalt form.
8. The larvanow seeks its host and moults again into what i, known as the chalimus stage, the chiof characteristic of which is the development of a long cord or filament by means of which the young are attached to their host. This filament is made ont of the material seereted by a median gland situated just in front of the eyes.
9. The changen which take place during this fourth moult and those which subsequently occur in the several moults of the chatimus period are in the line of gradual development toward the adult form. The carapace, at first squarely truncate posteriorly, gradually develops a lobe on rither side and widens. The first three thoracic segments fuse with the cephalon, and the sutmes on the dorsal surface of this cephalo-thorax appear and become well developed. The genital segment and the abdomen separate at the second chatimus moult, the abdomen at first being several times the larger. The eyes move steadily forward with each moult, boit as the appendages on the rentral surface move forward also the relation of the two remains unchanged.
10. The only appendages worth noting are the first and fourth swimming legs. In the early chalimus stages the first pair have a well-defined endopod, consisting of a single joint terminating in two small sete. Later this disappears and its pate in the adult is indicated. if at all, by a long seta. The fourth legs are mate up at first of two short and broad, disk-like segments, withont seta or spines. With successive monlts they narrow and clongate into the adult form, and aequire both spones and sete.
11. This attached stage lants from four to six weeks, and the larva moults at least five times. At the close of the stage the male is practieally fully developed, hut the female remains immature, so far as the reproductive organs are concerned. until fertilization has been effected and the ora begin to descend the oviducts. With the last chatimus moult the connecting filament separates just at the frontal margin of the carapace and the copepod enters upon its free adult existence.

Carapace large, shield-shaped. Basal joints of the first antenne provided with lunules; two terminal joints free, heavily armed with setie. Mandibles often toothed along both margins. Second maxilla simple, spine-like. First and fourth thoracic legimiramose, second and third biramose. Fourth thorax segment withont dorsal plates; genital segment simple also, without plates or processes. Abdomen one to many segmented. The young of both sexen with a frontal filament for attachment during the chalimus stage. Anal lamella strongly flattened and armed with long plumose sete.
(Celigo, obscurity, darkness.)

ARTIFIC'AL KEY TO THE SIECIEA.

The relative length of the different body regions is the most constant character avalable for classification of species.

Both sexes are here inchoded, since they usually exhibit radical differences, and they must he sexnally mature, althongh the presence of egrystrings in the female is not necessary. When the fifth legs are spoken of as visible or invisible it means in dorsal view only, and has no reference to a microseopical examination of the ventral surface. All measurements of length inclute the anal lamelta, but not the phmose setie upon them. Differences of length must amount to eight per cent or ten per cent; otherwise they are considered as "abont equal." In any ("tse where there might still be danger of mistake after this liberal allowance the species has been inserted twice. This key includes all valid species known at the present time. The authority for each species is here given, and the reference can be found in the bibliography on P. 666.

There have been eliminated the following species:
First, those which subsequent examination has shown to belong to other genera. Here are included bicolor (Lamarck, 1818), which is a Pondorus; brouchiulis (strenstrup and Lütken, 1861), a Lepoophtheirus; breripedis (B-Smith, 1896), a Pseudoculigus; crossus (Abildgaard, 1794), an Anthosomu; grucilis (v. Beneden, 1851), hippoglossi (Kröyer, 1837), molna (Latreille, 1825), nordmannii (M-Edwards, 1840), obscurиs (Baird, 1850), ormatus (Nordmann, 1832), pucificus (Gissler, 1883), puetoralis (Müller, 1785), phuraonis (Nordmann, 1832), sthmonis (Kröyer, 1837), stmrionis (Kröyer, 1837), stromii (Baird, 1850), and resper (M-Edwards, 1840), all of which belong to the gemes Lepeophtheirus. Imbricatus (Risso, 1816) is in Anthosoma; oblongus (Abildgaart, 1794) is a Dichelestium; parudowus (0tto, 1828) is a Demoleus, and smithii (Lamarck, 1818) is an inthosoma.

Secoml, those which have proved to he synonyms of species already describert. Here are included rglefini (Kröyer, 1863), a male curtus; umericums (Pickering and Dana, 18:38), also a curtus; bengoensis (T. Scott, 1894), a young male comphxux; bicuspidatus (Nordmann, 1832), a curtus; carangis (Kröyer, 1s63), an alalonga; diuphomus (Baird, 1850), a mutus; elegutus (v. Beneden, 1851), a curtus; elongatus (Norimann, 1832), a ropor; leptorhilus (Lenekart, 1847), alsu a mpetx; longicuudus (B-Smith, 1898, a), a trichiuri; mulleri (Leach, 1816), a curtus; sombri (B-Smith, 1896), a productus; rissonianus (M-Edwards, 1840), a curtus; scututus (11-以hwards, 1840), a corypharna.

Third, forms of which no figure has ever been published and which were so poorly described ats to make their identification impossible. Here are included affimis (Heller, 1866), put into the key provisionally; kroyerii (M-Edwards, 1840), piscinus
6. Genital segment quadrate, half as wiok as carapace; fourth lege large, all their spines serrate and a large plumose seta at the tip of the lasal joint.
ror!! hantat (Steenstrup and Lütken, 1861) 。
6. Genital segment quatrate, half as wike as caralace; fourth legs weak, no serrate

6. Genital regment oblong, one-quarter as wide as carapace; abdomen almost the

7. Genital sesment oblonge, no wider than abdomen.
. 8.

8. First abdomen joint one-third the second; fourth legr short, just reaching the alrdomen
. irritans (Heller, 1865).
8. Ahtomen joints the same length; fourth legs reathing beyond tips of anal bamine. longipes ($\mathrm{B}-\mathrm{s} m \mathrm{mith}, 189 \mathrm{~s}, \mathrm{c}^{\circ}$).
9. Free segment narrower than genital segment; frontal plates narrow, lumules small. - furumrti (K rüyer, 1s63)
9. Free semment same width as genital segment; frontal plater prominent, lanules

9. Free segment wioler than genital segment; thim amd fonrth legs large and stont ...
to. (ienital semment rectangular, wider than long; fourth legs very short; furea

t0. (ienital semment obcortate, deeply lobed; fourth legs reaching beyond tip of abobomen
-lonyipus (B-Smith, 1898, e).
11. Nales, genital segment subpuadrate; fifth legs visible dorsally.
leres, new species, p. 649.
11. Nales, genital segment elliptical; fifth legs not visible dorsally.
infestetns: (1leller, 1865).
12. Genital segment barrel-shaped, longer than wile, silles strongly curved; fifth legs large
.minimus, (Otto, 1828).
12. (ienital segment qualrate, much wider than long, emarginate posteriorly; fifth legs small.. . .
13. Males, fifth legs plainly visible dursally ... 14.
13. Females, fifth legs painly vivible dorsally 15.
13. Females, fifth legs not vivible dorsally 16.
14. Genital segment semilmar, deeply lohed; free segment very short, almost conrealed dorsally .entrontonti (Baird, 1850), 1. 652.
14. (ienital segment arom-shaper, decply lober; twies as wide as free segment; lobes acnte-...istip (Steenstrup and Lntken, 1861), p. 601.
14. (ienital segment ohlong, no lohes; narrower than free segment; fourth legs very long.
. пони: (Kröyer, 1863).
14. (ienital segment obrordate, lobes short; three times as wirle as free segment. purcus ((B-S'mith, 1898, a).
15. Genital segment acorn-shaped, rounded posteriorly; fuca long and narrow. boreatis (Olsson, 1872).
16. Genital segment ohbong, widened posteriorly; abdomen muh longer than wide. Thulines (T. Scott, 1894).
16. Genital segment quadrangular, comers square; alolomen the same longth and width..... ..
17. Abdomen more than half the length of genital segment 18 .
17. Abdomen much less than half the genital vegment . 23.
18. Males, genital segment, but little wider than abdomen 19.
18. Females, both the fifth and sixth legs visible dorsally 20.
18. Females, only the tifth legs visible dorsally 21.
18. Females, neither fith mor sixth legs visible dorsally 22 .
19. Genital segment mpindle-shaped; fourth legs with three saber-like spines. luthracis (T. seott, 1902).
19. Genital segment orlicular, as wide as long; fourth legs with one tootherl spine . curtus (Müller, 1785), 1. 578.
19. Genital segment cylindrical, sides parallel; fifth legs invisible dorsally. cheiloductyli (Kröyer, 1863)
20. (ienital segment tringularisomy. (Steenstrup and Lïtkeni, 1861), p. 602.
21. Genital segment obeordate, lobes large; abdomen wob-shaped, narrow. minimus (Otto, 182s).
21. Genital segment rectangular, no lohes; abdomen as wide as long.
luthrucis (T. Scott, 1902).
21. (ienital segment acorn-shaped, no lobes; abomem spindle-shaperl, longer tham wide.
lumpi (Krïyer, 1863).
22. (ienital segment oblong, no lobes; fourth legs only reaching its center. rurtu: (Mïller, 17sí), ן. 578.
22. Genital segment obeordate, as wide as long, with short lobes; formeth leys reaching abdomen. \qquad -!ymardi (Kröyer, 186:3).
22. Genital segment harrel-shaper, wider than long; lobes short; toothed plates on fourth-leg spines . - teres, new species, p. 649.
22 . Genital segment ovate, no lobes; whole body covered with spots of rust color. rufimamlutus, new -pecies, p. 561.
22. Genital segment barrel-shaped, wider than long; no lobes; abolomen narrow; body highly colored ... (Nicolet, 1849).
22. (ienital segment elliptical, lober short; teminal rlawa forst legs hipartite. schistony.r, new species, p. 56t.
Proc. N. M. vol. xxviii-04-- 36

23．Fifth legs visible dorsally；males or females；genital segment sulpuadrate．

 ablurerialus（Kröger，186\％）．23．Fifth legs invisit：donsally，all females． 24.

24．Genital segment rectangular，mum lomger than wide，no lohes；sides nearly par－ allel．
brevirandutus（A．seott，1901）．
24．Genital regment rectangular，much wider than long，no lobes；sides nearly par－

24．（ienital segment obovate，as wide as long，sides stromgly eqred；small plates on

24．Genital segment obovate，deeply lobel；lobes arlate，eomical；free segment nar－
 25．Abdomen three－jointed；genital seqment flask－shaperl，truncate posterionly． angustatus（Kröyer，1N6：）．
25．Alx lomen two－jointed，of varying lengths．－．．－．． 26.

2f．Ahdomen abont the vame lemgth as the genital sument．．．．．．．．．．．．．．．．．．．．． 28 ．
26．Andomen half as long ats the genital serment or more ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 31.
27 ．Males，genital sogment quadrangular；free seogment as wine as long．
hinsulus（ 1 －Smith，18：8，a）．
27．Nales，genital segment marow spindle－shaperd；free wegment fonr times as

27．Females，genital regment acom－shaped；free segment twice and a hatf as

2s．Males，fifth legs visible dorsally；genital segment arorn－shaped；first abdomen

zes．Dales，fifth legs mvisible dorsally $\therefore 9$.
28．Females，fifth legs phinly visihle．． 30.
2S．Females，fifth legs invisible dorsally；genital segment ohbong；hasal ablomen joint the longer cytrii（ B－smitl：，ls？
29．（ienital segment barel－shaped，only a little longer than wide，comers angu－ lar
th！！mmi（1）ana，185：2），p．603．
29．（ienital segment namow，elab－shaped，twion at long aw wile，comers rommed． trimhui（Krïyer，1863）．
30．（ienital segment oberolate；hasal ablomen joint fome times the temmal．
robustus（ I －Smitls，1s98，1）．
80．（ienital seqment obsong，widest posteriorly；terminal abkomen joint math the

31．Males，fifth legs mot visible domsally
． 82.

B2．Genital segment orbicular，half as wide as arapace；basal abdomen joint short and winde infestoms（1）eller，185i5）．
32）．Genital segment elliptical，onc－thime as wide as caratate；hasal abdomen joint
 33．Genital segmentoblong，marrowed anteriorly；derply emarginate posteriomy； lobes long．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．infostons（lleller，1stin）．
（i3．Genital segment hask－shaped；slightly emarginate posteriorly；lobes short

33．（ienital segment orhinklar，as long as wide，evenly roumled；hasal abomen joint bonger
verctor（lleller，1865）．
34．Ablomen oheonical，longer than the genital segment；the latter thask－shaped；

34．Ahnomen same length as genital sexment；the latter oblong；fourth legs short and weak；females．
duhius（＇T．Scott，1894）．
int. Abromen half the length of the genital segment or more
34. Dixdomen distinctly less than half the genital segment . 40 .
35. Males, genital semment narrow eylindrical, no wider than absomen; fifth

35. Females, fifth legs plainly visible dorsally
.36.
35. Females, tifth legs mot visible dorsally . 3 .
36. Genital segment elongate-ovate; fifth legs close to the hase of the ablomen. gerneroli, var. (Kröyer, 1863).
iff. Genital segment broad anom-shaped; fifth legs at comers; fonth legs reaching

36. Genital segment aorn-shaped, fourth legs not reathing its eenter; fifth legs at

37. Genital semment distinctly more than hali the carapace .--..................... 88.

88. (ienital segment oblong; abolomen club-shaperl; free vegment much longer than

38. Genital somont orbienlar, wider than long frontal phates projecting between the lunules . hemmlomis (Krïyer, Is6is), p. 606.
38. (ienital segment obeordate, the same length and width; free semment wider than lonig
trachypteri (Kröycer, 1863),
39. Cenital segment obovate, sides strongly curved; carapace wisk than lomg.
rheilorlactyli (Kröver, 1863).
89. Genital segment acorn-shared, sides barallel; earapace elliptieal; first antenna hidden lucustris (Nteenstrup and Lütken, 1861).
39. Genital segment acom-shaped; carapace elliptical; first antemme large, prominent .-....................................... (Milne-lidwards, 1840), 1. 568.
39. (ienital segment duarlate; frontal flates wide, lumules large; caripare

40. Genital segment obeorlate,]osterior lobes large; fourth legs large, stout; fifth

40. (ienital seqment thask-shaned, no lohes, fourth legs short, weak; fifth legs invisible
. -rlalonge (K röyer, 1stis).
40. (renital segment roctangnlar, much winter than longe no lohes; aldomen ex-

41. Abdomen four-jointed; genital segment wedge-shaped amb decply lobed.

41. Abdomen two-jointed, of varying lengths --. 4 .
41. Abdomen one-jointed, of varying lengths..
42. Abdomen distinctly longer than the genital segment. - - . - . - - - - . - . . . - 4 .
42. Abrlomen about the same length as the genital regment 4 t
42. Abdomen consideraby slorter then the genital segment 5 . ${ }_{3}$.

4; . Males, fifth lege coneraled in at dorsal view. . - . - . 4 . 4 .
43. Females, fifth less plainly visible dorsally . 45.

4:. Females, fifth lege concoaled in dorsal view . 46 .
44. Genital segment quadrate; first adxdomen segnent less than half the secomel. hirsutus (D-אmith, 1sts, a).
44. (renital seqment narrow ovate; dirst abdomen joint twice as long as the seromd. trirhimeri (Kröyer, 1863).
45. Genital segment hrod ovate; tifth and sixth legs both showing in dorsal view.-. - pelım!ılis (Kröyer, 1863), p. 594.
45. (ienital segment acorn-shaped; fifth legs only showing and intistinctly; ablomentwice as longe all the rest of the body - - metormons (Heller, 1865).
45. Genital segment reetangular, much wider than long; tilth legs only showing
trichiuri (kroyer, 1se:)
46. Genital segment triamgular, moth latrer than ratapace; ahromen fonger than

 plam!dis (Kröyrr, 1863), p. 594.
47. Males, fifth hegs not visible in lonsal view-...................................... 4 .
47. Fomales, fiftı less painly vishbe in domal view 49 .

48. (Genital segment cylmbrical, little wider than ablomen; median catapace bobe

4s. (imital semment obovate, twice as wide as abomom; merlian carajare bobe not projecting at all. \qquad .comstrictus (Heller, 1805).
4s. (renital sengent hatrel-shaperl, three times as whe as abomen; first abolomen joint the longer.
. !!finis (Meller, 1866).
4s. (iemital segment olfomg-olowste, twier as wite as ablomen; terminal abdomen
 49. (ienital regmont thask-shaperl, no labes; alnlomen narmow joints thr same wilth.
-dimphomus (Nordmann, 18:32).
49. (ienital segment mberrlate, deenhy loberl; basab abolomen joint twire as wide ats terminal
motmstus (B-Smith, 18!s, 1).
50. Abdomen joints abont equal in longth
.51.
50. Andomen joints very mepual in lemgth
52.
51. (iemital wegment arom-shaped, longer than wide; formbla leos weak, three-jointed. rossterki (I)-心mith, 1898, 1).
51. (ionital wemont ofhoular, wider than long; fourth legs mediam-sized, four-jointerl.-.-...-.-....................................... . . - toryedinis: (lleller, 1865).

52. (ienital segment oblong, slightly lobed; basal ahdomen joint threes times the

Siz. (ienital sogment elliptieal, lobes long abl very wide; lasal abolonem joint three times the terminal bomito, new sper这, p. 5s9.
5\%. Conital segment flask-shaperl, no lobes; hasal ablumen joint twiee the terminal
uffinis (Ifeller, 1866).
5: Gemital segment elongate-olrovate, contracted anteriorl.; fith legs invisible;

5:\%. (ienitalsegment broad, acorn-shaped; filthlegs visible; basal ablomen joint three times the terminal] ... (Kröyer, 1863).
 minal.
irrituns (Leller, 1865).
54. Abromen distinetly lomger than the qenital seqment.
55.
54. Abromen about the vane length as the genital segment 56 .
54. Abdomen considerably shorter than the erenital segment 57 .
55. (ienital segment orbicular, showing hoth the fith and sixth legs, female. stromuttoi (Kröyer, 1s63).
55. (ienital semment triangular; only the fifth legs showing; formblear sines thattemed into laminar
platytarsi (B-smith, 1898, b).
55. (ienital semment obeordate, little wirler than abdomen; fifth legs concealed.
hirsutus (B-אmith, 1898, a).
55. (ienital serment elliptical, there times as wide as abotomen; fifth legs concealed. productus (Dina, 18is), p. 597.
56. (ienital segment elliptical, lohes long and narrow; freesegment long and wide. montranthi (Kröyer, 1863) 607.
if6. Genital remment ollong-obovate; lobes short and broad; free segment short, narrow... (Dana, 1852), p. 597.
56. Genital segment rectangular; no lobes; free segment short and wide.
drtiviri (van Beneden, 1892).
57. Females, both fifth and sixth legs visible; genital segment acorn-shapert. isomy. (Steenstrmp and Lütken, 1861), p. 602.
57. Females, no legs visible on genital segment 58.
57. Males, fifth legs concealed; genital segment narrow ovate, well lobed; emarginate posteriorly \qquad . chorinemi (Krïyer, 186:).
58. (ienital segment oblong, four times as wide as abdomen; no lobes; frontal

58. (ienital segment elliptical, twice as wile as abdomen; no lobes; free segment

58. (ienital segment narrow obovate, well lobed; free segment whort and broad. tonu.. (Heller, 1865).
58. Genital segment oblong; lobes short, hunt; alxhomen rhuh-shaperi; free segment long, narrow ..somi (D-Smith, 189s, a).

CALIGUS RUFIMACULATUS, new species.

Plate V .
Female-Carapace more than half the entire length, elliptical, distinctly longer than wide, and scarcely narrowed anteriorly (fig. 51).

Frontal plates large and wide, nearly staight along their anterior border, and decply incised at the center, where may nearly always be found the remains of the frontal filament projecting from the incision. Lumules large, almost circular, and widely separated, but not projecting very much. Posterior sinuses wide and inclined to the central axis, leaving the median lobe more than half the intire width and projecting considerably beyond the lateral lobes. Lateral lobes marrow and eurved inward at the tip. Free thorax segment small and marrow, not distinctly separated from the genital segment, the dividing groove being little more tham a notch in either side, just back of the fourth legs. (Genital segment obovate, as wide as long, narrowed anteriorly, with smooth, rounded ontlines, and without appendagen or sete visible dorsally.

Abdomen short and one-jointed, three-fourths the length of the genital segment and about twice as long as wide; somewhat swollon at the center into a spindle-shape. Anal lamine large and stout. Egge cases marly as wide as the abdomen and about an long the carapace, 35 or to egges in eath.

Anterior antemme large and stont, the two joints about the same length and heavily armed with phomose seta and spines. Postertior antenne rather slender, but long, and with the terminal hook sharply bent near the tip; a short and stout accessory ppine present posterior to the basal joint. First maxilla small and nearly straight, with a swollen base. Gecond maxilla also nealy straight and ahout as long as the rostrmm; rather stont and bhont and considerably widened at the base.

First maxillipeds with a rather stont basal joint and the manal slender terminal joint, the two joints in this species being abont the same length. The two terminal claws are fringed with hairs and look more like plamose sete than like claws, and there is ako a small protuberance on the imer magin near the tip which earries a tuft of hatrs. The second maxillipeds have a stont basal joint, but a rery weak temminal daw, the tip of whieh is abrupty marowed at the junction of the aecessory spine on the immer margin. Furea pecmlar; branthes about the same length at the hase, both incrasing in width from the center, giving the wholestrmeture somewhat the ontline of an hourghass. Bramehes flatemed dorso-ventrally, as wide at the tip) as at the base and considerahly divergent: lmmen brodd triangular. First legs with three weak terminal claws, a long and slender phmose seta at the posterior comer, and the minal three plumose seta along the posterior borter of the terminal joint. Seromd and third legs large and stout; the spine on the last joint of the exopod of the second legs is noticeably sender and weak, while that upen the hasal joint of the exopod of the thind lege is sout and as wide at the tip as at the base. Rami of the third legs well separated, large and prominent. Fourth legs small and wak, not reaching the posterion margin of the genitat segment: three-jointed with five spines, the terminal ones graded in longth from without inward, the inner one three times as long as the onter. Fifth logs very rudimentary, sabeely visible in ventral view.

Malr. Carapace the same shape as in the female, but relatively morl larger. Free thoracic segment much more distimotly separated from the genital segment and nearly as wide as the latter (fige os).

Genital segment rery much smaller than in the female, being only a 'puater the length of the "arapace; fifth legs showing planly on the lateral margins about one-third the distance from the posterior end. Abdomen litale more than half the width of the genital segment and about one-fifth longer: two-jointed, the hasal joint less than hatf the length of the terminal. Anal lamina much larger than those of the female and armed with longer seta. The rhief differences in the appendages atre fomd in the reeond antemme, the first maxilla, the second maxillipeds. the furca, and the third and fourth swimming legs.

The second antemme are larger and stonter than those of the female and are branched as is nsual in the males of this genus.

The first maxillae are fully twice as long as in the female, and are strongly curved, ceidently serving as scondary claping organs. The recond maxillipeds are math onlarged in hoth the hasal and terminal joints. In the center of the hasal joint on the inmer margin, opposite the base of the accessory spine, there is a large swelling eapped by a smatl hemisphrieal plate with a roughened surface. This aids in the prevention of slipplag, and shows that these maxillipeds with the second antemme are manifently the whef organs of prehension (tig. 5t).

Furca much narrower than in the female branches close together and nearly parallel, flestroying the homglass ontline.

Third legs larger than in the female, attached nearer the posterior border of the carapace, and projecting laterally to the edge of the carapace, and posteriorly to the center of the genital segment. The basal joint of each is fully as large as the genital segment, and being tramsarent the longitudinal fibere of the muscles show throngh plainly and give the central portion a striated appearance. The fourth legs are relatively mach longer tham those of the female.

Total length, female 3.6 min.: male 3 mon. Length of carapare. female 2 mm ; male 1.9 mm . Length of genital segment, female 10 st min.; male 0.6 mm. Length of ablomen, female 0.45 mm. : male 1.6 mm. Length of eggetrings 1.9 mm .
('halimus. -arapace considerahly more than half the entire length. ovate, strongly marowed anturiorly. Frontal phates large and well defined. l'owerior simnes narrow and neaty parallel, the median lobe proportionally a little wider and morr sumarely truncated posteriorly than in the adult (fig. sis).

First antemme large, prominent, and well armed with plamose sete and spines. Free segment very shom, but as wide as the genital segment. The latter is barrel-shaped, one-quarter wider than long with evenly rounded sides and sumarety troneated anterior and posterior borders.
The two aldomen segmente are about the same relative size as in the adult, but compared with the genital segment they are much wider, in fact almost as wide :s the genital segment itself.

The anal lamine are sualler than in the alult and their phomose sete are shorter. The appendages appear about the same with the exeeption that the serond, as well as the third swimming legs show postrion to the carapare in doral riew. Total length 1.85 mm . Length of earapace 1 mm .: width of the same 19.8 mm . Length of genital segment 0.3 mm . Leugth of atodomen 0.4 mm .

Color, pale straw yellow, wevered on both the dorsal and rentral surfaces with scattered apots of a rusty brown pigment. In some specimens these spots are few in mumber and not noticeable, but in the great majority of instances they are quite numerons and at once catch the eye, particularly on the dorsal surface of the genital segment.
(ruffers, mist color: Imuculutus, spotted.)
specimens belonging to this species were obtained by the anthor from Frimdulus mujalis and F. heteroclitns.

They are more often found upon the former but are not at all common, a careful examination of five hondred of these minnows yielding barely half a dozen specimens. The National Xluseum collection also includes three specimens taken by Vinal N. Edwards, one from a mullet (Mugil cephlulus), and the other two from the surface at the Fish

Commission，Woods Itole．The fact that these two were captured in surfare skimmings is an indieation that this speries swims about freely at the hreeding season．

As the measurements indicate they are very small and well suited to parmsitism upou such small fish．They are also very tramsparent and might well have been named dimp，hems had not that name already been preocenpied．Consequently it makes an excellent species for study， since the internal anatomy can be plainly seen without dissection，and the small size is to its advantage when examined under a high power． It is a very lively species and moves about freety over the body of its host．Like the Arguhus foum upon the same minnows，this species occawionally forfeit，its life when the tish get hugrey，and the author fost a tine lot of males and females which were being kept upon Fun－ duhtus in an apuarimm，the fish catching them as they were swimming abont．

CALIGUS SCHISTONYX，new species．

Plate VI．
Femele－－Carapace one－sixth longer than the rest of the body． about as wide as long，ovate，strongly narrowed anteriorly．Frontal phates wide and prominent；lumbles large，almost cirembar，slightiy projecting．Posterior simuses rather narrow and somewhat inelined to the median axis；median lobe less than half the entire width and projecting bat little beyond the lateral lobes；the latter broad and well rounded（fig．（6ir）．
The carapace is very peculiar in its grooving：the thoracie area is almost＇quadrilateral and is about three－fifthe of the length and wilth of the carapace．From each of its anterion comers a pair of parallel grooves extend diagonally forward and outward to the very edge of the earapare．These growes are dose together and each makes a break in the contimity of the carapace margin．This is the only instance within the authors experience，in which any of the carapace groover actuatly rach the margim．and it is very noticeable for that reation．

Taken in comection with the groore along the anterior border of the thomace area it forms a joint extending the cutire width of the calapace and separates the heal as completely from the thorax as the later is separated pesteriorly from the abdomen．

The centrat portion of the thoracic area is raised considerably， leaving a tery marrow depressed border around the posterior mangin． The line of demareation between the raised and depressed portions is not parallel with the carapace margin，but on either side forms a atraight line inclined toward the central axis and in direct continnation of the posterior of the two indined grooves already noted．The eom－ himation of this line of demareation and the grooves thes produces a
trapezium or wedge which stands ont very prominently upon the dorsal smface of the campace, Furthemore, the tramsparent berder surrounding the carapace, instead of being more broadly rounded than the lateral lobe at the posterior extremity of the latter, the condition which prevails in all other species, comes to a sharp point, giving the carapace a peculiar angular appeatance.

The free thoracic segment is very short and narrow, about threefifthe as wide as the genital segment. Gonital segment ohlong, with well-rounded corners, half as wide as the carapater, with short and blant posterior lobes between which the posterior margin is concave. Ablomen four-fifthe as long as the genital segment and somewhat leses than half as wide; shaply contracted where it joins the genital segment and shightly swollen at the center. Anal papilla large, well separated, and somewhat rurved inward at the tips, bearing phomose seta which are very long and slender. Egg cases three-fuaters as wide as the abdomen and a little longer than the campace: about 60 eges in each. Anterior antemme short and stout, the basal joint rery plentifully supplied with phmose seta along its anterior and lateral margins: terminal joint club-shaped.

Second antenme with a stout basal joint reinforced by a short, hunt spine posteriorly; terminai joint long and slender. with an abrupt curve. First maxilla short, blunt, almost straight, and considerahly swollen at the base.

Second maxilta simple, mbranched, nearly as long as the rostrum, slightly curved if at all, and acuminate.

First maxillipeds with a stout basal joint and a long slender terminal joint; the immer terminal claw twice the length of the onter; a short -pur on the immer margin of this joint near the distal end. Second maxillipeds with a stont and swollen hasal joint and a rery weak and slender terminal claw, the disproportion hetween the two being quite noticeable.

The claw is only half the length and not more than one-tifth the witth of the hasal joint, and its terminal portion beyond the hase of the accessory spine is searcely larger than the spine itself. The inner margin of the hasal joint is rased into a slight koob opposite the base of the accessory -pine, but the flimsy little temmal claw does mot look as though it conk hold down very much against this knob. Furea long and narrow, with hamehes about the same lengthand width as the basal portion: considerably narowed at the center. like an hourglass. The divergent branehes cume inward towat each other, while the sides of the base curve ontward away from each other, but only slightly in either ease. Often the branches are somewhat swollen at the tips.

The tirst legs are short and stont, with two spines on the posterior border of the basal joint and a single smatl spine at the distai end of
the second joint，at the anterior corner．The terminal rlaws on these legs are peruliar in that they are all three hiramose the division extending well beyond the middle of the claw．Of the two branches the endopod is nearly straight，while the exoped is strongly curved． Furthermore，the appondare at the inner corner，between the temi－ mal clans and the posterion phomose sete instead of being a smaller phumose sota，as is manally the case，is here a long and stont claw， mbianthed and comed over strongly ventrally（fig．Th）．

This peruliarity of the terminal raws has given the species its name．The other legs are like those ordinarily found on Caligus． The spines upon the last two joints of the rapod of the second legs are very suall and insigniticant．While that upon the basal joint of the exopod of the third legs is large and stout．The rami of these third legs are widely separated and the endopod has but a single joint．

The fourth legs are very slendor and weak，three－jointed，with the basal joint as long as the other two．The seeond joint has a spine at its distal end and amother small one on its onter margin．The ter－ minal joint has the minal three terminal spines，of which the inner one is fully twife ats long as the serond，and a small spine on its outer margin．

The lifth legs are so far reduced as to be invisible except hy very careful scrutiny upon the rentral surfare．

Malo．－The sides of the carapace are not arched as in the femate but are nearly straight lines，and the anterior contraction is much more derided．The postarior simuses are a very broml U－shape， throwing the tips of the lateral lobes ontward away from the median lobe．This，together with the sharpangles of the tramsparent horder， gives the carapace a marked trapezoidal form，the anterior and pos－ terior sides parallel，the former only two－fifths the length of the latter，while the right and left sides are equally inclined．The trape－ zoid formed upon the dorsal surface by the grooves between the dif－ ferent areas is the exact reserse of this formed by the margin，and is not as elearly defined as in the female．The thoracic area is more nearly semicirenlar in outline than quadrilateral（fig．65）．

The large basal joints of the third legs project from either side of the median earapace lobe and do not orerlap the lateral lobes，nor even wach them．The genital segment is very small，scarcely wider than the abdomen，as wide as long，with evenly rounded sides．The fifth legs appear as very small papilla upon the lateral margins near the posterior end of the segment．The abdomen is two－jointed，the joints of the same diameter lont the terminal one four times the length of the hasal．

Anal papillae very large and foliacems，with long and slender phomose setie．

The only appendages which are at all worthy of special mention are
the second antemae and the second maxillipeds. The second antemme are rery much conarged and three-jointed. The two hasal joints are stout and swollen, while the terminal joint is considerably smaller and terminates in a short, stubly claw. The rentral surface of the second joint is parted for a little distance from the distal end by a deep groove, which, starting at ahout the center of the distal margin, curves around inward in a hroadsweep and disappeats yuickly upon the ventral surface. Along either side of this groove the chitin integument is rased in transerse folds whose anterion edge overlaps the pesterior one of the fokd next in fremt, thus giving a rasp-like surface which must he of great assistance in the prevention of slipping. The line of folds afong the inside of the groove extends backward, following the sweep of the groove arross the rentral surface to the proximal end of the joint. The folds along the onter side of the groove stop with the groove itself. The terminal joint is exceptionally peculiar. It is about as wide as long and consists essentially of a very stout elaw which is blunt and strongly curved at the tip. But upon the rentral surface of this claw mear the posterior margin are two stout acessory spines, each arising from a raised base. And in the center of the basal portion of the claw is a circular, raised area with its surface thrown into longitudinal ridges or folds, which project considerathy. This, like the rasp-surface on the seeond joint, must assist in ohtaining a firm hold, and are the more needed in the make since these antemas are nsed for clasping organs.

The second maxillipeds are much larger than those of the femate but otherwise like them, and they eridently serve as aressory chaping orgalls.

Total length of female 4 mm.: length of carapace 2.1 mm . width 2.1 mm : length of genital siegment 1 mm . : length of the atrdomen 0.5 mm . : length of egg-strings 8.5 mm . Total length of male : $\mathrm{B}^{2} \mathrm{~mm}$. length of carapace 1.75 mm .; width 1.66 mm .: length of genital segment 0.4 mm . ; length of abdomen 0.62 mm .

Color a dark yellow, inclining toward brown in many specimens. (scheistomy.r, $\sigma \chi i=c$ to cut or divide, and "oveve a claw.)

The National Museum collection includes five lots from the common menhaden (Brevomtion tyramus), numbered 6052 , 60600, 6071. (6150, 6157. Of these, the first three contain but a single female each, while the last two contain thirteen specimens, two of which are males. They were all obtained from the outside of the hody. There is a single female. numbered 6151, from the outside surface of the blue-fish (Pomutomus sultutrir), and nine lots obtained from the tow. Of these latter, eight are numbered 6038. 6070, 6095. 609:8, 60:99, 6100, (6101. s111, while the ninth is without a mumber. The first of these lots contains four males, the other cight lots are made up of a single specimen each and evenly divided betwem the sexes.

This distrihution shows two facts very planty. First, the menhaden is avilently the host of the species, the presence of a single specimen on the bhue-fish being easily explamed by the fact that the latter feeds upon the menhaden. And then such a large pereentage taken in the tow indieates that this sperios is very active, as much so as (! raperer. although its hosts are nowhere near as momerons as those of the latter species.

There is also a strong suggestion that these parasites are not likely to change their depth very materislly: those which frequent surface tish stick to the surface even when they are swimming about freely. And probably the same ean be said of those which are parasitic on fish that frequent the bottom.

This species is not very abmont, as the pancity of specimens clearly shows. As ther were all taken in the latter part of August and the first of soptember, this period is probably the height of the breeding seation.

The species can be recognized easily by the sharp angles at the posterior cormers of the carapace and the general trapezoidal appearance of the latter. The diagnosis can then be veritied by an examination of the claws at the tips of the first swimming legs.

CALIGUS RAPAX Milne Edwards.
Plate $V^{\prime \prime} 1 \mathrm{I}$, figs. $3,7,9,10,18,22,23,26,: 32,36,46,47,45,49,50$ in the text.
'uligus elongutus Normmann, 18:22, p. 2t.
T'eliguss elongutus Krä̈ver, 1837, 1. 201.
('uligms maple Milne Enwarin, 1840 , 1. 453, pl. xxxving, tigs. 9-12.
('uligus shongutus Midne Emwards, 1isto, 1. 454.
('alighs leptochilus Frey and Leeckaft, 1847, 1). 165.

 1898, 1. 10, pl. н, fig. 6; 1899, 1. 2.-T. Scotт, 1900, p. 148, , 1. v, figs. 13-19.
Framele-Frontal plates wide; frontal margin slightly rounded; lumules large, orbicular, and projecting considerably. Carapace ovate, longer than wide; posterior sinuses narrow, of medium depth, and with approximately parallel sides; thoracic area broad, three-fifthe of the entire width, well rounded, and projecting posteriorly about the depth of the simmes beyond the lobes; lobes narrow, short, slightly witere at the tips (fig. 79).

Free thorax segment rery short, only three-tenths as wide as the carapace. Genital segment large. more or less quadrilateral, with rounded comers, slightly wider than long, seren-tenths the width of the carapace. Abdomen unsegmented, varying consideralby in length (from 0.5 to 0.8 the length of the genital segment), about half as wide ats the genital segment: anal simms sarerly perceptible: anal lamine of
good size, terminated by one short and three long plumose setix, the longest about three times the length of the lamine.

First antenne large, their tips nearly equaling the extreme width of the carapace; terminal segment about the same length as the basal, one-quarter as wide as long.

Second antenme close together and rather weak, with a small supplementary hook on the posterior margin of the basal joint. Month with a somewhat ${ }^{\text {fuadrilateral opening fringed by long setix; margin }}$ of the upper lip incised at the center: mandibles stont, strongly curved, and toothed along their inner border.

First maxillte small, short, and slightly curved; second maxilla slender, nearly straight, and acuminate.

First maxillipeds with a very slender terminal joint about half as long again as the basal joint, the two curved daws at the tip very unequal. Second maxillipeds fairly stout, the basal joint and the terminal daw of ahout the same length, the batter with a small curved spine on its imer margin.

Of the swimming legs the lirst pair is three-jointed: the hasal joint is swollen and armed with two spines on its outer margin, and a chitin plate carrying a spine on it, posterior margin.
The plate is transersely olongated and has a large blint projection near its distal end.

The fourth swimming legs are three-jointed; the triangular second joint terminates externally in a longe spine; the terminal joint has a stout spine on its cexternal margin, and three long and one short (the imer) spine at the tip.

Total length 5-7 mm. Length of carapace 2.6-3.6 mm.; length of genital segment $1.5-2.2 \mathrm{~mm}$.; width of carapace 2.4-3.4 mm.; length of abdomen 1-1.5 mm. ; length of egg-strings 2.6-3 mm.

Male. - Carapace about as broad as long and relatively wider anteriorily than in the female; the posterior sinnses are also much wider and their sides are flaring instad of parallel. The thoracic area is only one-third the width of the carapace, and it searcely projects posteriorly at all; the lobes are much wider than those of the female and are well rounded. The free thoracic segment is considerably longer and narrower than in the female, while the genital segment is pearshaped, only one-third the width of the carapace and well rounded posteriorly. The ablomen is about the same length as the genital segment, two-jointed, with the first joint one-third as long as the second (fig. 80).

The anal lamine are long and large and are attached to the outer posterior corners of the abdomen; the plmose setse are fully twice as long as in the female.

On the rentral surface the second antenna and second maxillipeds are stonter than in the female, and the small spine on the side of the
latter is much larger. In the fourth swimming legs the terminal joint is longere, and the spines and setee differ slightly in their relative length and arrangement. In both the male and female the bases of these spines are reinforced by semicircular phates fringed with small hairs.

Total length $4-5$ min. Length of carapace 2.35 mm ; width of same 2 mm .; length of genital segment 0.75 mm . : length of abdomen 1 mm .

Stuphlins larm. Body elliptical, widest at about the center; width to the length as 3 to 5 . Appendages projecting far beyond the body margin and typialal in form (fig. 36, p, 536).

First antenne uniramous, terminating in two phomose sete; second antenne and mandibles hiramous; exopod four-jointed, endopod twojointed; each joint of exopod bearing a long phamose seta, while the terminal joint of the endopod caries two sete.
The median eye is placed very far forward and concealed beneath a spot of pigment. The anal sete are flattened spoon-shaped, of good length, and they project sidewise from the body instead of diagonally backward. The color is a pale yellowish, with mst-colored pigment distributed in five spots, a small area over the median cye anteriorly, a large area on either side at the center, and a small area on either side just in front of the anal seta or balancers. The pigment is comparatively faint and samecly appears under a low power as it does in other species. The anterior half of the body is very transparent and shows the internal structure plainly. Total length, 0.4 mm . Width, 0.23 mm .

Chetimus stage- Carapace elongate-ovato or spindle shape, narrower anteriorly: frontal plates narrow and inclined backward along the front margin of the carapace. losterior lobes small, turned inward strongly, and with scarcely any -imus: posterion margin of carapace squarely truncate. Eyes a little behind the center of the carapace, large and prominent; frontal gland very large and occupying the whole of the anterior angle of the carapace. Free segment much larger than in the adult, one-third the length, and more than half the width of the carapace, its sides strongly conyex. Genital segment and abdomen at first fused and ahout the same width as the free segment, but separating with the tirst moult, the abdomen several times the larger. Anal lanime short and wide, and projecting diagomally sidewise rather than straight backward: the phmose sete rery short and stout. Both pairs of antenne and all the month parts present but somewhat rudimentary, esperially the second antenner, whose terminal joint is little more than a small apine on the tip of the large basal joint (figs. 46-5 (1).

The lirst two pairs of swimming legs are the only ones developed in early chalimus stages, and they are worthy of notice from the fact that the first pair is biramose: but the endopod is made up of a single joint, which is very small and quickly disappears. Color the same as
that of the adult, except that the pigment spots are much fewer in mumber and more widely separated. Length 2 mm., increasing gradnally to 3.5 or 4 mm . Width of carapace 1 mm., increasing to 2 mm . Width of free segment 0.55 mm ., length 0.55 mm . Length of abdomen 0.8 mm .
(rapare, rapacious, greedy.)
This is the most common species of the genns on the northeastern coast of the United States, having heen taken from more than twentyfive different kinds of tish by many collectors working in the interests of the United States Fish Commission.

The author, following the example of Mr. Richard Rathbun, as expressed in some very valuable manuseript notes, the sulstance of which is here presented, has been liberal in his interpretation of specific characters. In consequence, there are included moder this species individuals which some investigators would probably subdivide into several lots. Butafter a very careful comparison the differences observed are really too ohscure to be of much value for clansification. The variation does not extend far in any one direction, and there is comparatively little difference in size. The detail of the appendages agrees very closely in all the specimens, and careful comparisons have been made in every instance with anthentic specimens from Europe. Specimens from the mackerel present perhaps the most marked differences in structure, but they vary among themselves and many are perfectly normal. These differences concern chiefly the fourth pair of legs. Sometimes the second of the terminal ipines, comnting from the proximal end of the terminal joint, is wanting. Again, the ultimate and penultimate joints are relatively shorter amb stonter than in normal specimens; or the three successive spines on the outer margin may overlap one another; or the fringed disks at the bases of these spines may be so little developed as to be overlooked. In specimens from other tish the furea may have shorter and stonter branches, while on the common flounder individuals may be found with the abdomen so much shortened as to appear like those of (' courtus. But in all these instances the other appendages are perfectly normal, and it does not seem as if these differences were worthy of creating even a well-marked variety, to say nothing of a distinet species.

They must be mentioned, however, to show that they have heen noted and given the proper attention.

Both sexes are usmally fomd upon the same fishand occur any where upon the external suface, often showing a preference for the pectoral fins. Upon the flomders and skates they are commonly on the upper or pigmented surface, but also occur on the unpigmented ventral surface. Here again, as in the case of the Arguli, when we reflect that these fish frequent the bottom, and that they often bury themselves in the sand or mud, we can appreciate better the effectiveness of a
prehensile apparatus which holds the Caligus securely to its host, even in the presence of so much friction.

Of course the color of the Caligus hamonizes better with the pigmented side of the fish; on the under surfiace the copepod stands ont instrong contrast with its surrounding.

The egg strings in this species are comparatively short, and this gives the female greater freedom of motion. Both makes and femater are more livety than most species, and they manifest this activity frequently ly leaving their host and swimming about freely. This happens more often at night than during the daytime, and several investigators have recorded the capture of both sexes in the tow along with free forms.
such a hathit possibly helps in explaining their presence upon so many difterent kinds of fish. Many of the latter, no dount, are mere temporary makehifts to tide over a necessary interval and to keep the copepod supplied with food until it can return to its regular host.

Associated with its distribution among so many hosts is a considerable variation in the color patterin. Most specimens have a pale orange tint and are more or less transparent, but it can be readily seen that those obtained from dark fish or from the darker pigmented surface are themselves of a deeper color and more opaque than others from light tish or from a nompigmented surface. The difference is due to an increase or decrease in the number of pigment spots and not to any fundamental change in the pigment itself. Each spot consists of an uniformly colored center as if washed in with water color, and long irregularly radiating filaments. The spots are thickest along the margin of the earapace where the filaments are interwoven into a dense, narrow band, close to the margin. Similar but much wider bands are found along the sides of the genital segment and the abdomen. There is also a spot of pigment just dorsal to the furca, and another upon either side on the hasal lamina of the third pair of legs, showing dorsally between the carapace and abdomen. The frontal plates, the region over the cyes, the whole of the thorax, including the segments fused with the head, and the center of the genital segment and abdomen are ordinarily free from pigment.

This speries has been secured from the following fish on the North American coast, mostly by the United States Burem of Fisheries. The numbers are those given to the separate lots in the National Musemm. From the common flomder (1 'seudopleuromectes americamess), lots 1267 and IV. 18; from the four-spotted flounder (I'aralichtheys oblongus), lot 12607; from the cod (ficdus merthue), lots s112, s115, 12635, 12636, $12638,12640,12641,12662,198: 93$; of those collected and numbered 15. Vinal N. Edwards, V. N. E. 1405, 1412, 1413, 1417, 1420, 1423, 1462, 1466; of those collected and numbered by the anthor, W. s, 10, 16, 22: from the haddock (Meltanogricmmess regleftimes), lots 12611, 12626, 12640,

 from the hake (Crophycis temuis), tiont, 6161, 6165 ; from the lumptish ((yydopterus lumpux), 12615; from the mackerel (scomber scomburns), $12620,12621,12622$; from the seup) (Stemotomm (hrysops), 12630), W. 20 ; from the stripect bass (Rocoms lineatus), 12613 ; from the alewife (('7uper rermalis), 1262t; from the sturgeon (Acijenser' strrio), 12ti2.3, W. 21; from Acipenser 7norirostrom, 12610, 12615, 12618, 12629: from the sting ray (Inesyutix centrmote), 6185; from the skate (Rela lar-ris).
 6112 ; from Ratite rrimacel. 1399. W. 1t and 24 ; from the spiny dogetish (Squalus acanthias), 12633); from different scolpins, 8114 ; from the whiting (Menticirmbess swatilis), 616t; from the shad! (Alose supplissimm), 12612; from the swordfish (Jipheas glarlius), W. 12; from the rudder fish (Kyphosess vectutrix), taken in floating gulf weed, WT. 11; from the sand shark (('encharios littoralis), W. ©; from the remora (Remomer remoret), W. 13; from the crevalle ((ermme cryses), W. 15: from the cutlass fish (Trichinms lepturns), W. 1!? from the sand lannee (Ammorlytes ammricamns), one ummmbered lot. There is also a single sperimen of the chalimus stage still attached to a small Monucunthus and immbered W. 20. Other specimens of the chatimus are numbered (i110, 1148,6191 , and W. 1 . From the surface were obtained lots 6097, $6197,8110,12614,12616,12619$, and W. \because, some of which contain several specimens. The National Museum also possesses a fine series of specimens from the Durham coast, England, contributed hy the Rev. A. M. Norman, numbered 12906. These have been taken as the types of the species, and with them all the American forms have been carefully compared.

CALIGUS MUTABILIS, new species.

Plate VIII, fig. ©~ in the text.

Femmbe-Carapace about three-sevenths the entire length. as long as wide, not narrowed anteriorly. Frontal plates well defined, hut less than half the width of the carapare; lumales large, circular, and projerting. Posterior sinnses wide and slightly inclined away from the central axis. Median lobe much less than half the entire width and projecting only a little heyond the lateral lobes; the latter hlunt and well rounded (fig. 90).

Thoracie areat medimm size, the anterior groove almost a perfect semicircle. Free thorax segment short and narrow, about one-fourth the width of the carapace, and contracted into a much narower neck just in front of the bases of the fourth legs. Genital segment very variable, according to the age of the individalal well as the derelopmental stage of the eggs. In young females and in the adults before

Proc. N. M. roll. xxviii-04- 37
the protrusion of the cgg caves this segment is a broad flask shape, a little wider than long, with well-rounded sides, and a syuarely-trmeated posterior border. Its width under these conditions is fully threefourths that of the carapace and sometimes more.

But after the protrusion of the exg cases it assumes an elongated spindle shape, wider posteriorly, and with a somewhat emarginate posterior border. In this condition it is ahont one-lifth longer than wide and narrows toward either end, its extreme width being less than twothirls that of the carapace.

It is always contracted into a short, narrow neck where it joins the free segment, and is wrinkled across this neck as though segmented. The abdomen is short, but little more than half (0.6t) the length of the genital segment in females with egg cases, and about one-third its width. It is two-jointed, the joints approximately the same length, hut the anterior one a little wider.

Anal lamine small, well separated, and somewhat curved in toward each other. Egeg cases short, half the length of the body, but about as wide as the abdomen, and each contaning 50 eggs.

Anterior antenma short and closely appressed to the carapace; posterior antenne stont, with a swollen basal joint hearing an accessory pine and a strong terminal hook.

First maxilla medium size with a hlunt point and an enlarged base: s.end maxillie very long and slemter with an acuminate point. First maxillipeds with an exceptionally stout hasal joint, which is fully three times the diameter of the terminal joint, this latter being the usual weak type, a little shorter than ordinary and tipped with two strongly curved claws. Furca a rounded Y-shape, the base being the same length as the hanches. but much narrower, while the banches are stout. hlunt, and strongly curved. First swimming legs short and stont, with the usual terminal clatws, the mall seta at the corner, and the three large plumose setir on the posterior margin of the terminal joint. But these phamose setie differ from those in most species in that the basal third is swollen in diameter and hordered not by phmose hairs like the tip. but with spine-like projections. The seta nearest the distal end has them on the onter margin only: the middle seta has about half as many on the imer as on the onter margin, while the inner seta has them on hoth margins equally.

The lasal joint of the second legs in very muth swollen, while the two hranches are short and stont. The spines on the endoped are sender and accuminate. The rami of the third legs are large and stand out prominently from the edge of the basal lamina. The spine at the base of the exopod is also large, well curved, and bunt. The fourth legse are short and weak, not reaching to the center of the genital segment, three-jointed, with five apines of about the same length situated close together along the outer margin. The two terminal joints are
about the same length and diameter an the basal joint. At the base of the spines are small semicircular lamine fringed with hairslike those in ' '' ropers and several other species. The fifth legs are not visible dorsally.
Total length 5.6 mm . Length of carapace 2.3 mm . wilth of carapace 2.2 mm.; length of genital segment 1.9 mm .: length of abdomen 1.1 mm . : leugth of egg tubes 2.5 mm . 50 eggs in each.

Male- - Carapace a little more than half the entire length, longer than wide, otherwise similar to that of the female (fig. 91).

Free thorax segment bearing the same relation to the carapace as in the femate, but being wider than the genital segment, owing to the diminution of the latter.

Genital segment a bery narrow spindle shape, less than one-fourth the width of the carapace, and three fifthe as wide as long.

It is wrinkled where it joins the free segment just as in the female. lont is marrowed almost mone at all, for it is already much marrower than the genital segment in comsequence of its pindle shape. Abdomen the same length as the genital segment and two-thirds as wide. made up of two joints, of which the anterior is considerably shorter than the posterior and subpherial in shape. Anal lamina very large and foliaceons. Appendages as in the female except that the ponterior antemme are branched, while the first maxillar are elongated into a long, slender hook, evidently used in prehension. The second maxillipeds are enlarged and form the chief organs of prehension. The fourth legs are relatively large and overlap somewhat the hasal joint of the aldomen.

Total length 3.4 mm . Length of canapace 1.85 mm . ; width of carapace 1.7 mm .; length of genital segment 0.7 mm .; width of same 0.43 mm .

Color a light horn yellow. delicately pencilled with pigment spots of pink and red, which are mo-t prominent along the central axis of the carapace and in the posterior lateral angles.
(mutchlitis, changeable, referring to the shape of the genital segment at different times.)
This opecies agrees somewhat with a variety of (. gurmerni figured hy Kröyer (1863, pl, if, tig. 3. g), hut the carapace is proportionally shorter and broader, the lumules are larger, and the fure is much more slender. The species imitans described by Heller (18tion, p. 1 Th. pl. xv, figs. 7 and s) has similar large lunules, bat a much marrower carapace and a very different furca. The species isony, Steenstrup and Lütken (1861, p. 355, pl. iII, fig. 5), has very much the same proportions, but differs markedly in structural details.

It can be readily distinguished from other American forms by the simple fiact that it is the only one laving the abdomen ahout the same length as the genital segment and tro-jointed.

It is not a rery lively specios, ath thas far has a limited number of hoses. The National Musedun collection inclades seroral lots of spece mons taken at different times, but all. with two exceptions, from similar hosts the sea hases. As the sedentife mane of the host is not reeorded in most of the instances, it cam not be determined whethere these hosts were all the sime species or mot. Let 6155, consisting of ten males and females from the month of Contromeristes strintme, is taken for the types of the new species. There is amother lot. 611:\% from the month of a ". sea hass." and six ummmbered lots, all from the mouthe of "sea basis" at or near Woods llole, except a single female from the mouth of a pollock and amother from the month of a lomito.

CALIGUS ALIUNCUS, new species.

Plate 1N.
Fimate- ((anapace ellipitical, one-fifth longer than wide. Frontal plates distinet and rery wide, not emarginate at the center; firontal margin marly straght. Lambes large, semicireular, prominent. Posteriod simues narrow and quite deep). lataing the median bobe nearly two-thirds the contire width; lateral lobes narrow and corved inward. Thoracic area very large, half the length of the earapace amed more than two-thirds of the width (tig. 10: F).

Frea thorax segment tramsersely linear, nearly as wide as the genital serment, hut very short. Genital segment quadramgular, twodifthe atong as the carapace a little wider than longe, with short and bhut posterior lobes.

Whdomen one-fifth shorter tham the genital segment, but more than half as wide. made up of fomr segments, of which the two end ones are about equal and considerably larger than the middre ones.

The trminal segment is depply hollowed on either side posteriorly for the reception of the small, lateral anal laminae.

These latter are nearly spherical and do not reach beyond the tip of the ahdomen: they each carry three long plamose sete posteriorly and a meh shorter one on the onter margin.

Egre cases narrow, scareely more than one-third as wide as the abdomen: egos small and numeroms.

The birst antemare are a little longer than the frontal plates, the two joints athout the same length, hat the terminal one rery much the narrower. Second antemme short and stont, with a boad terminal daw and no atcessory spine. No trace could he found of the first maxillae. second maxilla stont. Breadly triangular. and nearly as long as the mouth tube.

The latter is broatly U-shaped. a litala more than half as wide as long. and abruptly rombled at the tip.

Furea Y-shaped. the hase longer thatu the branches and eonsiderably comstrieded: bramehes thick, hant, and divergent.

Claw of the second maxilliped lose than hatf the length of the hasal joint, slender, and strongly enrved at the tip.

First thoracie legs tipped with the usimal three claws but larking the seta at the immer distal eomer between the there terminal clats and the three posterior seta. The claws are short and stout, all of the same length, and all fringed on either sido from the base nearly to the tip with a lamina or wing which is sharply servate (tig. 109). Ferond legs ominary, sare that the large spines upon the exopod are each fringed with a sermate wing like those on the claws of the first legs. Rami of the third legs quite widely reparated: claw on the exopod rery large, nealy straght, and with a wide, nomserrate wing along either side, giving it a broally spatulate outline.

Fourth legs large, reaching about to the posterior margin of the genital segment, four-jointed, with the usual five spines; but the spines upon the second and thitd joints are much larger and longer than usual, and, together with the three cmred terminal spines, are fringed with a wide serrate wing along either side from the tip nearly to the base. There is in addition a peeuliar appendage upon the onter distal margin of the basad joint. This consist of a theredrlike or whip-like projection longer than the second joint, rery plabble, and apparently museular rather than chitinous. It is tipped with a long plumose seta and is evidently tactile, hat what other function it may serve is a duestion. The fifth legs are situated just rentral to the bases of the egge eases, are very small, and do not project borond the posterior border of the genital segment.

Total length 7 mm . Length of 'arapace 4 mm ; width of sume 3.3 mm.: length of genital segment 1.5 mm .: width of same 1.7 mm .; length of abdomen 1.23 mm . Egg strings hoken so that their length can not be determined.

Unfortmately there is but a single speemen-a female - as the exponent of this species. This specimen was taken at the surface under the attraction of an efectrice light. The label is one of the United states Burean of Fisheries stemmer Albutors labels, but no locality is given. But the specimen differs in so many particulars from other species of Culigus as to leave no doubt of its validity. 'There is only one other species of (inligns known, (. comphicner, in which the abidomen has four joints, and in that species the size and proportions of the free and genital sogment are entirely different. The winged margins on the claws and spines is another distinctive feature, and is the one which has sugerested the speeitic name.
(aliuncus-ulu, a wing, and umens, a claw.)

CALIGUS CURTUS Muller.

Plate $\mathrm{N}, \mathrm{figr} .8,24,2 \mathrm{c}$ in the text.
Coligus curtus Mëller, 1785, 1. 1:30, pl. xxa, lig. 1.-Smith, 1874, p. 575.-Rathben, 1884, p. 486.
Catigns mulleri Leach, 1816, p. 405, pl. ax, figs. 1-8.-Dava, 1854, p. 1352.
('aligns hicnspidutus Nommane, 1s:32, 11, p. 17.
 1854, pl. x'th.

(erligus elegmen van Bexemen, 1851, b. 91, at male.
Framele - ('arapace somewhat bomger than the rest of the body, obovate. Frontal plates distinct, the anterior margin well rombled and incised at the center. Lamules latge and circolar, not very widely separatmand not projerting. P'osterior sintses narrow, shatlow. and with nearly parallel sides; the median lobe less than half the rutire width, projecting for two-thirds of its length beyont the lateral lobes; the latter broad and well rounded (fig. 11:).

Thomacic area quadrilateral, fomprising abont one-third of the carapare: its anterior groose nearly straight. Eyessmall and situated far forward. Free segment short and reve marrow, not more than half the width of the genital segment, and spindle-shaped. (genital seg- $^{\text {sen }}$ ment oblong, half as long as the earapace, with parallel sides and wellrommed corners. There are no lohes on this segment and the fifth fegs are not visible dorsally. Abdomen short, half as long as the genital segment. often slightly swollen at the center. Amal bamime rather small with very long setar; egge strings wide and about as long as the entire body.

Anterior antemme large, the basal joint much longer and wider than the terminal and both joints plentifully supplied with sete and spines. These antemme stand out very prominently from the carapace. Serond antemae stout, with a longenessory spine on the inner boreler of the tremimal daw, near its base.

First maxillae of grood size and situated close to the edge of the fatapate, the terminal portion strongly curved and the base considerably swollen. Second maxille broady triangular with corved sides, abruptly narowed near the tip into an acominate spine. This represents the condopod of the appendage, while upon the rentral surface of the hase of the triangle is the rudimentary exoper, consisting of a long, sender spine and three or four small setae. 'This exopod is articulated with the base of the endopod and is capable of considerable motion.

The mandibles are curved inward and dentated along the inner edge, the mumber of teeth being abont fourteen.

First maxillipeds very sender amel weak, the terminal joint much longer and narrower than the hasal, with a short spine on its inner margin mear the distal end. 'The two elaws at the tip of these apernd-
ages are doubly edged with a finely pectinated membrane. Second maxillipeds large and stout, the basal joint much swollen and at least a third longer than the terminal claw. Furca short and very stout, the base longer than the branches, which are straight and slightly divergent, the same diameter throughout and very bhont at the tips.

Of the swimming legs the three terminal spines at the tip of the first pair are short, obtuse and about the same length.
The seta at the outer corner is also short and maked; the plumose setie on the posterior margin are large, with very short pinnules on the outer margins, but of the usual length on the inner.

The rami of the third lags are large, well separated, and closely approximated to the margin of the basal apron, the claw at the base of the exopod being of merlium size and rather blont.

The fourth legs are three-jointed, with four spines, one at the extremity of the second joint and three at the tip, all well curved. The first three are small and of approximately the same size, the fourth (the inner terminal) one is nearly three times as long and toothed on it. outer margin. The two short terminal spines are edged along either side with a pectinated membrane. There is also a short semicircular membrane with a sharply serrated margin projecting like an epaulette over the base of each of these three spines.

The fifth legs are so small as to be invisible dorsally. Total length s-12 mm. Length of carapace 6.1 mm . ; width of same 5.9 mm .; length of genital segment 2 mm .; length of abdomen 1.2 mm .; length of egg strings 14 mm .

Color a uniform transparent horn color, often marked in older individuals with numerous dendritic delineations of an ocher yellow. A short time after death the copepod assumes an entire change of color, becoming a deep rose red. This new color is disposed in dendritic delineations corresponding to those of the ocher yellow and in all probability the yellow is changed into the red during dissolution (curtus, shortened.)

Male-Carapace hroad orate as wide as long, strongly narrowed anteriorly. Posterior sinuses inclined toward the central axis; median lobe wider that in the female; lateral lobes plump and well rounded. Free segment as wide as the genital segment, hut with the same spindle shape as in the female. Genital segment orbicular with well-rounded sides and posterior margin, atrifle wider than long, with the fifth legs. showing prominently at the posterior corners. It is much smaller than in the female, being only one-third the longth of the carapace.

The abdomen is a little longer than the genital segment, contracted where it joins the latter, and considerably swollen at the center. Anal lamine very large and foliaceons (fig. 112).

Of the appendages the second anteme and second maxillipeds are the only ones requiring spectial mention.

The second antemme are much longer than in the female and threejointed; the basal joint is broad and oblong and is attached to the rentral surface by its long posterior side. At its imer extremity it turns upward to receive the following joint. The recond joint is broad and well rombled; its entire immer and rentral surface is covered by a swollen parl formed of chitin ridges overlapping one another like claphoards on a homse, giving an admirable rasp-like surface for the prevention of stipping (lig. 12:3).

The terminal joint is obliguely articulated with this second joint and is much smaller and shorter. It terminates in two stont claws, widely divergent and quite strongly curved.

There is a slender seta on the outer margin and another on the inner' surface near the base.

The serond maxillipeds are much enlarged, the basal joint being swollen with a width considerably more than half its longth (fig. 124).

The termimal claw is less than half the lenget of the basal joint, but is stont and furnished with powerful moseles. Its tip shuts into a socket formed at the base of a large spine on the ventral surface of the basal joint, aflording a strongerip. Between this spine and the hase of the terminal claw there is amother shorter and smaller spine with an acuminate tip. This shuts in past the side of the terminal claw when the latter is closed and thas strengthens the hold. The other appendages are like those in the femalo.

This species is one in which the mates are larger than the females, as can be seen in the following measurements:

Total length $13-20 \mathrm{~mm}$; length of cantapace $7.5-12 \mathrm{~mm}$. width of same $7.4-11.5 \mathrm{~mm}$. ; length of genital segment $2.5-4 \mathrm{~mm}$; length of abitomen $2.5-4$ mm.

Clmlimms, later stutes. - Carapace narrow orate, much longer than wide, abont 0.64 of the entire length, contracted considerably throngh the frontal plates. Posterior simmes narow and slit-like; median lobe pojecting nealy its entire longth hehind the latemal lohes (fig. 115).
bosterior portion of the body very marrow and of nearly the same diameter throughout. Free segment of grood length and well rounded at the sides; genital segment abo well rounded, with the fitth legs showing on wither side near the posterior end.

Abdomen a little narrower, but with well-rounded sides; anal lamina latere and broad.

The homales appear early upon the frontal plates and are large and semicircular in ontline. 'The eyes are small, highly colored, and placed melatively much farther back of the frontal margin than in the adult. The appendages are nearly the same as in the adult.
 sharply pointed in front. This batore is dae almost entirely to the frontal phates. whese width is more han one-third the length of the
campace. They taper forward to a sharp point at the mase of the frontal filament as though pulled ont ly the latter. The two terminal joints of the first antema are attached to the posterior border of the frontal plates, giving them the appeatance of being attached to the lateral margin of the carapace, well back toward its center (fig. 11t).

The eyes are so far back an to be a little behind the apparent center. thongh they are not far from the actual anterior margin of the carapace. There are no posterior simuses, the third thorax segment not having yet fused with the head. This leaves the posterior margin of the carapace concave, the posterior corners projecting somewhat. The third thorax segment is separated hy a well-defined groove from the carapace; it is a little wider, hut only half as long the fonth segment, and from its well-rounded sides project the third swimming legs.

The latter have not yet acpuired their hoad hasal apron, but are almost exactly like the second pair, and the exopods can be phainly seen in dorsal view. The fourth segment is long and large, with wellrounded sides: the fourth legs are attached near its posterior margin and are quite rudimentary.

The genital sement and abdomen are still fused, thongh the line of separation is indicated by a deep indentation on either side.

The anal lamina are small but the plamose sete are long and stont.
The total length of the carliest stages is only a triffe over 2 millimeters, of which the earapace, including the frontal plate, makes up about form-serenths.

This species oceurs very frequently and often in great aboudance upon the codfish of our coast, hut has been rarely olseered on other speries of fish. Nost of the specimens in the collection of the National Musemm agree closely with the cinligus annerictmus, so well described by Pickering and Dama (18:3).

But there are a few lot of females in which the abdomen is broader and more nearly quadrangular. A careful examination of thene specimens. howerer, fails to reveal the slightest diflerences in the appendages and hence they can not he regarded as aren a barioty. This is one of the species upon which Mïller founded the gemus Calignes in 1785, and is the only one of the types which has proved to be a real Collignes, the others belonging to other genera. Hence the present species is left as the sole type of the genus.

Many lots of specimens have been obtained by the United States Fish Commiswion from codtish taken atong the New Englamb coast from Mane to New York, and on the otfshore fishing banks. The are exceedingly abondant during the autumn of the year when the shoal-water fish are brought into the local markets, and they gradually diminish as the season alvances. They are most mumerous on balf-
 the fins. They are also moly taken in company with (t rimen in the
month, but nerer, to the anthore knowledge, within the gill covers.
 with equal speed and facility. They live hut a short time after heing taken from their host since they exhibit to a marked degree the pernicions habit of "rawling up ont of the water and remaning there until dead. They are also very suserptible to a slight rive in temperatmes P'ickering and Damas ay (p. (if) that "when the temperature has been as high an tiol F.. they have gemerally died in the course of a short time." The anthor's experience has been similar, although no artual temperature tests have been made.

Being staserptible to so slight a rise it becomes extremely diflicult to handle them during the summer monthe, when most of the research work is being done at the Marine biologial Laboratories. It is not surprising, therefore, that so little has been aseertained in regard to their hathits and development, even though they are so common.

The Musem collection includes the following:
From the codtish (Gradus morllum) of Woods Ilole and the immediate ricinity fom lots mombered 11618 , and one sach 12305,12649 , 12650 , Ace no. 1!8:\%, and the following collected by Vinal N. Eilwards, 1301, 134t. 13:33, $1417,1423,1463,1466,1485$. These lots include something like zot specimens. From codfish ofl the coast of

 other localities, chiefly stations of the U. S. Burean of Fisheries wesels

 lots 12307 . 12650 , 1269 , W. 25, W. 2ti, W. 4 . From the hake (Croy)

 (ifis. From the surfare 12 gots and W. 32. specimens of the chatimas of this species are included in lots W. 36 from the tomeod; W. 37 host unknown, and sellf from tin of codtish.

CALIGUS CHELIFER, new species.
I'late N゙I.
Frmalt. Campate ovate, a sixth to a quarter longer than wide. consicterab)! narrowed anteriorly. Frontal plates well defined: lamules

losterior simmes wide and nearly parallel; median lobe half the entire width, projecting considerahly. and contrated into a marrow neck where it joins the free segment.

Thomate areatwo-thinds the width and one-half the lengeth of the

wider than the neck of the median carapace lohe which joins it anteriorly, and passing insensibly into the genital segment posteriorly. Genital segment arorn-shapet, the anterior and posterior margins straight and parallel, the former about half the latter. contracted strongly where it joins the free segment. In the alcololic specimen the dorsal surface of this genital segment has a row of three pits or depressions on either side of the midline the two contral ones being connected atross the midline by a groove which is convex anteriorly, while the two anterior ones are joined similarly hy atraight groove. In the living specimens ohtained by the author these pits and grooves were almost invisible and wond never have been noticed had not the aleoholic speeimen been studied first.

Abdomen narrow and two-jointed, fom times as long as wide, the terminal joint two to two and a half times the length of the basal. The latter is enlarged where it joins the genital segment and tapers somewhat toward the distal joint which has parallel sides. The posterior end of this distal joint is wedge-shaped and the anal hamina are attached to the sides of the wedge. They are long and narrow, cylindrical in form, and curved in toward each other at the tips, while the plamose sete which they army are fully as long as the entireabdomen.

The egg cases are the same with as the abdomen and about half the length of the entire bety. The eggs are quite thiek and momber to or S.) in cach case.

Of the rentral appendiges the anterior antenner are small, with the two joints about the same length. The posterior antemar are slender, the terminal claw being but little longer than the basal joint. The arcessory spine behind the hase of this antenna is long and sharp.

The first maxillie are small, only slightly enlarged at the hase and with a blunt tip. The second maxille are simple, quite long and nearly straight: each carries upon its base a maised papilla from whose summit project two divergent sete representing the exopod of the appendage as in ('. rop er, and several other species. First maxillipeds of normal size and structure, bearing a small spine on the anterior margin of the distal joint near the tip, and temmating in two curved and winged claws of megual length. The second maxillipeds are peculiar. The basal joint is rery large and as wide as it is long. It sends ont two protuberances on the imner margin, a large one at the base which is hemispherical in form with a thattened tip, mother still larger at the distal end. This latter is broad and finger-like and extends ontward along the inner curve of the terminal claw. forming an inarticulate half of a large chela, very similar to those borme by other crustacea. It is notched at the tip where it is also coveret with short and stiff spines, making a rough smrface admirable for retaining a tirm hold. The terminal elaw is ahont two-thirds the length of the hasal
joint, bery stout, amd fromished with a short aceessory phine on the ventral surfite (tig. 180).

This claw is operated by powerfal muscles eontained in the basal joint and it most make am afective prehemsile orgatm.

Furea long and narow, the hase longer than the branches, the batter of a broad U-shape with the sides nearly parallel.

The first thoracio legs are so small and weak as 10 appear shriveled this is esperially motionable in the phomese sette along the pesterion marein of the terminal joint, which are searely longer than the diameter of the joint. In the alcoholie specimen taken form the menhaden the 1 wo posterior of the three terminal chaws are branched, the bramehes being straght, longer than the tips of the rlaws, and inserped nearly at right amgles to the axis of the claw (fig. 13:3). In the living epecimens ohtained hy the anthor from the sword-fish the (latss are mostly unbramehed. but are of the same relative size as in the menhaten sperimen.

In all the sperimens the appendage at the imer corner of the joint is a longe, strongly "med claw instead of a plamose seta.
'This is similar to the comblion in shehstomyre hat the rekative size of the elatw and the seta is entirely different in the two speries. The serond legs are latoe of nomal structure and armed with long acmuinate spines. The rami of the thiod lege are well separaterl, the claw on the hasal joint of the exopod is large and slighty rurved, while the emboper is one-jointed.

The formth legs are thee-jointed, long and slender, the hasal joint as long as the other two. This leg emmes five spines. one at the distal and of the seroml joint, one on the onter margin of the terminal joint and three at the end.
()f the latter the imner one is about twice as long as the onter.

The fitth legs are not visible dorsally.
'Fotal lengeth in menhaten pecimen 5 mm . Length of calapace 2.5 mm.: width of same 2.1 mm . : length of genital segment 1 mm : length of abloman 1.4 mon.

Total length of swordish specimens $t-6.5 \mathrm{~mm}$. Length of wapace 3 mm.: width of same 2.3 mm.: length of genital segment 1.6 mm .
 regs in eatro.
(oolor a tramparent yoblow very thickly spotted on both the dorsal and rentral surface with branching pigment dots of a rasty bown. These spote are quite similar to those on ('. refuere in shape and arrangement, but the pesultant rolor is a sober gray hrown quite diflerent from the bright red tint of repere. In fate there is enough ditferener in the color alone to distinginh the two species when taken fogether on the swordfish.
(rfolifir, shelw, the pincher-like rlaw of crustacea, and firo, to bear or (alrys)

The National Museum collection when sent to the aththor eontamed but a single sperimen, a female, of this species. It was numbered G07! , and was ohtaned from the external surface of a menhaden at Wrods Hole by the United States Fish Commission. The charatereistice of this specimen, especially the pincher-like claw, were so difforent from other speries that it was decided to make it the type of a new speries. Mueh to the authors gratification he was fortunate enough to obtain reveral living females from swordfish (ap)tured of Gay Head, Marthas Vineyad, in July, 1904. 'They were found on the external smface in comection with (? mpax, hat were not nearly as mumerous as that species, only five being obtained from four swordfish.

A single female taken from the eutlass fish (Trichimme lepturns) on september 16,1908 , by V. N. Edwards, was afterwards placed in the authors possession. From the living specimons seroral facts were ascertaned, which have heen incorporated in the previous description. In addition it may lo sad that the species is almost as livoly as mper, swimming about restlessly when kept in an atuarimm. That it has never been captured in the tow is probaloly due to the fact that its Chief host, the swordfish, is an off-shore fish. So far as known this is the only instance of a Caligus having anything which may farly he called a chelat. Many other speries have protuberances of various sorts on the inner margin of the basal joint of the second maxillipeds, but they are simple protuberamos and do not in any way extend outward alongside the terminal chaw and in opposition to it. Hore, on the contrary, it is to be noted that the conditions reproduce exactly those in higher crastacea. The onter, swollen brameh of the chelat is articulated at its base, whild the inner, larger branch is inarticulate and forms a part of the preceding joint. In place of the rounded teeth so commonly found on this part of the chelat we have here short and still spincs. In the living speefmens the chela was frequently opened and closed, the tip of the claw, in the latter instanee, folding down over the end of the protuberance so tightly that the two seemed all one piece.

The comparative measurements of the menhaden and swordfish specimens furnish a grood ohject lesson on the shrinkage which results from preservation in aleohol.

One of the speeimens was a female without egg-strings, and in this condition the genital segment becomes su rounded anterionly and posi teriorly as to be nearly a perfect cirele in outline. The species may be easily recognized hy the shape of the anal lamina and the length of their plumose setre. An examination of the tips of the recond maxillipeds will then verify the diagnosis beyond a doubt.

CALIGUS BELONES Kröyer.

Plate XII, figs. 135-139.
Fomml. - ('anapace alont half the cutire length, a little longer than wide. Frontal plates prominent, the anterior margin almost straght. with rery little incision at the eenter. Lamule large and widely separated, stromgly inclined towatd the mid line and subprominent. Pow terion simmes wide and shallow, learing a median lobe trese than half the contire width, and projecting lout little behind the lateral hohere. Thoracie area about half the domal surface of the canapace, well romoded anteriorly. The digestive grlands in this area are pear-shaped and inclined toward can other anteriorly.

Free segment short and strongly contracted where it joins the carapace. (ienital segment elliptical, one-third the entire length, emargimate posteriorly, with short and bhunt lobes. Fifth legs not visible dorsally.

Ahdomen elliptieal, less tham half the width of the genital segment, nearly twice as long as wide. It is contracted to almost half it- width where it joins the genital segment. Anal simm hroad and deep. Anal lamime large, one-fouth an long as the ahdomen, sublateral, with long plumose setar.

Eger tubes half the width of the abdomen and a little longer than the carapace, 30 or to eges in each.

Anterior antemae short, the two joints about the same length, but the terminal joint very slender and dosely appressed to the frontal margin. The lasal joint is plentifully supplied with plumose sete and the terminal one with spines.

Fecond antemmarall and whort; basal joint nearly as long as the terminal, the angle in the latter very close to the tip.

Aceessory spine large and stont. First maxilla long, slemder, and well emed: second pair little more tham half as long as the month tube, rather slender and bhut at the tip. but muth widened at the base. Mouth tube quite stout, a little longer than wide, well romuded at the tip. First maxilliped slender, the two joints almost equal in longtly; second pair stont, with a short and blunt terminal claw. Furea long and wide, the bave elongate, very narow, and about as long as the branches, the latter stont and curved into the shape of a horseshere. of the same diameter throughont.

Rami of the third pair of thoracic legs well separated. harge and prominent; the spine at the base of the exopod slender and nearly straight. The fourth legs are half the length of the genital segment. three-jointed with four spines; basal joint stout and as long as the two terminal jointa, which latter are very slender. Second joint longer than the third, with a sonder terminal spine: the three ter-
minal mines on the last joint graded in size, the imer one twier as long as the outer.

Total length 5 mm. Length of carapace 2.6 mm.; width of same $\because .3 \mathrm{~mm}$; length of genital segment 1.4 mm .; length of abdomen 1 mm ; length of egg strings 3 mm.

Color a light yellowish brown withont pigment (in preserved specimens).
(hefomos, generic name of one of its hosts.)
The National Museum collection includes a single lot of this species from the body of a sinall dolphin (Comphemen muivetis), without a number, and with the loality not given.

But as the label bears the signature of Mr. Vinal N. Edwards, and was given to the author with other material collected at W oods Hole. it is probable that the dolphin was calught in the North Atbantic. The lot includes two femates which resemble Kroyers species so closely as to leave no doubt of the jdentity. Kröyer states that in his specimens the abdomen was indistinctly segmented, but these two show no sign of segmentation. The furca on these specimens is also somewhat different but not enough so to warrant specifie distinction. In all other particulars the two lots agree perfectly. The present host, the small dolphin, is a new one, this species having been fomd preriously upon Belone rellyaris, on what Kröyer calls the "Hornfish," and on what Olsson designates as the "Reak fish." It is more of a tropical than a northern species.

CALIGUS LATIFRONS, new species.
Plate NII, figs. 140-149.
Femali.- Carapace half the entire length, a little longer than wide, considerably narrowed anteriorly. Frontal plates very wide and prominent; lunnles large, almost circular in outline, and projecting far in front of. and laterally over the bases of, the first antenne. Eyes large and situated far forward close to the anterior margin of the carapace. Posterior sinuses wide and ohtique, leaving a median lobe fiveeighths the width of the carapace and quite squarely truncated posteriorly. Lateral lobes marow and curved inward at the tip. Thomacic area seven-eighth the entire width of the carapace and almost exactly one-half the length, the anterior groove flattened similarly to the posterior margin of the median lote.

Free thorax segment two-thirds as wide as the genital segment, abl ruptly narrowed in front of the fonth legs.

Genital segment neally quadrate with well-romoted corners, a little more than half as long as the carapace and not quite half as wide. Abdomen about four-tifthe the length of the genital segment, one-half longer than wide, swollen at the center, and matrowed at either end.
 joined sublaterally.

Fand of these latter carries four phamone seta which are small and short. No eges strings present in this female.
Of the ventral appendages the first anteme are elongate, with the longer teminal joint mery sonder. Both joints are turned batkwad and elosely apperseed to the anterion margin of the calapace. The secome antemar have a long and slender terminal daw and a rather suatl hacual joint.
losterior to the hase of these antemas is atont aceesory spine which is relatively larger than in most speries.

The first maxille are mall and almost straight. with the base enlarged warcely at all: the serond maxilla are elongate, stont and blunt at the tip. Furca large, the base about the same lengeth an the branches and neally suare, with a transersely semilunar foramen. The hanches are slender. hant, and curved in toward each other. Second maxiltipeds, -tome the terminal claw about four-fifthe as long as the hasal joint, the latter not swollem. The aseesory spine on the terminal claw is short and weak. First swimming legs stout, with a long plumose seta on the distal end of the hasal joint and a short spine on its posterior border. near the proximal and.

On the teminal joint the three claws are about the same length and not very -trongly curved. The outer one is smooth and nonserrate: rath of the other two is bemedned at about its center on the imner side. The branches are more slender than the tips of the chaws and extend some little distance beyond them. They are also perfectly transparent. while the claw itself is more or lese oprape. The plumese setie on the posterior border of this joint and the seta at the imer diatal comer are like thow in other species.

The spines on the exopod joints of the second lege are long and acmminate and are bent inward at mearly right angles to the outer margin; the basal joint of these legs is strongly flattened and is relatively wider than in most -pecters.

The rani of the third legs are widely separated, the exopont heing turned inwatal along the powterior border of the basal joint.

The elaw on this exopod is large and stont, about the same diameter thronghont. with atraight sides.

The fourth legs are long and stont, the hasal joint mearly as long as the two terminat ones. There are live spines-a large one at the tip of the second joint, a much smallow one on the onter margin of the teminal joint, and thooe at the tip incerasing in size from without inwad, the imnerene mere than twiee the length of the outer. There are foliaceons projections fringer with long hatirs at the hases of the first. seement, third, and fifth epinesend at the imer distal corner of the terminal joint. These are almost exactly like those on C mpore,
but are arranged differently. The tifth legs are so small as to be invisible in dorsal riew.

Total length. 4.5 mm . : length of carapace. 2. 46 mm . : width of same. 2.2 mm . ; length of genital segment, 1.25 mm . length of abdomen, 1 mm.; egg strings not present.

Color of specimen preserved in formalin a pale dusky yellow with a large brown area in the center of the dorsal surface of the genital segment, and the two glands in the thoracic area also brown.
(lutifiroms, lathes, wide, and frome, forehead.)
This species resembles rupar very closely in its general appearance, but is clearly distinguished from it by the size and shape of the furea, by the relative width and length of the median canapace lobe and the free thorax segment, and hy the details of the first swimming legs, particularly the divided claws. From selistomy, which has the claws divided, this species is distinguished again by the size and shape of the furca, by the great diflerence in the relatise size of the terminal claw on the second maxillipeds, and hy the detail of the exopods of the third and fourth leg's.

From chelifir, which also has the elaws divided, it is easily told by the simple fact that its abdomen is unsegmented, while that of a female chelifer is two-jointed. There is also a very essential difference in the structure of the seeond maxillipeds, in the furea and in the fomth legs. In spite of the fact, therefore, that the collection includes but a single femate for which neither the host nor the locality is given, there must be established for it a new species.

CALIGUS BONITO, new species.

Plate NIII, figs. 150-153; figs. $5,12,13,14,15,29,30,35,37,38,40-45$ in text.
Female.-Carapace orbicular, with the sides somewhat flattened, the same length and width; posterior sinuses shallow, slightly curved and enlarged at the base. Thoracic area broad, more than hatf the entire width, somewhat flattened posteriorly and scarcely projecting beyond the lobes; the latter narrow and curved inward (figs. 150, 151).

Free thoracic segment short and very narrow; much constricted in front of the fourth legs. Genital segment elliptical, two-thirds as wide and nearly as long as the carapace, projecting posteriorly in the form of a blunt, conical lobe on cither side of the abdomen. Abdomen somewhat spindle-shaped, more than three times as long as wide, and two-jointed; the joints about equal in immature females, and presenting a rery close resemblance to that of the males, but the basal joint three times as long as the terminal in fully developed individuals and the segmentation very indistinct.

Anal simus scarcely perceptible: anal lamine of good size, quadrangular in ontline, each terminated by five plumose setw.

[^0]()f these the outer and imer ones are very short, while the three central ones are of the same length, which is nearly three times that of the papillae.

First antemme short, partienlanly the hasal joints; frontal plates wide but not rery long: lumules orbicular. rlose together on either side of the median line, projecting considerably, and oecupying nearly the whole of the frontal plates. The median joint hat nearly the outline of an equilateral triangle, while the terminal joint is slender and clat-shaped.

Second antenmestont, the terminal joint a long, sickle-shaped hook attached nearly at right angles to the basal joint (tig. 5, p. 500).

First and second maxilla comparatively rudimentary, the former with a slightly swollen bise. Nouth tube broad, with the opening elongated transversely and densely fringed with hairs. Mandibles with a row of romeded teeth along the anterior and posterior margins for some distance back from the tip.

Furea stout, with an aneessory spine on either side at the base. First maxillipeds long and slendor: second pair of medime size, the basal joint much longer than the terminal, the latter consisting of a stout, curved chaw, with a slender spine at about the center of its inner margin (fig. 12, p. 50t).

First swimming legs with a stont basal joint whose rentral sufface is nearly eovered by a broad chitin plate. From the posterior margin of this plate project a slender acominate spine at about the center and a stout blunt papillat at the outer cormer (figs. 1:3-15).

The endopod is represented by a small, slightly durved spine. The second joint is long and considerably swollen at the center.

The terminal joint carries three plamose sete in the nsual position on the posterior margin, the base of the seta being peetinated. The three terminal claws are the same length, while the seta at the corner is plumose and three times as long as the claws.

The second swimming legs are not noticoable except for a row of short, pectinate spines along the onter margin of the two moximal joint of the endopod. The thirdswimming legs have a particularly large and stout curved elaw at the base of the exopod. The fourth logs are large and strong for so small a copepod: the distal joint hears three long curred spines at its tip and a smaller one upon its posterior margin; the penultimate joint carries a single stout spine at its distal and on the posterior margin.

The rudimentary fifth legs are not visible dorsally in either male or female.

Total length, 5.8 mm . : length of "arapare. 8 Bm m. width of same, ? mm . ; length of genital segment. : B mm.; length of ablomen, $2 .: 3 \mathrm{~mm}$; length of egg strings, s mm.

Color a pale transparent rellow withont any pigment, exerpot at the tips of the lateral lobes and the adjacent thoracie area, which are thickly spotted with light, rusty brown.

The eopepod thus appears as if it had two large hown ryes, one on either side of the body at the posterior end of the carapace, and it may be readily recognized by these, since no other species is marked similarly.
(bomitr, the name of it. host.)
Malr.-Considerably different from the female. The carapace is more nearly orbicular. while the thoracia area is much narower (fig. 152).

This gives the posterior end of the carapace a rounded appearance quite different from the trumeate look of the femate.

The free thoraciesegment is much wider posteriorly than anteriorly, and projects so far beyond the sides of the genital segment that the fourth legs are attached to its posterior rather than its lateral margin. The genital segment is but little wider than the abdomen and quite fusiform, the anterior end being usually well wrinkled. The abdomen is the same length as the genital segment and is jointed once near the center.

These altorations in shape produce equally marked ehamges in the proportions of the rarions parts. Whereas in the female the proportion in length between the "ephatothorax and the remainder of the body (exchase of the egg strings) is as 7 to 10 ; in the male the same proportion is as 7.5 to 6.5. This change is far more than nsual. The first antemna are relatively larger and longer than in the female, this being particularly true of their basal joints with the lumules.

The second antemat are not as stout as those of the female, but the first maxilla are nearly three times an lage. This makes the two appendages in the male neally the same size, the maxille heing a triffe longer but not as stout.

In the second maxillipeds the basal joint is reinforced at its distal end by a thick. bony plate on the inner side. The powerful terminal claw, folding down against this plate, makes a very eftective clasping organ.

Total length, 5.5 mm . Length of carapace, 3 mm ; width of same, 2. 8 mm . : length of genital segment, 1 mm . ; length of ablomen, 1.2 mm .

Tanplius.-The newly hatched nauplii are large and active. They are rather elongate in form. the length being nearly three times the width, and the body is buntly rounded both anteriorly and posteriorly (figs. 37.38 in text). The three pairs of appendages have the trpical namplus form. The labrum is oval in outline, with a broad, whallow sinus on either side and in front, but with a wide, hlunt projection posteriorly. The body is pigmented with rusty brown in narow patehes all along either side and posteriorly, the patches being irreglarly disposed. Sometimes these pigment patches are fused into an
irregular marginal band. And often the pigment extends out into the antemmeses almost to their distal end and into the basipods of the other two pairs of :"pendages. The balancers on either side of the amms are long and stout (1.12 hy 0.01 mm .), their length exceeding that of the anterior appendages, exclusive of their setae. They are widest at the center and taper somewhat toward either end. The basal third is cylindrical in shape. while the terminal two-thirds is fattened or compressed into a knife-hade form, the whole resembling in shape the common form of preper cutter made from a eylinder. At the first monlt the skin orer these amal appendages is shed exartly like that over the others, lont at the second moult the entire appendages disappear.

A fter the tirst moult also the pigment extends in toward the center of the body, and by the second moult has become guite evenly distributed.

M, tumenplins.-Body elongated and marrowed, carapace covering two-thirds the entire length (fig. 40 in text). Carapace ellipitical, well romdedanteriorly, marowed and emarginate posteriorly. Three free thorax segments and a terminal segment representing the genital segment and abdomen, as yet unseparated. The eyes are placed far back, near the center of the carapace. and are fused on the mid line, as in the adult. The rusty brown color covers a wider space along the margin and is more uniformly disposed than in the namplins. In place of the three pairs of maplins appendages there are five pairs of therax :uppendages.

Anterior antenme are tro-jointed, bearing long sete on the terminal joint, irregularly disposed; basal joint closely approximated to the anterior margin of the carapace.

Second antenne hiramons; exopod short and rudimentary, ending in at short spine: endopod longer and stonter. terminating in a curved daw nearly as long as the endopod itself, and bent over ventrally until its tip nearly tonches the hasipod (fig. tie in text).

Finst and aroond maxille very rudimentary, the former a mere protubrame near the margin of the carapace, the latter consiating of a single conical pine at the side of the mouth (fig. 43).

First maxillipeds shorter and stouter than in the adult, tipped with theestrong spines or claws, the two inner of which are pectinated. second maxillipeds longer and more slender than in the adult, projecting far beyond the edge of the carapace, the terminal claw with an areesory spine on its imer margin.

First two pairs only of the swimming legs present on the first two free thorax segments: both pairs rudimentary, biamous, the terminal joints fringed with plumose sete (tigs. 4t, 4i). Total length. 0.67 mm . Length of carapace, 10.42 mm . ; width of same, 1.22 mm .

This small species is very abmidut upon the common bonito (Gymmiserede pelemis Limarns), but has not been found thus far upon any other tish. It frequentw both the mouth and the gill cavity, more com-
momly the latter, and in extremely rare instances may be fomed upon the extermal wirfare near the head.

While bonito are frequently taken upon which not eren a single specimen of this parasite can be found, there are just as often others which fairly swarm with the diminutive pests. As many as one humdred can sometimes be secured from a single large fish.

They are very lisely and senttle abont rapidly over the inside sumfare of the gill casity and the month, while the sucking diske ane so large that they can be removed only with considerable difticulty. They move about constantly when put into seat water, hut have two pernicions hathit. The first is one common to many species of this genus and guickly results in suicide. It consists in swimming to the side of the dish or aquariun and crawling an inch or an inch and a half above the surface of the water, there to remain mil thoroughly dried.

This renders it very difficult to keep specimens alivo for any length of time. lnded it is practieally imposible unless they are placed in a wide-monthed bottle orer whose month is tied a piece of fime ganze, the whole being sunk beneath the surface of the water in the atuarimu.

The other disagreeable habit is confined to the female and consists in sloughing ofl her eggestrings as soon as she is placed in fresh sea water. This renders it impossible to allow the egegs to mature and the larvar to hatch. If the eggs have not developed sufliciently for the larve to emerge when the female is captured, there is practically no hope of maturing them.

If, howerar, the eggs are just ready to hatch when captured, the female apparently makes an exeeption of the emergeney and retains the egge cases until the larrae have all eseaped.

This species was first obtained at Woods Holw in the summer of 1 s.e.3 by Richard Rathbm, who made many drawings and notes upon its habits and anatomy. These, however, were never publishel. but. together with one or two drawings by Emerton, were recently turned over to the author and have been incorporated in the present acomont. Mr. Rathbun had mamed the species Culigns: benito in his mamseript. and this name has been retained (bemito, the name of its host).

A study of the development of this species is of pecoliar interent for the light which it throws upon the morphology of the adult. The maplins and metanatplins have already been deseribed in detail; the chalimms has not yet been obtained, bift specimens have been seemed which had just moulted from the chatimus stage. In them the canapare is proportionally much larger than in the adult, while the genital segment is rery much smaller. Indeed, so great is the difference between females in these two stages that the younger immatme sperimens resemble the males more than they do the alult females, and would
ordinarity be taken for males. The anterior portion of the genital segment, where it joins the free segment. is contracted into guite a long neek, well creased with wrinkles.

The body of the segment is not much wider than the abdomen and is almost sinarely truncated posteriorly withont any lobes at the conners. The abdomen is considerably shorter than in the adult and is plaimly segmented at abont the center-i. e., it is practically the same as in the male. There is not the slightest doubt that these are really young females, for the egge strings can be seon forming inside the genital segment, and the serond antemat and second maxillipeds have the structure of those in the fomale and differ much from those in the male.

The examination of these developing females led planly to the conclusion that the abdomen is segmented in the adult, although the segmentation is usual!y very well concealed.

Accordingly a large number of adults were carefully examined with the result that two were found which showed a segmented abtomen very plainly. As development proceeds the genital segment widens and longthens, sending out large toles from the posterion corners; at the same time the abdomen lengthens. the increase taking place ahmost wholly in the hasal segment.

Thus while in the immature female the segments of the abdomen are ahont equal, in the adult the hasal segment is three or four times the length of the terminal.

This development also suggeste an explanation for what have been

The National Museum collection includes the following lots of this species, all oltained from the same fish and quite constimt in their aperifie characters: Two lot, numbered 6035, ohtained hy Mr. Rathbun at Woorls Hole; one lot, mmbered 130 t. taken by Vimal N. Edwards
 obtained by Mr. Rathhon in Vinezard somend, in the immediate vicinity
 ohtained by the author from Woods llole and vicinity. The sperimens in Mr. Rathbuns collections number nearly eno, while the anthor oltained abmost as mang. The speeies must therefore be regarded as a rery common one on the single fish which it frepuents.

CALIGUS PELAMYDIS Kröyer.

Plate NIII, figs. 15t-161, Plate NIV, fig. 161a.

Fomule. (brapace orbicular, somewhat narrowed anteriorty. the same width :nd Iength, which is much leses than half the entire lengeth of the body, and with nearly staight latemal margins (fig. 15t).

Frontal plates narrow，a little more than half as wide as the cara－ pace；lunules large，circular，hut almost entirely concealed in dorsal view，apparing only a a slight concavity at the base of the first anten－ ne．Posterior simuses broadly triangular，the median lobe consider－ ably less than half the entire width．Thoracie area rather small，not quite reaching the center of the carapace．Digestive glands situated at ahout the center of this area，cach in the form of a large right－ angled triangle，the perpendienars parallel with the longitudinal axis， the bases at the posterior ends．

Free thorax segment narrow and short，swollen considerably at the center where the fourth legs are attached．Genital segment hroad acom shape，narrowed into a slender neck where it joins the free seg－ ment and squarely truncate posteriorly．

It is two－thirds ats wide as the carapace and the sides and posterior corners are symmetrically rounded．

Abdomen as long as the carapace，the length three and a quarter times the width，slightly swollen at the center and constricted where it joins the genital segment．It is two－jointed，the first joint being four times the length of the second．

In living specimens and in material preserved in formalin the joints are distinct，but in material preserved in alcohol they become indis－ tinct．But in all specimens alike the abdomen is ahruptly narrowed at the groove between the joints，the terminal joint beinge considerably narrower than the hasal，and tapering posteriorly．Anal lamine of medium size，and flattened，with the tips turned in toward each other．

Egg strings wide，considerably shorter than the body，each contain－ ing athout thirty eggs．

First antenne small，the lasal joint short and not very wide，but heavily armed with seta：the terminal joint short，club－shaped，and searely projecting beyond the edge of the carapace．
second antemaw with a very long and slender terminal claw，and without any accessory spine at the hase．

First maxille very small with a narrow，blont tip and a slightly swollen base．Fecond maxilla kng and acominate，projecting some distance beyond the tip of the rostrim．

Second maxillipeds with a stout basal joint，somewhat swollen，and a much shorter and rather slender terminal claw．

Fura short the base not more than half as wide as the branches： the latter simple，short，very wide，and curved．
The first matatories have a long plumose seta on the distal end of the basal joint，a short curved claw at the distal end of the second joint， while the terminal joint carries three very large plumose setie on the posterior margin，and the usual terminal daws．The latter are all curved．about the same size，and close together．In addition there is a finger－like projection extending from the distal margin in the same
direetion an the daws. It in of about the same dimmere as the claws, but considerably longer and carries at its tip a small curved spine.

The rami of the third legs are some distance apart, hat as the exopocture closely appressed to the margin of the basal apron, this brings their tips close to the bases of the endopods.

The pines on the exopods of these legs are proportionally larger than hasulat parallel with the outer margin.

The fometh leges are short and stont, and made up of four joints: the hasal joint is as long as the remaning three. Of these latter the second is the longest and the fourth the shortest.

The latter joint is triangular and so arranged that the three spines which it hears and the two upon the distal ends of the second and third joints are close together along the onter margin. These spines are all the same size and each has a row of hairs atong its outer margin. The fifth legs are very minute and sitnated on the ventral surface just at the base of the egge eases.

Total length, 3.3 mm . Length of carapace, 1.1 mm. ; width of same, 1.1 mm . : length of genital segment, 0.9 mm ; ; length of abdomen, 1.2 mmı.; length of egg string', 2 mm . Number of cags in each, 80.

Color, a uniform yellowish white, lighter on the genital segment, which is ahmost pure white.
(pelrmydis, the mame of its host.)
In his monograph, published in 1563, Kröyer deseribed (1). 50) two smatl females of this species which had been found on the common bonito (Gymmosurda pelamix). His description difters in a few particulars from that here given, the most noticeable one being the presence of double papitre at the posterior comer representing the fifth legr. In the present specimens also the carapace and genital segment are more nealy the same size, but otherwise the two lots are identical.

It wond certainly not he feasible to have two species. hoth frem the same host, and resembling each other so mosely. The differences, therefore, must be regarded ats mere variations, fomd in many other specips also. Richiardi (1880) reports this opecies from the gill carity of the mackerel (Sromber sombrus), while Bassett-Smith describes (1s:96) a species which be calls (. scomberi from the gills of the same fish. Again in 1901 T. Scott described and figured a (. semmbri. in this ease a single specimen adhering to the inside of the gill cover of a mackerel.

Bascett-imith's description is so meager as to be worthlese for identification: in his figures the carapace is long and marow and the fourth leges have only three joints. But he has placed five spines in a row upon the onter margin of the last joint and none on the serond joint. If this were the correct distribution it would be an anomaly indeed, unlike anything known in other opecies. Soott doos not deareribe the epecies at all, but in the figure he has given the fourth legs are four-
jointed and two of the five spines belong to the second and third joints. respectively. The calapace also is almost exactly ats here tigitert, and the furea differs only in having the base a little longer. Both Seott and Bassett-Smith figure the abdomen as one-jointed, but meither of them makes any statement in regard to it. In hoth figures, however, the abdomen narrows abruptly near the posterior end at exactly the place where the joint occurs in the present species.

Bassett-Smith makes no statement of the dimensions of the specimens he obtained. hut in his explanation of the plate the magnification of the figure is given as 6 . This would give a longth of 7 mm . Feott states that the single sipecimen he obtained was 5.5 mm . In the present species no specimen thus far oltained has exceeded 4 mm .

In view of these meager and conflicting descriptions, together with the contradictions expressed in the figures, it becomes practically impossible to decide just how many species are represented. The size given for ($:$ scombleri" seems to preclude its identity with pelamydix. and yet the two agree in almost crery detail as given ly the one or the other of the two :uthers quoted.

It will require a careful comparison of the original types to decide the problem finally.

CALIGUS PRODUCTUS Dana.

Plate N15, figs. 162-170.

 bun, 1884, p. 487.-Brain, 189s, p. 10.
Femole.-Carapace orate, much less than half the entire lengeth; ats long as wide, narrowed anteriorly. Frontal plates projecting strongly, but not more than three-eighths of the width of the carapace. Lumber small, ordicular, seareely projecting. Posterior sinnses inclined outward, and of mediam width, leaving a median lohe less than half the width of the carapace and not projecting posteriorly. Lateral holnes broad, well rounded, and turned inward slightly at the tips. Thoracic area small, and contracted anteriorly. Eyes small, and placed well hack from the anterior margin.

Free thoracic segment very narrow and spindle-shaped, about onefourth the width of the canace and contracted into a neck anteriorly where it joins the latter. (ienital segment elliptical, with evenly eured sides. like the free segment contracted anteriorly where it joins that segment, and expanding abruptly to its full width. It is fiye-eighthe as wide, and almost seren-eighths an long as the caname.

Abdomen elongate linear, somewhat swollen at the renter, athont onequarter longer than the genital segment, and more than four times as

[^1]longe as wide, apparently msermented. From a study of the figures given hy Kröyer and Steenstrop and Lätken, and from comparison with the developmental history of ('. bomito it would seem reasomaly certan that in the present speries there is a similar development. In immatme femates the ablomen is phanly two-jointed, the joints being farly agual, but as derelopment proceeds the terminal joint increases faster than the hasal. Hence, in matme females the alodomen is prothably two-jointerl, with the banal joint only one-third or one-fonrth of the terminal. Amal lamina small, foliacoons, and curved in toward rach other. The phomose sote, with which they are armed, are rather small. Fge (ases marow and reaching only to the tips of these setar. cach contaming about thirty egos.

Anterior antemma with a short, stout basal joint and a very sender terminal joint of about the same length, the whole appendage less than the spate between the limules.

Gerond antenna with a stout hasal joint bearing a whort and bunt atcessory spine on its posterior horder.

Fibst maxilla small and strongly emeded; seeond maxilla narrow triangular with acuminate tips, twice as long as wide and straght.

First maxillipeds sender and of the msal form: second pair harge and stont, the hasal joint much swollen, the terminal claw small. The rlaw is searely half the length of the basal joint, hat is stout and well -urved.

Furea slemeler, the hasal portion narower and shorter than the hramehes. almost cireular in outline, and commeded with the branches hy a narow neck. The branches are divergent, rather shender, and bitunt.

First swimminglegs with the nsalabmament of three terminal waw graded in size, a lomg slender plamose seta at the distal corner beside the smallest claw, and three rathere small phomose sete on the posterior margin. The spines on the exopods of the second lege are very long and acominate: the two on the two hasal joints are inclined at an angle of about t. degrees with the anterior margin, while the one on the terminal joint is nealy parallel with that mangin.

The rami of the third legs are well separated, hat the two terminal joints of the exopod are turned in and appressed close to the margin of the hasal apron. And they reath so far across the intervening pace bedwern endopod and exopod that the two mani appeat dose together. 'The spine on the hasal joint of the exoporl is longe, slender, and curved into at siekle shape.

The fourth leg are of medimm size, hat rather short and threejointerl. with only fom spines, one at the distal end of the second joint. one on the outer margim, and two at the end of the terminal joint. The last three are atmost in a row, the onter one being hut at little hehind the others. All these spines are very long and acuminate;
the two terminal ones are sermate along their onter margins. Fith legs invisible.

Total length 6 mmm . Length of calapace 2.1 mm . brearth of same 2 mm . ; length of genital segment 1.6 mm .; length of atolomen 2 mm .; length of egge strings 2.2 mm .: 30 eggs in each.

Ahele. Carapace orate like that of the female, but namowed rather more anteriorly, as loug as wide; median lobe relatively wider and not projecting backward as far. Free segment shorter and relatively wider. Thoracic:area wider than long and evenly rounded in front; lateral lobes narrow and somewhat pointed. (ienital segment narrowovate, one-thirt longer than wide, the sides nearly straight.

This segment is much smaller than in the female, being losis than one-third the width of the carapace and not very much wider than the abdomen. The tifth legs can not he seen in a dorsal view, and there are no traces of lobes at the posterior comers.

The abdomen is elongate-linear, similar to that of the female, and is made up of two distinct joints, which are abont equal in length if we leave out of aceomt the anal lamina. The latter are small, scareely any larger than in the female, but the setae with which they are armed are considerably larger and longer than those of the femate.

The appendages are as already deswibed; there is the usmal increase in size of the second anteme and the second maxillipeds. And there is the same alsence of plomose setie on the posterion horder of the terminal joint of the-first swimming lege, which may be taken as characteristic of the species.
The lourth lege are small and hardly reach the posterior horder of the genital segment. In other particulars the appendages are like those of the female.
Total length 4.5 mm . Length of carapace 2.2 mm . : headth of same 2.2 mm .; length of genital segment 1.1 mm .; length of abdomen 1.1 mm .

Color a miform yellowish brown entirely destitute of pigment markings of any sort.
(productux, lengthened or drawn ont.)
There is one lot of this species in the National Mnsemm collection. consisting of four females taken from the common dolphin (Cor?f/hienm lippurns), from the inner side of the gill covers and the outer surface of the Jooly. The fish was captured by the United States Burean of Fisheries steamer I/butross in latitude 39. 19, 26 West and longitude (is, 20 , 20 North. This is the original speries described by Dana in 1854 as occurring on the same dolphin and on trigger fishes (Bulistos) in the West hodies. It wats afterwards noted by Steenstrup and Liitken (fs61) as taken from the inside of the operentum of the " Barracuda"

The specimens described by these three anthors agree closely in
eneneral detaik. Sut difter in sereral particulars, ats also do the eqecimens here deseribed. The greatest differences are found in the furea, the first and fourth frimming leys, the abdomen. and the egg string.. In Damais original species the hranches of the furea are longer and more strongly curved, while in the present specimens the base of the forea is larger and the branches are short straight, and strongly divergent.

All the authore mite in characterizing the species by a complete abence of the seta on the posterior horder of the first swimming lews. In the present specimens they are certamly present, hat are unnially small.

D:mans arecies shows the fourth legs three-jointed, with fire spines. all about the same length: in the pesent specimens there are hot fom spines, and the inner terminal one is twice the size of the others. All the anthore write that the abdomen is obsenrely two-jointed, but Krörer figures the adult female with an apparently one-jointed ablomen as in the figures herewith presented. Dana states that the egg stringe are "longer than the body" (p, 13.54): Steenstrup and Lïtken figure them as only half the length of the body, hat as twice the length of the athdomen, with cgesos large that each tuhe could contain only twenty.

In the present specimens the egge tubes are but a triffe longer than the ahdomen (one-third the entire length), hat eath contains to egge

In view of such differences it might seem as if the present specimens constituted a new species, hat after careful consideration this does mot seem to be warranted. In the first place, they come from the same host as those obtained by the authors mentioned. a good presumption in faror of their identity.

Again, both Kröyer and steenstrup and Liitken found great differences in their pecimens, and they ach figure what they call a variety of the speries fully as different from the tepe as the present specimens. Nor do the egeg tubes here show differ any more from those given by the authorities just quoted than the latter do among themselves. For this reason these specimens have been referred to bamais species. and possibly the males reported hy Brian (18:9) may helong here ato.

The foregoing are all the specios of Celligne from North American localities which are contained in the collection of the National Musemm. But in addition the following species have heen reported from the Weat mation by varions authors. The types of these specie- hase been lost or are contaned in foreign maseums. In most instancen the secies are represented by very fow specimens, sometimes only one or two ohtained many years ago and none hate since been fombl. but this is chiefly. if not wholly. due to the fact that no inseatigations has been made in that region wince then specimens were found: and there is every reason to believe that a careful search at the pres-
ent day would yield some of the same spectes, as well as many new ones.

The diagnoses of these species and the ontline drawings presented with them are taken from the original deseriptions as far as possible, and in one or two instances additions have been made from later authors, for which acknowledgnent is duly made. Dana's speries, C. thymmi, was obtained a long distance from the American shore, Int as it was found upon the same bonito which serves as host of three other species here described, it is likely to be found here at any time; and then it is really needed for purposes of comparison, and so is here included.

CALIGUS BALIST \nrightarrow Steenstrup and Lütken.

Plate $\mathcal{N} 1$, fige. $172-177$.

 Sмitie, 1899,1 . 448.
Fomule.-Carapace elliptical, as wide anterionly as posteriorly, more than half the entire length. Frontal plates not prominent nor very distinct; lumules small and widely separated. Posterior simmers shallow and nearly paralled with the longitudinal axis: median lobe about half the entire width and shorter than the lateral lobes: the latter are narrow and somewhat pointed.

Free segment very marrow and long, like a wasp waist, and not much widened at the center through the bases of the fourth legs. (ienital segment obovate, well rounded anteriorls, but with a deeply concave posterior margin, leaving the lobes at the external angles short and acute.

Abdomen short and wide, only half the length of the genital segment and somewhat clut-shaped; anal lamine minute and armed with smatl sotie. Egge strings about the same width as the abdomen and as long as the entire body; eggs large and well rounded, abont tifty in each string.

First antemme longer and more thickly beset with sete than usmal, those at the extremity of the terminal joint being very long. Secomd antenna rather weak. Second maxillipeds with a stout hasal joint and a slender terminal claw, the acressory spine of the latter being much nearer the tip than usial. Second maxilla slender. curved and acnminate. Furca small, base wide and short, hranches very slender. straight, and divergent, about twice as long as the base. Fourth legs three-jointed, with four spines; the latter slender and very longs all four about the same length; fifth legs invisible dorsally. Total length 4.5 mm . Length of carapace 2.6 mm .; width of same 2.2 mm . : length of genital segment 1.4 mm.; length of abdomen 10.6 mm . : length of egg strings 4.6 mm .

Male-G:arate proportionally very harge, twier as lomg and three times as wide as the rest of the body, slighty marowed anteriorly; frontal plates small and narow; free seqment wen smallor melatively than in the female, which is rery mmsmat; gemital segment semilmar in shape, nearly twice the width of the abdomen, with rery long and acmminate bobes at the posterior formers. Two patrs of setiferous papitlae, one at the tips of the lohes and the other on the inner margins near the bise.

Ablomen the same length as the genital segment and slightly swollen near the tip; appendages as in the female, with the usual increase in the siza of the serond antenna and second maxillipeds: fometh legs poportionally longer and more sember than in the female.

Total length t mm.; length of rampace 2.68 mm . ; width of same 2.35 mm ; length of genital segment 0.5 mm ; length of abdomen (1. 7 ! mm .

Color not given.
(but ister, generic name of host.)
Several examples of this speries were ohtamed from the wills and fins of West Indian -peries of the genms loulistos.

A few individuals in the chalimmstage were also found still fastened by a frontal tilament.

CALIGUS ISONYX Steenstrup and Lütken.

Plate NIV, fir. 171; Plate N V V, figs. 18t-186.
 Smitio, 1s:99, p. 450.

Femmbe- Chapater comsiderably leas than half the entire length, as wite as long, narrowed anteriorly; frontal plates not prominent; hmules bery small: antemat short; posterior simmes comparatively deep, with parallel sides: median lobe sarcely one-third the entire width, its posterior margin just even with those of the lateral lobes; free segment narow, hat long and not swollen murh at thr center; genital segment arorn-shaped, narowed into a slombler neek, where it joins the free segment, the sides symmetrically romded, the posterior margin antarely frumated. There are two pairs of rudimentary leg. papillae on this segment, one on the latemal margins comsiderably posterior to the center of the segment. the other at the posterior cormers. Ahdomen two-thirds the length of the genital segment. quite wide, and enlarged a little toward the tip; amal lamina terminal, very small, and carrying small wete; egg strings unknown. Frontal plates emarginate between the lmules; hasal joint of tirst antemme short: terminal joint muth longer, but soarcely protruding beyond the margin of the (arapater.

Ferond antemma long and slender, with an elongated and namow terminal "law, strongly cheved.

First maxillie short and strongly curved, the hase only sighty enlarged; second pair longer than the probosidis, straight and acuminate, with a small tooth on the imer margin near the center.

Terminal claw on the second maxillipeds bent mearly into a semieircle. Furca short and wide, the branches longer than the base, straight and divergent. (laws at the tip of the first swimning legs moderately long, and all, together with the seta at the distal corner. the same length. Branches of the second legs longer than metal, the exopod with long and pointed spines. Rami of the third legs large and close together, the spine at the base of the exopod large and strongly curved. Fourth legs four-jointed, with five spines, all slightly curved, the one at the tip of the second joint longer and curved more than the others, the rest about equal.

Total length 4.5 mm. Length of carapace 2 mme; width of same 1.9 mm .; length of genital segment 1.4 mm .; length of abdomen 11.9 mm .

Color not given.
(ixomy.r, íon5, "qual and örve, at claw.)
This species is hased on a single example, which is evidently a female although it lacks the eggestrings. It was taken from the gills of the great barracuda, spligrienu burrecmln (Walbaum), in the West hudies.

CALIGUS THYMNI Dana.

Plate XV^{\prime}, figs. 178, 179.
Caligus thymmi Dina, 1852, 1. 56.-D.NA, 1852, 1. 1353, pl. xCIs, fig. 3, a-c.T. SCott, 1894 , 1. 189, 11. XIF, fig. 21.-BASSETT-SMITH, 1899, 1\% 451.

Fomule.- Carapace oblong, not narrowed anteriorly, the length one and a half times the width. No emargination at the center of the frontal plates; lumules elliptical and not prominent. A short seta on the frontal margin on either side about half way between the lumbe and the center. Eyes deep red on a hack hackground. Free segment short and wide. (ienital segment ohlong, the sides divergent, widest posteriorly, where it is about twice the width of the abolomen; posterior angles prominent and tipped with setar. Abdonen longer than the genital segment, two-jointed, with the basal joint about half the length of the terminal: :mus prominent.

Anal lamine small, filling out the poiterior angles and hardly projecting beyond the anus. The three plumose sete which they carry are as long as the last joint of the abdomen, and do not diverge as is many species. but are parallel.

Egg tubes a little narrower than the abdomen, longer than the entire body, each containing 40 pgos.

First antemae small, terminal joint very slender and tipped with seta as long as the joint itself. Second antenna of moderate size with a
slender torminal claw hut with no spine on the posterior magin of the hasul joint.

First maxilla lacking; second pair stout and broad. First maxillipeds with hasal joint about three fourthe the length of the terminal; second pair very stout, batial joint subconical in shape, without protuberances, the terminal claw less than half the length of the basal joint. Furca simple, the hranches divergent, straight and acmminate. Fomrth legs three-jointed with forr simple spines, no teeth on the spines nor sheathing seta at their hases.

Total length 9.7 mm . Length of carapace 4.9 mm ; width of same 3. 4 min.

Color not given.
(thymmi, the generic mame of its host.)
Mrate. Caraptere elliptical, about one-eighth longer than wide, not narrowed much antrriorly. Frontal plates small, withont an emargination at the center and very narow; lumules small and semicirenlar. Free segment like that of the female. Genital segment nearly quadrate, the sides somewhat conves, the posterior margin ahmost squarely trumate, with the pootorior angles scarcely projecting at all, but each armod with a bunch of sete representing the tifth leg of that side.

Abdomen a little shorter than the genital regment, almost as wide as long, two-jointed, the basal joint only about half the terminal as in the fomale. Anal laminat as before, but the phamose setae much longer, as long as the entire abdomen.

The apperdages show the matal increase in the size of the second antroma and second maxillipeds. The former have a stout branch on the imer margin of the terminal joint near its center. The fourth logs are longer and more slender than those of the female, and the spines which they carry are longer and waker.

This speries was obtained from the oceanie honito (Gymnosurde phamis Linnaxus; Th!!mmer pelamys ('uvier and Valenciennes), and is the fourth species of craligns to be recorded from that host. The other three species are pelamydis. productux, and bonito. It will be instructive to review here the distinguishing characters of these fonr species.

They differ, first, in size, and may be arranged in an ascending series, pelamydis, $3-4 \mathrm{~mm}$. long; productus, 5-6.5 mm.; bonito, 7 -8 mm., and theymmi, s-10 mm.

Again, they differ considerably in color, although unfortumately the color of thymmi has never been given. I'elamydis is a light yellowish white, the genital segment almost pure white withont pigment of any sort. I'roulurtus is a light dirt-brown, everywhere transparent, exeppt the eggstrings; while bonito is a very transparent white fantly tinged with yellow, and with a large spot of rusty-brown pigment in the posterior portion of the lateral ara on cither side, like a large lateral eye.

The genital segment in pelamydis is nearly orbienlar, only a triffe longer than wide (one-sixteenth), not narrowed into a neck anteriorly and only slightly emarginate posteriorly.

In productes and bonito this segment is elliptical, narrowed into a rery marked neek anteriorly and with stout lobes prolonged far backward posteriorly on either side of the abdomen.

In thymni it is trapezoidal, widest posteriorly, with straight sides and short, narrow posterior lobes.
The abdomen is two-jointed in each of the species, but in pelamydis the basal joint is three times the length of the terminal and only onethird as wide as the genital segment.

In bonito the hasal joint is about twice the length of the terminal and the abdomen is two-fifths the width of the genital segment. In productus the terminal joint is twice the length of the hasal and the abdomen is one-third the width of the genital segment. In thymmi the terminal joint is also twice the lasal, but the abdomen is fully half the width of the genital segment. In the structure of the abdomen, therefore, the species arrange themselves in two pairs, a large and a small species in each pair, which correspond quite closely.

The fourth legs in pelamylis are four-jointed with five spines, the last two joints rery short and squat, bringing the five spines close together in a row. In mortuctus these legs are three-jointed with four spines, the two terminal joints long and slender, the last two spines toothed along their outer margins. In bomito the legs are of medium length, three-jointed with five spines, none of which are toothed. In thymm; they are long and slender, four-jointed with five spines, none of which are toothed. All the authors who have hitherto noticed productus are agreed that the first swimming legs have no plumose seter on the posterior border of the terminal joint.
The male of pelamydie is unknown, but in the males of the other three species there is even greater differences than in the females. In productus the free segment of the male is a little marrower tham the genital segment, and the fourth legs do not reach its posterior margin. The terminal joint of the abdomen is half as long again as the basal and the anal papillie are small. In the male bomito the free segment is a little wider than the genital segment and the fourth legs reach considerably beyond it. posterior margin. The two abdomen joints are about equal and the anal lamine are very large.

In thamm; the free segment is athout half the width of the genital segment and the fourth legs just reach its posterior margin. The abdomen is as wide as it is long with the terminal joint nearly twice the length of the basal. These four species are thus well distinguished in both sexes, but more clearly in the males, since there is not as much specific variation in this sex.

CALIGUS HæMULONIS Kröyer.

Plate ${ }^{\text {N゙V゙, figs. 180-183. }}$
 1899, p. 448.
Femele. Carapace not quite half the entire length (an 9 to 20), as wide as long. Frontal plates projecting very strongly between the lmmes, with a deep median incision. Lanules themselves large, elliptical and widely separated. Posterior sinuses wide and shallow; median lobe a little more than half the entive width, and projecting but little behind the lateral lobes; the latter hoad and well romeded. Cephalic area very much larger than the thoracic: eyes over the hase of the prohoscis and elliptical. Free segment very narrow and short, standing ont in sharp contrast with both carapare and genital segment.

Genital segment orbicular or slightly obcordate a little wider than long with a shallow posterior emargination. It is one-third shorter than the carapace with symmetrically rounded sides and posterior corners.

Abdomen a little more than half as long as the genital segment and one-third as wide, contracted at its hase and unsegmented; anal papille small with short sete: egg strings unknown.

First antemate small, the joints equal in length; second pair situated so near the posterior border of the lumules as to partially hide them. First maxilas stont and sickle-shaped; second pair a little shorter than the proboscis, situated far forward on either side of the latter and just reaching its tip.

They are simple, somewhat weak, acminate and slightly curved. Maxillipeds of the usual form; furea large, hase ang as the branches, with parallel sides and an oval foramen: branches stout, acuminate, curved. divergent, the sace between them having a width equal to its length. First swimming legs short and thick, the terminal spines all the same length, while the plumose seta on the posterior border of the terminal joint are entirely lacking. Rami of third legs widely separated, the outer branch long and stout. Fourth legs three-jointed, the lasal joint as long as both the others, minns the claws: second and third joints the stme length; claws quite close together.

Total longth 2.8 mm . Length of fantipace $1.8 . \mathrm{mam}_{\mathrm{m}} \mathrm{mm}$; width of the sane 1.3 mm.; length of genital segment 0.7 . mm.: length of abdomen 0.6 mm .

No statement with regard to the color or habits.
Melle.- Carapace slightly more than half the entire length: frontal plates distinct, not projecting as in the female, but about as deeply incised at the center. Lmmules large and more nearly circular. Posterior sinuse even more shallow than in the femate; median lobe con-
siderably more than half the entire width and quite squarely truncate posteriorly.

Free segment five-sevenths as wide as the genital segment, and much swollen at the center through the bases of the fourth legs.

Genital segment ovate, three-sevenths as long as the carapace, with evenly rounded sides; fifth legs not visible dorsally.

Abdomen a little shorter than the genital segment, two-jointed, the terminal joint three timen as long as the basal; the latter considerably wider than long: amal papilla as in the female, but the plumose setre much longer.

Total length 2.25 mm . Length of carapace 1.25 mm .; width of same 1.2 mm .; length of genital segment 0.6 mm .; length of abdomen 0.5 mm .

Three specimens, two females and a male, of this well-defined species were obtained from the gills of Hamulom elegens. Cuvier, in the Danish West Indies. The largest female was full size, with egg strings just hatched.
(hemulonis, generic name of the host.)

CALIGUS MONACANTHI Kröyer.

Culigus monacenthi Kröyer, 186:3, p. 59, pl. iif, fig. 2, a-e.-Bassett-Smith, 1899; p. 450 .

Kröyer obtained what he states to be a male Culigus from the skin of a Monacantlow in the West Indies. There was but the single speeimen on which to found this new species.

After a careful examination of Krörers figures and a study of his description, it seems to the author that he must have mistaken the sex of his specimen, and that what he really had was at young female Caliyus productus.

The general make-mp of the creature is that of a female and not a male; the genital segment is very large for a male, and if it were really that sex with lobes at the posterior corners, as indicated, the setar of the fifth legs would certainly be visible.

But Kröyer states that there are no seta. Again, if it were a male, with an abdomen as long as indicated, that region would certainly be segmented as in all other known species.

In the description Kröyer does not notice any differences in the second antenmatad second maxillae, which are charateristic of all males. On the other hand, his description is identieal throughout with that given for the female of productus, and we note particularly the absence of plumose sete on the terminal joint of the tirst swimming legs, the group of seven or eight pectinate projections on the outer border of the basal joint of the endopod of the second legs. the widely separated rami of the third legs, while the fourth legs are three-jointed, with four spines, the inner terminal one much longer than the others. In
view of the marked similarity between this single specimen and the female productus, it will at least be necessary to wait for further specimens whose sex (an be established beyond a doubt before admitting it as a new species.

This completes the North American species so far as known at the present time, hat there are in the National Musemm collection, specimens of smother speries from south America which seem to be new to science and whose (leseription is here included. (See p. 64\%.)

Genus CALIGODES Heller.

Carapace minute, a rery small fraction of the entire length. Frontal plates well defined and furnished with lumules. First maxilla small with a swollen base; second maxille simple. Fumea large and prominent with the divergent and sharp-pointed branches hent so as to appear like a grapnel anchor in side view. Free segment narrow and somewhat elongated, forming a neck connecting the carapace with the genital segment.

First and fourth legs unimmous, second and third hiramous, the fourth pair sometimes partially rudimentary.
(renital segment much swollen and prolonged posteriorly into two processes as long as the abdomen and extending batkward nearly parallel with it on either side. Fifth legs lacking.

Abdomen elongate and flattened; amal lamina linear and minute.
Egg cases long and narrow; eges as in Caligus.
(Caligodes, Caligus, and odes, a termination denoting likeness or similarity.)

This gents will be distinguished from Lehetes under the latter gemus (sec p. 615), and it only remains to separate it here from van Beneden's gemus, Scianophilus. In the latter the free thorax segment is very short and wider than long, as it is in Caligus, while in the present grenus the free segment is much elongaterl. Again in scienophitus the genital segment is without processes or appendages. while here it is prolonged on either side into an appendage as long and as large as the abdomen. In sciamophilus, also, the second maxillipeds are very large and masive, while here they are of moderate size.

> ANAIKME OF RIPC'IEN.

1. Ablomen wile and produced into posterior lobes; fourth legs four-jointed with

2. Abdomen withont lobes or processes, of medium width 2.
3. Proceses on genital segment longer than the abdomen; fourth legs inserted close to the carapace, two-jointed with two spines.
meguctphalus, new species.
4. Processes on genital semment shorter than the abolomen; fourth legs inserted some distance back of the carapace, three-jointed with one small pine.
laciniatus (Kröyer, 1863).

CALIGODES MEGACEPHALUS, new species.

Plate NVI.
Female-Carapace orthicular, a little longer than wide nearly onefourth the entire length. Frontal plates distinct and furnished with small Lunules, which are better developed than those on Eechetus. Frontal margin deeply incised at the center, with the remains of the basal portion of an attachment tilament still left in the incision. In this genus, therefore, the development is similar to that of Caligus, and the larva at one period is attached hy means of a frontal filament.

Posterior sinuses small, narrow, and inclined toward the centrad axis; median lobe but little more than one-third of the entire width, projecting half its length back of the lateral lobes. The latter are rather pointed and curved inward at the tips. Thoracic area small, half the width and a third of the length of the carapace. Eyes small and situated far forward. Free segment elongate, a little more than half the length and one-third the width of the carapace, contracted where it joins the latter, but widened through the bases of the fourth legs (fig. 157).

Genital segment also elongate, flask-shaped, produced into a long neck anteriorly, while at the posterior end it extends backward in a narrow lobe on either side of and nearly as long as the abdomen. On the dorsal surface of this segment there is a broad horseshoe-shaped curve, the toe of the shoe formed by a slight projection just over the anus, while the sides of the shoe extend forward in at curve parallel with the margin of the segment. Abdomen elongate, nearly as long as the genital segment, only one-fifth as wide as long, and the same diameter throughont, except at the very tip. It shows no trace of segmentation. The anal papilla are very minute and inclined towarl each other. The egge cases are narrow, while the eggs are thick and probably not very numerons, althongh that can not be decided with certainty, since the cases are broken and the posterior portion is lacking.

Of the ventral appendages the anterior antenne are as long as the frontal plates, the terminal joint longer than the hasal, and both armed with setie in the usual manner.

Posterior antenne with a short hasal joint and a long terminal claw bent into a sickle shape. There is a short and blunt acceswory spine at the base of the first joint.

The first maxilla are little more than a swelling on the rentral surface of the carapace. The second maxilla are broad and triangular. and as long as the mouth tube. They are removed some little distance from this tube on either side and are rather blunt at the tip.

The first maxillipeds are short and stout, the joints approximately even, the terminal claws short. The second maxillipeds are large and
strong, the terminal claw threc-fourths as long as the swollen lasall joint, with a large tooth on its imer margin near the base. Furca small, the base about the same length as the bramehes. The latter are slenter, well separated, and nearly parallel. This furca is reenforeed on either side by a stout curved spine, situated about halfway between the furea and the hases of the first legs and a little distance from the mid line.

First legs short and stont, the last joint bearing a single short terminal spine, not curved, and the minal three phmose sete on it posterior border. There are no terminal clatws.

The second legs are like those of Culigux in segmentation and appendages, with the spines on the three joints of the exopod the same size and rather small. Rami of the third legs close together, each twojointed and furnished with the usual seta and fringe of hairs. Fourth legs two-jointed, the joints the same size and length, the second one terminating in a single spine of medium size. Fifth legs entirely lacking.

Total length, 6.1 mm . Length of carapace, 1.25 mm .: width of same, 1.1 mm .; length of genital segment, $: ~ m m$. (t mm. including the posterior processes); length of abdomen, 2.2 mm .: length of free segment, 0.7 mm .

Color a dark yellowish brown, aldomen and egg strings darker than the rest of the body.
(maguecthulus., $\mu \dot{\varepsilon}$ 人 $/ \alpha_{5}$ large and $\left.\kappa \varepsilon \phi \alpha \lambda\right\rangle$ head.)
There is but a single female of this species in the National Musemm follection, numbered 6103 which was taken from the underside of the mouth of a silver gar (Lepisostens ossens.s) at Woods Hole. It has apparently shrunk somewhat in the preservative, but as the shrinkage has been miform it has not afferted the proportions of the diflerent part.
This is of importance, because the details of the appendages in the two speeies of this gemus already described are meager, especially for the species lacimiatns, the type. Hence the distinction of species must be based upon the relation of the different parts. This will appear to better adrantage in tabular form.

From this table it can be seen that the species carangis is about twice the length of the other two, which are themselves approximately equal. But the carapace in caranyis is only one-seventh the entire length. while in meguceppluthos it is a quarter. The free segment in mogncephentus is actually three and a half times as long as in correngie, or proportionately seven times the length, and yet it is only half as long as the free segment in luciniutus. The relative width of the genital segment and carapace also vary greatly in the three species.

And if Kröyer's figure of the rentral surface of luciniutus is to be trusted for details of the appendagen, the secomd maxillipeds in that species have no tooth at the base of the terminal claw, and there are no accessory spines in comnection with the furea.

Genus ECHETUS Kröyer.

Carapace minute, a very small portion of the entire length; frontal plates well defined and furnished with lumules. First maxillie and furca lacking; second maxillae simple.

Free thoracic segment very narrow and much elongated, forming a long neck connecting the carapace and the genital segment.

First and fourth leg. miramous, the fourth pair partially rudimentary; second and third pairs birmous. Genital segment swollen several times the size of the carapace, without appendages or processes. Abdomen an elongate spindle attached to the genital segment by a very short and narrow neek; anal lamine linear, minute. Egg cases a little longer that the abdomen, eggs as in Cieligns.
(Echetnis, the name of a king mentioned in Odyssey, line 85.)

This name is peenliarly appropriate, as can be seen from atranslation of the context, "And I whall send you to King Echetus, destroyer of all men, who will rut off your nose and ears with pitiless steel, and draw out your ritals and give them to dogs to eat raw."

Only one species known.

ECHETUS TYPICUS Kroyer.

Plate XVII.

Female- Carapace about one-t wentieth the entire length, longer than wide. Frontal plates well defined and furnished with small Iumules, which are widely separated and not fully visible dorsally. The median incision hetween the two plates is as deep as the plates themselves, reaching the margin of the cephalic area. In this incision can be plainly seen the remains of the base of an attachment filament similar to those in Culigus.

This indicates platinly that the gemus has a derelopment similar to that of the other members of this subfamily.

Posterior simses shallow with divergent sides; median lobe foursevenths the entire width, projecting far behind the lateral lobes, with nearly straight, inclined sides, and an emarginate posterior border. Lateral lobes short and well rounded. Thoracic area very small, the groove which defines its anterior horder reaching only a short distance in front of the posterior sinuses, or about one-third the entire length of the carapace.

The longitudinal grooves separating the lateral from the cephatie areas are not well definet and are consequently difticult to trace. Eyes small and situated well forward.

Free thoracic segment eylindrical, about one-fourth the width of the carapace, contracted considerably just before joining the latter and prolonged posteriorly into a narrow, thread-like neck, nearly twice the length of the rest of the body.

The fourth legs are attached close to the carrapace just back of the constriction.

Genital segment approximately an ellipsoid. two and a half times as long and twice as wide as the carapace. It is flattened somewhat dorsoventrally and has three lobes on the posterior margin, a short blunt one at the base of each of the egg eases and a smaller median one. The dorsal surface of this segment is marked by two ridges which start from the center of the lateral margins on either side and curve in toward each other and pass backward close together alongside the median line to the posterior median lobe. The areas at the posterior end of the segment outside these ridges are darker in color than the rest of the segment, and their surface is wrinkled irregularly. They contain the oraries and the internal oviduct.

The abdomen is an elongated spindle, nearly twice the length of the genital segment and half its width, unsegmented. It is contracted into a very narrow wasp-waist where it joins the genital segment and tapers evenly and gradually toward the posterior end. It is attached to the ventral surface of the genital segment, a short distance in front of the posterior end, and in a side view stands ont nearly at right angles to the longitudinal axis of the segment.

Anal papiltae linear, almost thread-like, but quite long and tipped with three short sete. Egg tubes narrow, only one-quarter as wide as the abdomen but about the same length, each containing t_{0} to 50 eggs.

Anterior antenme the same length as the frontal plates; basal joints thick, conical, and heavily armed with plumose setae: terminal joints the same length as the basal, eylindrical, and bluntly rounded at the ends where they show the usual nomplumose sete.

Frontal plates peculiar in that the outer portion between the lumues
and the antennt curves forward and projects considerably, looking like the stumps of an accessory pair of antenne.

Posterior antema small, with a stout basal joint and a long slender terminal hook, not bent rery shaply. They are situated far forward almost at the rery anterior margin of the earapace. No trace conld be found of the first maxilla or the furca after the most careful seareh.

Second maxillie short and wide, triangular in outline with swollen bases, and bluntly rounded at the tip. They are closely appressed to the side of the month tube and are about two-thirds its length. The month tube is short and wide, almost a semicirele in outline. and flattened against the rentral surface of the carapace. It does not seem capable of being raised any distance from the latter as in ('aligus and other genera.

First maxillipeds short and comparatively stont, the two joints about the same length; terminal claws short and stout, the inner one twice as long as the outer. Second maxillipeds greatly onlarged and rery strong, evidently serving as the principal organs of attachment to its host. The hasal joint is much swollen and furnished with powerful muscles: the teminal claw is two-thirds as long as the hasat joint and strongly curved. No ateessory ppine could be sem upon the specimens examined.

The first thoracic legs are long and narrow, the second joint five times as long as witle and cylindrical. The terminal joint is also much longer than wide, and armed as in Coligns, with three terminal claws of moderate length, three plumose seta on the posterior margin, and a long slender seta at the comer between the two. Second legs large. with a long hasal joint and a three-jointed endopod and exopod, the joints of similar size and shape, and armed with spines and plumose seta, as in ('aligus. Third legs also large, the rami close together, each two-jointed and furnished with the usual mumber of plumose setre. The spine at the base of the exopod is of medium size and acuminate. Outside of the exopod on the margin of the apron is a wide transparent flap, similar to that aromed the edge of the carapace, and supported by momerous wayy hair-like ribs. Fourth legs short and stout, two-jointed, the joints about equal. The terminal joint carries three terminal spines and one on the outer margin, all nearly the same size. No trace of the fifth legs can be found.

Total length, 23.5 mm. Length of carapare, 1.1 mm ; with of same, 1 mm . : length of free segment, it mm.: length of genital segment, 3.1 mm .; length of abdomen. 5.5 mm . : length of egg strings. 6 mm .

Color of the carapace, a light yellowish brown. of the long necklike free segment a dark brown, of the genital segment a suphur yellow except in the posterior areas of the dorsal surface outside the ridges, where the yellow is mixed with dark hrown: color of the abdo-
men a brownish yollow, considerably darker than the genital segment; of the eges strings a dark brown.
(typrims, typical, that in. the type of the gemus.)
The National Museum rollection inchates three nmmmbered lots collected by Dr. II. M. Smith from the inside of the operculmm of the common chamel hasi (Scitnops neflutus I immasus) in the fish markets in W'ashington city.

In 1863 Kröger published the description of some sperimens of femate copepods which he had obtained from this sume rhannel bass at New Orleans. He called the fish C Monimunnimuenlatu in his mannseript. Ifestates framkly that the parasites had no head and onty a portion of the long and slemder neck. But they seemed to him so different from any of the others he had examined that he established for them a new genus Erhetus, and a new species, typions. From his figmes and description there is no donbt that his specimens were the same as those here described, especially as they were obtained from the same species of fish. The mames which he gave have accordingly been adopted, and the gemus designation. which has ahrady been explamed (p, 611) seems peetlarly appropriate for a creature which burrows into the flesh of its host the entire length of the canapace and long free segment, leaving nothing hut the genital segment and abolomen exposed.

So firm is the hold which the ereature thas olntains that it is impossible to remove one entice without cotting away the flesh from around its nerk and carapace. Those which Kroyer obtained were probahy pulled out without cutting the thesh, with the result that the free segment broke somewhere near the center, to judge by the measurements which he gives. For the ohtaining of the head intact upon sereral of the present specimens the author is deeply indehted to the persistent and careful efforts of Doctor smith. And the result fully justifies the eflorts, for the addition of the head changes entirely the systematic position of the gemus and its relationships. Kroyer considered that the portion which he ohtaned indicated considerable degeneration. He states that " the large knobs on the dorsal surface are, as it were, the begiming of a monstrosity of the genital patts observed in Leenat brotuclicelis and L. cyrdopterinu, and indicates an approximation to those forms." And in aceordance with this view he places the species in a gronp) which he designates as Lermeocerina (Lermeidx), including the most degenerate forms known. But the general arrangement of the varions body regions, together with the details of the carapace and the appendages, show at once that it belongs to the subfamily Caligine now under consideration. It thas takes its place among the least rather than the most degenerate forms.

It is most elosely rekated to the gemus Caligotes, founded by Heller in 1865 . On comparing it carefully with the three species already
known in that genus, the following differences may be noted. First, the carapace is relatively much smaller here and ovate instead of orbicular. Again, the free segment or neck is nearly twice as long as in Celigodex, and it is the same diameter throughont, instead of being enlarged where it joins the genital segment. The latter is also very different, having no processes of any kind in Echetur. but simply short and rounded lobes, such as are common in Culignss and other genera.

The dorsal smrface of this segment is also marked by the ridges already described, in a manner totally unlike Coligooles. Here the abdomen is a symmetrical elongated spindle, while in cieligodes it is broad and flattened, and in the species corangis is produced into posterior processes, like the genital segment. In this gemus also the fourth legs are different from those in the three species of Culigodes, but the latter differ as much from each other, so that this could hardly become a generic distinction.

Genus LEPEOPHTHEIRUS Nordmann.

Carapace large, shicld-shaped. Basal joints of the first antemme without the sucking dises characteristic of Caligus; the terminal joints free. Mandibles toothed only on the inner margins. Second maxillie small, bifurcate, the branches acminate.

First and fourth thoracic legs miramose, second and third biramose. Free thoracic segment simple. without dorsal plates. (Eenital segment also simple, without plates or processes. Abdomen one or two segmented. The young with a frontal filament during the chalimus stage, as in Culignes.
(Leprophtheirus, $\lambda \varepsilon \pi \grave{o}_{5}$, a siaht, and ϕ Hé 2ρ, al louse.)

ARTIFICIAL KEY TO THE SPEClES

This key is based upon the different borly relations, as in Caligus (see p. 555). The same method of measurement is used as in the former genns, and here also are included all the valid speries known at the present time, with the authority for each. The author considers I. obscurus (Baird) to be the male of L. hipooglossi, while the specimen called by Bassett-Smith (1896, plate is, fig. 2) " (cligus obscurus, Baird," is certainly not identical with Baird's species, but is prohably L. thompsmi (see p. 622). Three of Kröyer's "new species," gibbus, gracilescens, and rhombi, are considered identical with L. thompsomi, as are also Malm's L. branchialis and van Beneden's L. gracilis, for reasons stated on page 622 . Of the remaining species which are included in this key there are five which are based on single specimens, namely, cossyphi, longipulpus, molis, quulrutus, and robustus. Another, ornatus, was not very clearly differentiated by Milne-Edwards, and no figure of it has ever been pulblished.

1. Garapace definitely more than half the entire length 2.

2. Carapace decidedly less than half the entire length. 17.
3. Abdomen two-jointed, half as long as genital segment or more........... 3 .
4. Abdomen two-jointed, less than half the genital segment. t.
5. Abdomen one-jointed, half the grenital segment or more. 5 .
6. Abdomen one-jointed, less than half the genital segment 10 .

3. Females, genital regment obovate, longer than wide; lobes long, comical;

 fourth legs long . longipes, new species, p. 618.3. Females, genital segment orbicular, a fourth wider than long; lobes short; fourth legs short .chilrisis, new species, p. 658.
4. Males, genital segment obovate, three-fifthe the earapace; fifth and sixth legs separatex.
5. Hales, genital segment oblong, one-fourth the carapare; fifth and sixth legs chse thgether . eressomi (Thomson, 1890)
6. Mades, both tifth and sisth lems showing phainly 6.
7. Males, only fifth lems showing, lout with a pair of clorsal prapilae at the base of the genital reyment
8.
9. Males, only fifth legs showing; no papille 8.
10. Females, genital verment without aperudares of any rort.................................
11. Genital segment hared-shaped, wites curvet; no lobes; fourth legs reathing its center-..ectorulis (Müller, 1776).
12. (ienital segment oblong, willes parallel; well lobed; fourth legs reaching

13. Genital segment obcordate, one-third the carapace; fourth legs reaching its

14. Genital segment quadrate, one-fifth the sarapace; fourth legs reaching fully to its tip..nstus: (Kröyer, 1863), p. 646.
15. Genital segment reniform, wider than long; anterior appendages lateral rather than dorsal.. (Kröyer, 1863). 8. Genital segment semilunar, wiler than long; fourth legs nearly reaching its tip ...icentris (B-Smith, 1898, b).
16. Genital segment lianond-shaped, longer than wide; lobesshort, acute; fourth legs short
buyfi (Dana, 1852).
17. Genital segment ovate, wiber than long; lobes acute, spine-like; fourth legs reaching its tip . suhmi (Braly, 1883).
18. Genital segment chliptical, longer than wise; lobes lowal, roundel; fourth legs

19. Genital segment subquadrate, wider than long; lohes broad, rounded; fourth legs. reaching abdomen tiperersoni (Thomson, 1890).
20. Males, both tifth and wixth legs showing phanly 11.
21. Females, only the fifth legs showing dorsally 12 .
22. Females, no appemhages visible dorsally . .. 13.
23. Genital segment elliptical; fourth legs reaching aldoumen tip; branches of furca bifint
hiphoglossi (Kröyer, 1897), 1. 625.
24. (ienital segment ovate; fourth legs not reaching its tip; furca branches flattened, foliacenus. edncurdsi, new species, 1. 627.
25. Cenital segment elliptical; fourth legs medimon; fura branches acuninate, chose together... dissimulutus, new species, p. 631.
26. (ienital segment duadrate; fonth legs medium; fura brancher bhont, flanged, widely separated . purtiventris, new species, p. 6335. 12. Genital segment orbioular; abdomen minute, spindle-shaped, much widened at center-. .-. rotundiventris (B-Simith, 1898, b).
27. Genital segment howd flask-shapel; fifth legs longer than abomen.
cos:яphi (Кriyer, 1863), p. 64t.
28. Genital segment urbicular, wider than long; abdomen nearly covered by it posteriorly . dissimulutus, new species, 1. 631.
29. Cienital segment elliptical, longer than wide; lohes short, narrow; furea branches hifict, truncate.........................hipmoylossi (Krïyer, 1837), p. 625.
30. Genital sugment orhicular, wider than long; no lobes; forth legs two-jointed with three spines.

Incuchyurus (Ileller, 1865).
13. Genital segment suloquadrate, as wide as long; no lobes; fourth leg spines all

13. Genital segment ohovate, longer than wide; lohes very wide and blunt; no serrate

13. Genital segment obovate, longer than wirle; no loles; foral loranches bifid,

14. Abdomen four-jointerl, as long as genital segment; the latter trapezoidal. pariticus ((rissler, 1883), p. 642.
14. Abdomen two-jointed, as long as genital segment; latter elliptieal; males.
prlluchii ($\mathrm{B}-\mathrm{Smith}, 1896$).
14. Abdomen two-jointed, shorter than genital segment 15.
14. Abdomen one-jointed, as long as genital segment; latter orate; lobes short,

15. Males, both fifth and sixth leas visible; genital segment narmownate; abdomen

15. Females, genital segment without any visible appendages............................ 16.
16. Genital segment oboorlate; abromen twice as long as wide; joints equal; free segment as long as wide; fomrtl legs fom-jointed, tivespines. raboro (Kröyer, 1863).
16. Genital segment obeorlate; alobomen twice as long as winle; joints equal; free segment three times as wide as long; fourth legs three-jointed, four

16. Genital segment quadrate; alnlomen as wide as lomg; joints equal; fourth legs four-jointed, five spines........................-. - pertomblis (Müller, 1776).
16. Genital segment obcorlate; hasal abdomen joint four times terminal; fonrth legs threc-jointed, five spines. - grohmumni (Kröyer, 1863).
17. Abdomen two-jointed, longer than rest of bory; genital segment triangular, twice

17. Abromen two-jointed, longer than genital segment; females 18.
17. Abdomen two-jointed, shorter than genital segment.................................. 19.
17. Abdomen one-jointed, three times the genital segment; latter sulnqualrate, spiny; lobes short.

Hores (van Beneden, 1892).
17. Abemen one-jointerl, a little longer than genital segment .-....................... 22 .
17. Abdomen one-jointed, whorter than genital segment-.-.................... 23.
18. (ienital remment oblong, hali the carapace; hasal abdomen joint fome times terminal. - longipulpus (B-Smith, 1898, 1).
18. (ienital semment oblong, as large as carapace; hasal abolomen joint twice terminal immominotus new species,]. 656.
19. Females, abomen distinctly more than half as long as the genital segment; fifth legs concealed dorsally.
19. Fenales, abrloment clearly less than half as long as the wenital regment; tifth legs

20. (ienital segment ovate; no lohes; fourth lege nearly reaching its tip. stroionis (Kröyer, 1s:37).
20). (ienital segment elliptical, lohes large'; fourth legs not reaching its center. thompsoni (Baiml, 1850), p. 619.
20. Genital regment elliptieal; lobes broal, lut short; ablomen half its width. sulmonis (Krüyer, 183S), 1.640.
21. (ienital segment quarlsate, as wicle as long; joints of the abolonen nearly equal. pertomalis (Müller, 1776).
21. Genital segment elongate, twice as long as wite; hasal abolonen juint three times terminal
bugri (I)ana, 1852).
21. Genital segment flask-shaperl, a tifth longer than wide; hasal alolomen joint the

21. Genital segment oblong, twice as long as wide; basal aldomen joint the wider,
 22. Females, genital segment quadrate, nearly as long as carapace; no lobes. polluchiii (B-smith, 1896).
22. Females, genital segment bell-shapeed, half the carapace; lohes long and broad . ..tus (Fischer, 1860).
23. Females, genital segment elliptical, lobes short and broad; fifth legs concealed dorsally...stmonis (Kruiyer, 1838), p. 640. 23. Males, genital segment spindle-shaperl; bobes narrow and two-thirds as long as abdomen. fores (van Beneden, 1892).
23. Makes, genital segment broal acorn-shaped; no lobes; both fifth and sixth legs visible.
intercurrens (Kröyer, 1863).

LEPEOPHTHEIRUS LONGIPES, new species.

Plate X Y'III, figs. 206-211, 222.
Femerle. (arapace elliptical, one-serenth longer tham wide. Frontal plates well rounded and deeply incised at the center. Posterior simuses of medium width, with the sides nearly parallel: median lobe rather more than half the entire width and projecting well hack of the lateral lober. Free thorax segment four-fifths as wide as the genital segment, four times as wide as long.

Genital segment ohlong. somewhat less than half the width of the carapace, a little wider posteriorly where it is produced into a marrow conical lobe on either side.

Abdomen narrow, oblong, two-jointed, the basal joint somewhat the larger. Anal lamine long, narrow, and curved inward so much at the tips that the two overlap. Egg strings about the same diameter as the abdomen and three-fourths as long as the body.

Anterior antemme two-thirds the length of the frontal plates. wellarmed with seta: posterior antemma slender, the terminal claw much longer than the basal joint and curved neally a third of its length. Roth pairs of maxilla very slender, the first pair not much curved, the second pair divided about to the center with the branches close together. parallel, and both curved slightly away from the rostrum. Furea narow and abruptly constricted at the hase: the hanches very thick and stont, divergent, and much longer than the base.
secomd maxillipeds stout, the elaw three-quarters the length of the swollen basal joint with an aceesory pine longer and stouter than ordinary. The phomose sete on the first swimming legs are short and weak; the two onter terminal claws are pectinate, while the inner one is smooth. On the second legs the spine at the tip of the basal joint of the exopod is very large, nearly as long as the joint itself, and the spines on the other two joints are also large. There is a curved claw at the tip of the second joint of the endopod of these legs which is totally unlike anything observed in other species. The fourth legs are rery large, relatively moch longer than in any other species. The
basal joints are thick and swollen, and they reach nearly to the center of the genital segment, while the three terminal joints, much narrower, extend well beyond the tips of the anal papillie. There are the mowal five apines on these legs, arranged in the customary mamer. There are sereral species (rrecsoni, liphoglossi. nordmemmii. ete.) in which the fourth legs of the male reach beyond the tips of the anal papillae, but this is the first instance where the same is true of the female. Furthermore, these legs in the present species are far larger than those of any known made, the basal joint on cach leg being actually larger than the entire free segment to which it is attached.

This, therefore, may be taken as the distingui-hing characteristic of the species.

Total length 8.5 mm. Length of (arrapace t.ens mm.; width of the same 3.6 mm .; length of genital segment 2.1 mm .: length of abdomen 1.25 mm .: length of egge strings 7 mm .: length of the fourth legs 4.2 mm., including the spines.

The color in preserved specimens is a dark yellowish gray, withont any pigment risible.
(lomgipees, Iomyus, long, and pes, foot.)
This species is rery clearly differentiated from all other: by the size of the fourth legs, by the shape of the furca, and by the curved claw on the endopod of the second legs.
The National Museum collection unfortunately includes only a single unmmbered lot of two females, and there are no data as to the locality or the host from which they were obtained.

LEPEOPHTHEIRUS THOMPSONI Baird.

l'late XVIIl, figs. 212-219.
Leperphtheirus thompsomi Baris, 18.00, p. 278, pl. xxxir, fig. 2.-White, 1850, p. 121.-Basett-Smiti, 1899, p. 455.-T. Scott, 1900, p. 152, pl. v, fiss. 43-45. ('uligus grucilis P. J. Vin Bexemen, 1851, p. 90, pl. II, figs. 1-7; 1861, p. 147.Richentit, 1880, 1) 148.
Culigus bormelhafis Steenstrtp and Letteen, 1861, p. 362, pl. if, fig. 3.-ClaUs, 1864, 1. 265, pl. xxxif, figs. 8-7; pl. xxxir, figs. 8 and 9.

Leprophtheir"s gracilis ('ARCs, 1885, p. 汤9.-BRLAN, 1898, p. 12, pl. i, fig. 5 ; 18:99, r. 3.
 Leperphtheirus breuchialis B.ssett-smita, 1899, p. 456.
Leperphtheirus obscum. T. Sсотt, 1900, p. 15:3, एl. vi, fiss. 16i-19.
Fomule-Carapace obovate, a little wider than longe not much narrowed anteriorly. Frontal plates narrow but distinct, without any incision at the center. Posterior simuse widely triangular and shallow, leaving a median lohe less than half the entire width and not projecting beyond the lateral lobes.

Of the grooves separating the carapace areas, the erossbar of the " H " is muth farther forward than in the preceding speries, fourninths. or nearly half, the distance from the posterior margin. Moreorer, it is strongly curved forward, and, togother with the posterior portion of the lateral groores, it forms a nearly perfect semicircle. The lateral groores are not parallel with the margin of the carapace. but diverge widely from it. The eyes are smaller than in immomimetus. but are situated in about the same relatise position.

The free thoracic segment is less than half the width of the genital segment. subtriangular in shape, and narowed into a neek anteriorly where it joins the carapace. This is in marked contrast with inmomimetos. the anterior margin of whose free segment is its widest part.

The genital segment has an elongate flask shape, narowed into a nerk anteriorly, and then widening to ahout two-thirds the width of the earapace. It is one-fourth longer than wide, with a deeply emarginate posterior horder and well-rounded lobes at the angles. The abdomen is two-fifths the width of the genital segment and two and a half times as long as it is wide.

It is two-jointed, the basal joint nearly three times as long as the terminal. The abdomen is somewhat swollen at the joint, and then tapers rapidly toward the tip. The anal hamina are small and widely separated, with the tips chrved in towand each other. The seta are also very small and slender.

The egg strings are only half the diameter of the abdomen and about as long as the entire body. The egos are thick, and momber 125 or 130 in earh string.

The first antenne are relatively smaller than in imomimatus, but are as well provided with seta and spines: the second pair are small, with a short terninal hook.

Both pairs of maxilla are slendrre the second par divided nearly to their hase with narrow, slonder, divergent branches.

The furea is relatively large fally twice the size of that in immomimutns: it is strongly narowed at the base and then widens into a broad U-shape. with dilated bramehes.

The seeond maxillipeds are large hat not to be eompared with those in immonimutus forsize: the terminal rlatw is nearly as long as the basal joint, hut rathor slender and strongly curved.
'The first swimming legs hase atout spine on the posterior margin of the hasial joint and another at the anterior distal end of the second joint. with the usual setie and terminal spines on the last joint. The fourth legs are short and small. four-jointed with five spines: but one of the spines is at the outer distal eorner of the basal joint and there is none on the recond joint. These legs are abont one-third the length of the genital segment. The fifth legs are invisible in a dorsal riew.

Total length 8.4 mm.; length of carapace 3.2 mm .; width of same 3.4 mm .; length of genital segment 2.8 mm .; length of abdomen 2.1 mm.; length of egg strings 8.5 mm .; 125 or 130 eggs in each.

General color a light yellow, the hard parts turning much darker on preservation.
(thompsoni, to William Thompson. who did much valuable work on the Irish fauna.)

Male--Carapace elliptical, one-sixth longer than wide, with erenly rounded sides. It is twice as long and nearly three times as wide as the rest of the body. The posterior sinuses are shallow and considerably narrower than in the female, but the grooves and general proportion of the parts are the same.

The free segment is more than half the width of the genital segment and is swollen at the center through the hases of the fourth legs, so that it becomes spindle-shaped.

The genital segment is orbicular. of about the same length and width, one-third the length of the carapace. It carries two pairs of setiferous papilla. one on the lateral margins near the posterior comers and the other pair at the comers.

The posterior margin between the latter papilla is sightly concave. The abdomen is half the length of the genital segment, a little longer than it is wide, and strongly narrowed at the basc. The anal lamine are minute and carry small setie. In the appendages there is the usual inerease in the size of the second antenne and second maxillipeds; otherwise the appendages are like those in the female.

Total length. 4 mm. Length of carapace, 2.8 mm .: width of the same, 2.4 mm.: length of genital segment, 0.7 mm .: length of abdomen, 0.4 mm .

The specimens of this species in the possession of the National Museum were obtained from Rer. A. M. Norman. The lot is numbered 8032 and consists of females only, taken from the turbot, Rhombus muximes, at Cornwall, England.

In all probability this is the species referred to ber S. I. Smith (1sit. p. 281) as found on the sting-ray (Dasyatis centrum) in Vineyard Sound; but those specimens were not preserved, and none have since been obtained from the same fish.

But during the past season the anthor received from Mr. V. N. Edwards a single female of this species taken from a goosefish at Woods Hole.

There has been the utmost confusion in the description of the species of Lepeophtheirus infesting the common turbot and brill of European waters. There are no less than seren species of this one genus, all claiming to be valid and all infesting the same fish. These seven species are as follows, given in the order of their discovery: Lepeophtheirus thompsoni Baird, 1850; gracilis van Beneden, 1851; lranchProc. N. M. sol. xxviii-04-40
inlis Steenstrup and Lütken, 1861: rhombi, gibbus, grectilescens Kröyer. 1863: onsectrees Bassett-smith, 189\%.
The figures given by the various authors all show the same general proportions, body regions, and appendages, especially the small fourth legs. It is obriously impossible that there should be so many species of the same gemus on one fish and corresponding so closely. And when we cone to examine the figures and descriptions carefully we are at a losis to diseover anything of specific value. The differences are all trivial and of no greater value than those recorded under the single species Culigus rapurer.

Bassett-Smith in his description of the species which he calls olverrus makes his specimens. which were all females, the same species as Baird's male, which the latter described in 1850.

This decision is based upon the bifureation of the branches of the furca. If that were correct it would come the nearest to a specific difference of anything comected with the entire seven species. But Bassett-smith in his first paper (1896) calls this species (obscurus) a Lepenplitheirus: in another paper pulblished the same year be labels the figure he presents Culiguse and puts a pair of lunules in the frontal plates; again in 1899 he goes back and calls it Lopeoplitheirns.

In the face of such vacillation too much stress can not be placed upon the bifurcation of the branches of the furca. especially as this one detail is all he has ever presented in the way of a description.

Baird himself snggented in his original description that the male he described as obscmins might very well be the mate of the species hippoglossi, only the female of which was then known.

If his figure be compared with that given by other anthors of a male hiphnethasi, the resemblance will be found very close.

Furthermore Bassett-Smith places a question mark in every instance after the mame of his species. Until he can give us more convincing proof, therefore, and a better description of his species we are not warranted in accepting its validity.

With reference to Bencden's species it is enough to say that not rery much credit can be given to an anthor who represents the fourth legs an attached to the hasal apron of the third legs, while the true rami of the third legs are attached to the lateral lobes of the carapace(!).
A careful reading of Kröger"s diagnosis of the three species rhombi, yibbus, and gracitesens, together with a comparison of the figures he presents, will quickly conrince one that the three are identical. All the details which he gives of the appendages show ahsolutely no differences, except trifling ones of size. The second antemar, second maxilla, furca, second maxillipeds, and third and fourth swimming leg. are identical. The proportions of the different regions are also very nearly identical, only such slight diflerences as oceur in any species. His specific distinctions, so far as one can judge, rest solely upon the
size and shape of the carapace and of the genital segment, and he was working entirely with preserved material.

The carapace is the one part of all others to be modified in a preserving fluid, while a candid examination of the genital segment of any common species will show that it is capable of much variation, even in living speeimens. We are compelled to the conclusion, therefore, that we have here only a single species subject to local rariations, and that the various forms given as distinct species are nothing more than varieties. And of them all Kröyer's grecilescens is the most worthy of separation as a well marked variety.

With reference to Stecnstrup and Lïtken's species loranchialis the figure which they give entire shows a genital segment quite different in shape from that which has been taken as typical of thompsomi. But the detail of the appendages, of which they present most admirable figures, corresponds exactly with thompsomi. And they add a partial figure showing the free and genital segments and the abdomen, which they declare illustrates a common rariation, and which corresponds very closely with that here given. Furthermore, they, as well as Claus, give Culigus gracilis van Beneden as a syonym under Coligus branclialis. The priority of branchialis presmmably rests upon the fact that it is a mannsript name given by Malm, to whom they ascribe the species. But as Malm's mannseript was never published, and hence Beneden's name, gracilis, antedates it by ten years, orunchiclis would have to be regarded as a syonym of gracilis rather than vice versa.

The important fact for us is that the two species are identical, and that the one (branchiclis) for which we have reliable details seems to be identical also with thompsoni.

Finally the seren species here discussed agree remarkably in size, the range being from 7 mm . in gracilescens to 8.4 mm . in thomp)soni, or less than a millimeter and a half, which is no more than would be expected in so large a species.

LEPEOPHTHEIRUS NORDMANNII Milne-Fdwards.

Plate NIX.
Caligus nordmamii. Milne-Edwards, 1836--1849, pl. lxxyif, fig. 1; 1840, p. 45゙5.
Lepeophtheirus nordmemmii Bamb, 1850, 1. 275, pl. xxxhi, fig. 1.-Heller, 1865, p. 180 , pl. xvi, figs. 1 and 2.-Rathbun, 1884, p. 487.-Thompson, 1895, p. 118, pl. xxvil, fig. 5, a.-T. Scott, 1900, p. 151, pl. v, figs. 32-37.
Female.-Carapace orbicular, as wide as long, and very squarely truncated posteriorly, or even slightly emarginate. Frontal plates small and narrow and not very well defined; posterior simuses broad, deep, and well rounded. Median lobe about one-half wider than the lateral lobes, squarely cut or emarginate posteriorly, with sharp corners terminating in short spines.

Grooven separating the carapace areas considerably diflerent from those in other secies. The two longitudinal grooves forming the sides of the "II" are strongly inclined toward earh other anteriorly, and there are two crosshars instead of one, dividing the length of the carapace into quite even thirds. Eyes rery small and situated just in front of the anterior crosshar. Free thorax segment subtriangular in shape and a little more than half the width of the genital segment.

Genital segment ohovate, not quite half as wide as the carapace, with broad and well-rounded posterior lobes. Abdomen spindle shaped, half the length of the genital segment, with a strongly emarginate posterior margin. Anal lamine large and curved in well toward each other.

The characteristic of the appendages is great length, combined with a reduction in wilth, making them appear very slender. The first antenne are somewhat of anception to this rule; they are slender, but are also very short and hard!y show at all on the anterior margin. But in the second pair the terminal hook is nearly twice the length of the basal joint and is bent into an almost perfect sickle shape.

Both pairs of maxillae are much elongated and narrowed, the branches of the second pair diverging considerably. The terminal chaw of the second maxillipeds is longer than the hasal joint and strongly forved, but its accessory spine is small and weak.

The furea is much elongated, with widely divergent and sender branches, which are somewhat enlarged at the very tips, but these tips are not armminate in American specimens. as was noted by Baird in European specimens; they are rather bhont.

The first three pairs of thoracic lege are normal; the fourth pair have a spine at the outer distal angle of every joint and three terminal ones. The two largest of these latter are rery distinctly toothed. The fifth pair of legs, which are ordinarily rudimentary papillat, are in this species quite broadly foliaceous, but they do not protrude far from the rentral surface.

Total length. 10 to 12 mm . Length of earapace, 5.5 mm . ; width of the same, 5.t mm.; length of genital segment, 2.85 mm .; length of abdomen, 1.5 mm . ; length of eggstrings, 7 mm .

Color a dark yellow-white, without pigment spots of any kind.
Mule- Carapace a little longer than the rest of the anmal and itself longer than wide, narrowed anteriorly and quite strongly convex. Frontal plates rather more distinct than in the female; frontal margin slightly rounded with a broad notch at the center. Free segment much longer and narrower than in the female, about one-fourth the length and one-fourth the width of the carapace: considerably widened at the renter through the bases of the fourth legs. Genital segment acomshaped, longer than wide, much narrowed anteriorly and deeply emarginate posteriorly; furnished with two acute lobes on either side at the
posterior cormer. Abdomen only one-third the length of the genital segment, but two-jointed, the joints unequal, the basal one wider and the terminal one longer. Anal lamina small, nearly linear, furnished with short sete.

Of the appendages the second antemas are branched as usual in males. The first maxillie are very long and siekle-shaped. The second maxillipeds have a stout spine or tooth on the imer margin of the bamal joint. The other appendages are the same as in the female.

Total length, 5 mm . Length of carapace, 2.75 mm .; width of same. 2.5 mm ; length of genital segment, 1.65 mm . ; length of abdomen, 0.75 mm .
(nordmamii, to Dr. Alexander v. Nordmann.)
This species was first deseribed by Milne-Edwards in 18t0, under the genus Culigus. This error was corrected by Baird in 1850, and the species was placed under the genns Lepeophitheirus, which had been founded by Nordmann himself in 1832.

It is apparently confined to the sunfish of our own coast and in European waters, as all the recorded specimens have been obtained from that fish. And it is not very abundant, only a few specimens being obtained from among the many parasites which infest one of these fishes. The National Museum collection includes three lots, 6018 , 12667,12668 , the first and last from the rieinity of Woods Hole, the other from Casco Bay.

LEPEOPHTHEIRUS HIPPOGLOSSI Kröyer.
Plate XX , fig. 6 in the text.
Caligus hippoglossi Krörek, 1837, p. 625, pl. vi, fig. 3 A. and 13.-MilxeEdwards, 1840, p. 45tj.-Rathee, 1843 , p. 10%. -Steenstrup and Létken, 1861, p. 355.
Isepeophtheirus hippoglossi Bambs, 1850, p. 276, pl. xxxir, fig. 12.-Kröyer, 1863, p. 131, pl. vi, fig. 5, a-d.-T. Scott, 1900, 1. 151, pl. v, figs. 38-42; ph. vi, figs. 1-2.

Female.-Carapace elliptical, widest at the center, one-fourth longer than wide. Frontal plates very distinct, but rather narrow. Posterior sinnses shallow and widely separated, latring the median lobe fully half the entire width of the carapace. This lobe has a very flat posterior curve and ustally overlaps the free segment. The lateral lobes are short and curved inward strongly at their tips.

Free segment one-eighth the length of the earapace and four-fifths as wide as the genital segment, the portion to which the fourth legs is attached projecting strongly on either side.

Genital segment three-fifths the length of the canapace, narrow, elliptical in outline, the length to the width in the proportion of 5 to 4 ; posterior lobes narrow and pointed.

Abdomen very small, about one-tenth the entire length, rather conical in shape, and terminating in a pair of small anal lamine armed with short phomose setie.
Terminal joints of the first antennse long and slender, club-shaped, with only a few small setae. Second antenne with a stout basal joint and a long and strongly curved terminal claw. Maxillae relatively bery large, the first pair close to the tips of the second antenne, the secome pair in the usnal phace beside the proboseis. Each of this second pair is fully as large as the entire proboscis, projects far beyond the tip of the latter, and is hipartite for its terminal half. Each branch is the shape of a sharp cone with a wide thange or wing on either side at the center.

The proboseis is short and wide and bluntly rounded at the tip, mouth opening terminal. The mandibles are long and slender, the last joint short, quite strongly curved and toothed along its imer margin. First maxillipeds normal; second pair slender, the terminal claw hut little more than half the length of the hasal joint; the accessory spine so small as to be easily overlooked. Furcalong, narrow at the base but flaring rapidly toward the tip, the prongs strongly flattened, kaminate, and each divided nearly to it, base by a narrow simus, leaving the secondary hranches with squarely truncate ends and parallel sides. The central simus is a broad U-shape, with a square base and slightly converging sides.

The first swimming legs are stont, the basal joint with a short spine on its posterior margin, the second joint unarmed, the terminal joint as in other species. Third legs with large and powerful hasal apron, but with very small and weak rami, sarcely projecting from the fringe along the border of the apron. Fourth legs large and stont, with four joints and four spines, the longest terminal one toothed on its onter margin. Fifth legs situated close to the openings of the oviducts and so rudimentary as to be scarcely visible.

Total length $1: 2 \mathrm{~mm}$. Length of carapace 7 mm . width of same 6 mm .; length of genital segment 4 mm .; length of abdomen 1.2 mm .; length of egge strings 15 mm .

Color a light yellow, heatifully marked with spots of pink or red distributed all orer the body and the basal joints of the fourth legs in an irregular pattern.

Male - Carapace orbieular, as wide as long, the posterior sinuses hroader than in the female, the median lobe relatively narrower and well rounded posteriorly, the lateral lobes not curred inward at their tips. Free thoracic segment wider than the genital segment and ahont half as long.

Genital segment small, of about the same length and width, and carrying two pairs of large papillae. One pair projects backward from the lateral margin about one-third the distance from its posterior
end; the other pair are sitmated at the posterior corners. The papill:e are all about equal in size and each is furnished with three small setere

The abolomen is rather more cuadrilateral than in the female, the anal lamine are larger, and their seta are much longer.

The chief difference in the appendages is found in the usual enlarging of the second antenne and second maxillipeds. The fourth legs are also relatively larger and project beyond the tips of the seta on the anal papilla, but their structure is the same as that in the femate.

Total length 7.2 mm . Length of carapace 4.85 mm .; width of same 4.75 mm : length of genital segment 1.35 mm .; length of aldomen 0.7 mm .

Color as in the female.
(hippoglossi, generic name of its host.)
Like the preceding species, this one was first described by Kröyer and Milne-Edwards under the gemns Culignes, and was first recognized as a true Lepeoplitheirns by Baird in 1850.

Like mordmomnia also it seems to be practically confined to a single species of fish, the halibut, the few specimens obtained from other fish having probably been rubbed off a halibut canght in the same boat, as suggested by various authors.

The National Museum collection includes lots numbered $80: 31,12038$, 12631,12634 , and 30044 , all from halibut eaught off Greonland, Iceland, and Cape Ann. Su31 are type specimens from Shetland.

LEPEOPHTHEIRUS EDWARDSI, new species.
Plate NXI; Plate NXII, fiy. 258; figs. 1, 4a, 4b, 11, 31, 3+, 39 in the text.
Female.-('arapace orate, widest posteriorly, longer than wide. Frontal plates distinct. strongly curved not quite half the width of the carapace. Posterior simuses shallow, wide, and well rounded. Median lobe three-eighths the entire width, squarely truncated posteriorly, and projecting well back of the lateral lobes. The latter are short, blunt. and straight (fig. 24t).

Free thoracic segment of medium length and about half as wide as the genital segment, contracted anteriorly where it joins the carapace. Genital segment slightly obovate with gracefully rounded sides and angles, contracted to a bery hort neck before joining the abdomen. The latter is one-fifth as long as the genital segment, wider than long, and tapering posteriorly. It is made up of a single joint which is cut for one-third of its length at the anus. Anal papillee small, wider than long, with short and stout sete. Egg tubes nearly as long as the entire body and as wide as the abdomen, each containing is to 80 eggs.

Anterior antemse of medium size, and well armed with spines and sete; posterior pair rather slender and strongly curved.

All the other appendages are either lamellate or furnished with lamelle somewhere in their structure.

The two pairs of maxille have wide wings along either side of the the central spines; in the second maxillat, although the spines are well separated and divergent, these wings nearly towh each other at the center. The first maxilliped has a spatulate lamella instead of a spine inserted in the imer margin of the terminal joint near its center.

The second maxillipeds are large and stout, with a swollen hasal joint furnished on the posterior rentral margin, where it joins the body, with a stont tongue-like lamella whieh projects downward at a right angle to the ventral surface. The teminal claw is three-quarters as long as the basal joint, rather slender, and furnished with a very long and hair-like acessory pine on its imer margin. Fura large, the base longer and narrower than the branches, and both base and branches strongly flattened into fan-like lamellie. The branches are nearly twice as wide as long, with radiating ridges and lines extending outward from the thickened center. The median sinus is triangular, the branches being so widened toward the tip as to nearly meet.

The first swimming legs have a small spine on the end of the basal joint pointing outward and a much stouter, blunt spine on the posterior border of the same joint pointing lackward.

The three claws on the terminal joint are abont equal, with serrated lamella along their posterior margins. The second legs have a wide, rounded flange or wing along the outer margin of the exopod. The fourth legs are stout and four-jointed; the basal joint is swollen and carries a slender. Hexible hair on its outer margin near the distal end.

The short curved claw at the tip of the second joint, and the longer ones on the third and fourth joints, are flanged on one or both sides with servate lamine.

The fifth legs are distinct and of medium size, plainly visible rentrally, but not dorsally.

Total length. 7.5 mm .: length of carapace. 4 mm .; width of same, 3.75 mm . length of genital segment, 2.25 mm .; length of athdomen, 0.6 mm . ; length of egg strings, 5.5 mm .

Color a delicate pinkish vellow, with small pigment pots of a purplish or reddish hrown distributed evenly over the entire dorsal surface, so that the color is uniform throughout.

Under strong magnification each spot is seen to be very irregular. and to consist of a dark-hlue center bordered with purple, in both of which the pigment is in small gramules of meren size, those in the purple being the larger. From this gramular center narrow consoluted processes extend outward in every direction. In these the pigment is clark orange in color and is not gramurar, but like a watercolor wash. The rombination is very striking, and affords the most noteworthy instance of pigmentation thus far found among these parasites.

Male.--Carapace as in the female, except that it is relatively much larger, five-eighths of the entire length (fig. $2+5$).

Free thoracic segment considerably shortened by the orerlapping of the median lobe of the carapace. Unlike the condition in most males this segment is not proportionally wider than in the female. The genital segment and the abdomen together form an almost perfert oral, the widest end being anterior. while it narows rapidly posteriorly.

The genital segment is one-third the length of the carapace, considerably wider than long, and sinarely trumated ponteriorly. It is furnished with two pairs of large papilla - one on the lateral margins, one-third the distance from the posterior end the other pair at the posterior corners. In both pairs the papille are sharply conical and furnished with quite large plumose seta. The testes are very large, elongate-elliptical in shape. and they fill nearly the entire segment. The semen ducts open on the porterior ventral surface, on either side of the abdomen. The abdomen and the anal papilta are similar to those of the female. There is the nsial difference in the appendages, but, while the second antenna are increased in size, they are not branched as much as in most species.

Instead, at their bases are two large cormgated adges of chitin, inelined diagonally ontward from the mid line, which serve to prevent slipping.

Total length 3.6 mm . Length of carapace 2.2 mm . : width of same 2.2 mm . length of genital segment, 1.5 mm . ; length of abdomen 0.3 mm .

Color as in the female.
(ederordxi, to Vinal N. Edwards, of the U'nited states Fish Commission at Woods Hole, who diseovered the species and collected nearly all the specimens.)

Nouplius.-Body obovate or slightly spindle-shaped in outline, and almost exactly twice as long as wide. The posterior end is quite squarely troncated, while the anterior end is well rounded (figs. 39 and 257).

There are the nsmal three pairs of appendages, which do not differ in form from those of other namplii, except perhaps that they are a little stouter. But the balancers on either side of the amme are considerably shorter and wider than in mont namplii examined. They are also considerably swollen at the outer ends and somewhat eurved.

The pigment is a distinctive bright purple, foreshadowing that of the adult, but it is distributed very sparingly in irregular patches, which vary much in position. size, and shape. Sometimes there are three pairs of patches along the sides of the posterior part of the body, a central patch between the anterior pairs, and an amal pateh, each resembling a piece of tattered cobweb. But more often there is no regularity whatever in the arrangement, the only constant factor
being that the pigment is confined to the ponterior two-thirds of the body, with traces also in the antemmen. The eye and brain are distinctly bilobed, each half semilnar in shape, the two convex sides faring each other and fissed at their center*, giving the whole rery much the shape of a rough H .

Total length 10.5 mm . ; width 0.26 mm .
After the first moult the larva becomes decidedly ovate, the pigment increases considerably in area, the cye moves back from the anterior edge of the carapace, and through the skin at the posterior end of the body (am be seen the segmentation and the rudimentary legs of the metanauplins stage.
(hutimus.- Carapace elongate and spindle-shaped; frontal plates dis tinct and projecting strongly, giving the anterior portion of the body a triangular ontline; the frontal filament at the apex of this triangle large and strong. The anterior portion of the carapace is considerably narrowed. The posterior sinuses are also narrow and not very deep. The median lohe is seven-tenths of the entire width and projects for three-quarters of its length behind the small lateral lobes. The transverse groove of the carapace is only a short distance in front of the posterior sinuses, learing the cephatic area much larger than the thoracic, in spite of the great development of the median lobe. Eyes showing yet as two distinct half moons fused on their convex sides. and situated at some distance from the anterior border. Free segment as wide as the segments posterior to it and quite long; genital segment and abdomen fused into an clongate ovoid, showing by a slight constriction near the center where the two are to separate; anal papillie large and well provided with stout setie (fig. 258).

Color a pinkish yellow with pigment spots of the same purple as in the nauplius and adult, rather sparingly and irregularly seattered over the posterior two-thirds of the carapare: ahmost none anywhere else on the body.

Total length 2.55 mm.; length of carapace 1.52 mm.; width of same 1 mm . : length of remainder of body 1 mm .
This is undonlotedly the species mentioned by smith (187t. p. 251) ats found upon the flounder. Chesnopsetten oedlaris, and which he designates an "a species with a very short tail, and approaching Heller"s genins Ammpetex." It is fairly common on the fomr-spotted flounder (I'uralichtivys ablongus), lout is not often found upon the summer tlounder. It affords a notable example of color protection, for the pigment spots with which it is covered give it so nearly the hate of the dorsal surface of its host that it can be distinguished only when in motion.

It is ahways found upon the external surface, and so far as observed always on the dorsal side of the body. It shows no decided preference
for any particular locality, but may be fomd anywhere from the outside of the operculum to the tip of the tail.

When disturbed the males scuttle about over the surface in a lively manner, but the females ordinarily remain quiet. In the aquarium both sexes swim about freely, but the male is the more lively and nsually lives longer. They can be kept more successfully than many other species, and do not bother by crawling up out of the water. Females with eggs which are nearly ripe retain the egg strings even under rough treatment, and the natuplii may be reared successfully. The egg eases are separated rather more than usial at their origin in the genital segment. At first they approach each other rapidly until about their own diameter apart, and then extend backward parallel with each other. They are light colored even when well developed, so that it is difficult to judge of their maturity by their color. This is due to the paucity of pigment in the larve.
The National Museum collection includes the following lots of this parasite, from the summer flomider (Permlichthys rentertus) 6065, 6081; W. 61; W. 62; W. 65; W. i3, all from Woods Hole and vicinity.

From the four-spotted flounder (Paralichethys: oblomyns. 128.5 (two lots with the same number), 130s, 6(1)40, W. 63; W. 6t; W. 67; W. 68, all also from the ricinity of Woods Hole.

From an unknown host 4403 from Great Egg Harbor, New Jersey, and W .66 from an unknown locality.

From the horse crevalle (Caran, hippos) an single specimen taken at Woods Hole. W. 69.

From the garfish (Tylosurus marimus) a single male taken at Woods Hole, W^{T}. 70 , and from the summer skate (R ajou erimuretr) a single female at the same locality, W. 71.

LEPEOPHTHEIRUS DISSIMULATUS, new species.

Plate NXII.

Female.-Carapace orbicular, the width and length almost exactly equal; frontal plates large and well defined. Posterior sinuses shallow and broadly triangular; median lobe fully half the entire width of the carapace, projecting but slightly beyond the lateral lobes and squarely truncated posteriorly, sometimes slightly emarginate. Transverse groove in the center of the carapace, its halves nearly straight lines and inclined toward each other like the sides of a roof. Eyes small and placed well forward. Free thoracic segment short and a little more than one-third as wide as the genital segment, with the base of the fourth legs projecting strongly.

Genital segment a sphere, flattened antero-posteriorly, its diameter a little more than half that of the carapace, its dorsal surface overhanging the ventral posteriorly. From the rounded posterior margin
of this dorsal surface opposite each eger tube projects a short, conical papilla, without setae or spines.

From the ventral surface on cither side of the abdomen and at a little distance from it, a second pair of papille project backwards. These are much larger than the first pair, and each of them carries tharee goocl-sized phomose setie. These latter are not armanged in a trio at the tip as nsual in this genns, but stand in a row along the outer marem of the papilla, one close to the tip, mother near the center. and the third between these two. In the bermadis specimens there is also a third pair of papillae, each of which is situated just outside and superior to the hase of the large rentral papilla on its side. This third pair is the smallest of the three, and each of its papillee is tipped with a single long and slender seta. The large ventral pair evidently represent the fifth legs; the other pairs are simply processes without special signiticance. Abdomen small, less than one-third the length of the genital segment, and attached to the ventral surface of the latter in front of its posterior border, so as to be almost wholly concealed in a domal view. It is swollen a little near the base, and then at the base where it joins the genital segment it is abruptly contracted into a short neck of about one-third its full diameter. It is made up of a single segment, throe-fifths as wide as long, and terminates in kmine, which are three-quarters of its own length. These laninat are half as wide as long, and are armed with four slender plumose sete considerably longer than both abdomen and lamine. The egg strings are wide and a little more than half as long as the whole body. Eggs very large, their antero-posterior diameter being often fully half their lateral diameter, and hence onty 15 to 25 eggs in each string.

Since the abdomen is thus upon the rentral surface. while the openings of the egge tubes are in the center of the posterior surface dorsal to the abdomen, it follows that the eggestrings, when extruded, corer the dorsal surface of the abdomen, and practically complete the concealment partially aceomplished by the overhanging of the dorsal surface of the genital segment. This position of the eggstrings, dorsal to the abdomen, is rery unnsual in the gems, the two being exactly reversed in relation in all other known pecies.

In the appendages the basal joint of the first antemat is robust and beavily armed with spines along its anterior and inner border. The terminal segment is slender, longer than the basal. and armed with mumerons spines toward the distal end, and a single one at the center of the posterior border.
second antenne of medimm size, with the terminal hook strongly curved. Both pairs of maxillar consist of single curved spines. the first pair strongly curved, the second pair nearly straight. Terminal (haw of the second maxillipeds less than half the length of the basal joint, the latter being fairly stout.

Furca small with parallel bramehes separated by a V-shaped simus reaching beyond the center. The shape varies slightly in the specimens from the two localities as indicated in the figures. First swimming legs short and stont, the basal joint with a stont spine on its posterior border, the two imner terminal chaws pectinate.

Exopods of the second and third legs armed with long and stont spines. Fourth legs of medium size, the hasal joint about as long as the other three and hearing a single small spine on its onter margin near the distal end. A very long and slender spine at the distal end of the second joint, a shorter and stouter one on the third joint, the two inner terminal claws pectinate, the outer one very long and slender. Fifth legss large and well defined ats already deseribed, protruding for more than half their length beyond the posterior margin of the genital segment. They are broad at the base, but taper to a narrow tip, with the plumose sete on the terminal half. This arrangement is totally different from that in any other species. except parriventrix, and may be used to great adrantage in determining the species.
Total length, 3.5 mm . Length of carapare. 2.8 mm.; width of same. 2.3 mm .; length of genital segment. 1 mm .; length of egge strings, $\ddot{\sim}$ mm.: Is to 30 eggs in mach.

Color a uniform dark yellow without pigment spots.
(dissimulutus, dissimuln, to conceal what really exists.)
Wale.-Carapace similar to that of the female. Free thoracic segment relatively much larger. fully as wide as the genital segment and nearly half as long, with the bases of the fourth legs protruding as prominently as in the female.

Genital segment elliptical in ontline, about as wide as long. and squarely truncated posteriorly. The fifth lege appear as a pair of prominent papilla projecting from the posterior lateral margin on either side, each papilla carrying three long spines.

Abdomen rery short, wider than long: anal papille large and armed with plumose seta even longer than those in the female.

The second antenna are mech longer than in the female and branched several times like a stag's horn: they evidently make effective clasping organs. The other appendages are as in the female. exeept the fourth legs, which are relatively much larger and stouter.

Total length, 2.5 mm .: length of carapace, 1.7 mm .; width of same, 1.6 mm .; length of genital segment, 0.37 mm .; length of abdomen, 0.2 mm .

The National Musemm collection consisted of one lot, 1505, taken from the white-spotted serranus, Lifinephectus lubriformis, at Charles Island, one of the Galapagos group. This lot includes a male with ten females. but the latter were not very well preserved and hence the author was much pleased to receive a second lot of four females. admirably preserved, which had been taken from it rect grouper.

Efimpledux monio, at the Bermuda Islands, by Dr. Edwin Linton, in the summer of 190 . It is from these latter specimens that most of the female characters in the present description are taken. These females resemble those described by Basett-Smith under the name L. rotumdirentris, "but the male is entirely different from the one which he pictures.

If he is right, therefore in assigning the male and female which he describes to the same species, we have here a markedly different form. But, whether right or wrong, the present species shows enough important differences to leave no doubt of its validity. In this species the second maxilla is much longer than in Bassett-Smith's species and the tip is not hifid in either sex. The furca is cut for three-fifths of its length rather than for one-tenth, as in rotumdirentris, and it is widest at the tip instead of at the base.

The detail of each pair of legs, especially the fourth, differs considerably in minor characters. The abdomen in rotumlinentris is attached on a level with the dorsal surface, as is manal. It is widest in the center and tapers much toward the tip. Where are attached the small laminie.

In the present species the abdomen is attached on a level with the rentral surface and so far forward that the orerhanging dorsal surface nearly conceals it in a dorsal riew. It is widest at the base, and then abruptly contracted where it joins the genital segment, and to its tip are attached a pair of lamine nearly as large as the abdomen itsolf. In the present species, also, the male's genital segment is radically different from that of the female, and is like that in other species. It is flattened dorso-ventrally, has an acorn-shape and is furnished with two pairs of papillie, one on the lateral margins and one at the posterior corners. It does not project dorsally over the abdomen, but the latter is attached to it, as in other species, on a level with the dorsal surface.

The general relation of the different regions in the male would thus correspond closely with that of both sexes. in Bassett-Smith:s species. but the details of structure are very different.

Another thing which renders the present species interesting is the thickness and paucity of the eggs. In no other specien, except bifturcutus, is there any approach to the condition fomed here. That this is' no aceidental occurrence, nor the result of immaturity, is shown by the fact that the eggestring of all the females are almost exactly alike. Furthermore, a careful examination of the egg cases at the point of their attachment to the genital segment shows that all the eggs have been extruded, and the cases have been pinched off and closed. as is normally done at the conchsion of egg extrusion.

[^2]Such a marked restriction in the number of eggs would leat us to seareh for some aceompanying advantages in the struggle for existence. One thing which suggests itself is a superior activity. All the swimming legs in the adult are powerfully developed, particularly the basal apron of the third pair. This constitutes the chief organ of loromotion as already sugesested, but whether there is a similar superiority in all the stages of development only a careful study of the namplii and chalimms stage can determine.

But the chief interest of the speeies lies in its morphological relation to such forms as ('aligns and Lepophtheires on the one side and the genns Anuretes on the other. In the latter genus the anal lamine are attached direetly to the ventral surface of the genital segment, and usually at some little distance from the posterior margin of the latter. It would be difficult to know just how to account for the disappearance of the abdomen were it not for the present species. But the structure here seems to indicate clearly that, starting from the dorsal surface and of a normal size, the abomen has retreated gradually, first to the rentral surface, and then away from the posterior margin. diminishing in size all the while, until it has been finally absorbed into the genital segment.

The anal lamine have not participated in the diminution, but, retaining their origimal proportions. When the abdomen has disappeared they still remain on either side of the anns as morphological indicators of the degeneration which has taken place.

LEPEOPHTHEIRUS PARVIVENTRIS, new species.

> Plate XXIII, figs 275-284.

Female--Carapace oborate, one-eighth longer than wide, broadest posteriorly. Frontal plates of medium size and well defined: posterior sinuses broad, shallow, and quite widely separated, learing the median lobe form-ninths of the entire width and rather squarely truncated posteriorly. Lateral lobes broad and well rounded. Free thoracie segment considerably less than half the width of the genital segment, and of medimm length. (renital segment a little more than half the length of the carapace, as wide as long, and with nearly parallel sides and broad, well rounded posterior lobes. Abdomen quadrangular and very small. only one-third the length of the genital segment, and wider than long. Anal lamine large and curved outward, each one armed with four long plumose setre.

The two joints of the first antemme about the same length, and both plentifully supplied with seta. The second antennes short and small, the terminal hook slender and strongly curved.

The first maxillate are large as the claw of the second antemme and as strongly curved. The second maxalle are also large, the bramehes slightly longer than the hasal portion, and curved in toward eath
other. Each hanch is slender. comical. and rather hout, without flanges or wings of any sort.

Between the bases of these maxilla and those of the second antemax there is on cither side a pair of conical papillie. The larger of these is in a line between the two appendages mentioned, and is furnished with a stout spine which is inclined strongly hackwarl. The other smaller papilla. which is without a spine, joins the larger one on its outer border. These evidently represent the rudiments of the endopod of the second maxilla. The first maxillipeds are slender, the terminal joint neally twice the length of the hasal and cuding in three long setee, the imer two of which are pectinate. The second maxillipeds are stouter, with the terminal claw nearly as long as the baval joint and acuminate; the accessory spine is long and slender. Furea short and very wide, the braches longer than the base. widely separated, and nealy parallel, with the intervening sinus but little rounded. The hranches are short and hlunt with a slight flange on the inner side. making them widest at the center.

The first swimming legs are short and stout, the hasal joints connected across the median line by a narrow band of chitin. and each of them armed posteriorly with a short, hunt spine. The second joints are fringed with hairs posteriorly and carry a single small spine at the distal end anteriorly. The three terminal claws decrease in size posteriorly, the third one being only half as long as the lirst. The seta at the distal corner is rery small, being no longer than the shortest claw. The second pair of legs are aloo stout, the basal joints being nearly circular in outline and densely fringed with hairs around their entire margin. The hasal joint of the exopod is noticeably long. and the spines are slender and sharp. The rami of the third legs are large and close together, the spine at the base of the exoped being twisted until it is mearly paratlel with the margin of the basal apron. The fourth legs are lange and reath back considerably beyond the posterior margin of the genital segment; they are four-jointed, the lasal and third joints carrying spines at their distal ends, and the terminal joint ending in three short spines of ahout equal length. The tifth legs are well defined and their seter show beyond the edge of the genital segment.

Total kength $\uparrow \mathrm{mmm}$. Length of carapace 4 mm . : width of same 3.25 mm : length of genital segment 2.1 mm . : length of abdomen 0.5 mm .; length of egge strings 6.3 mm .

Color a uniform light yellowish white.
(pmriventrix. prerros, small, and ronter, the abdomen.)
Male.- Carapace elliptical, ome-eighth longer than wide, the posterior simuses rery broady triagular, leaving a well-romeded median lobe and lateral lobes, which flare out ward.

Free thoracic segment considerably marrower than the genital seg-
ment (seven-tenths of it). (renital segment ovate, one-third the width of the carapace, longer than wide, and quite squarely truncated possteriorly. There are two pairs of blunt papillae projeeting backward from the posterior portion of the lateral margins of this segment. The abdomen is quadrangular in ontline, wider than long: the anal lamine are very long, while the plumose setie which they carry are nearly as long as the entire abdomen.

Total length 4.5 mm . Length of carapace 2.8 mm .; width of same 2.4 mm . ; length of genital segment 0.8 mm . : length of abdomen 0.4 mm .

This species elosely resembles L. hippoylossi (Kröyer) and L. appendiculatus (Kröyer), of the latter of which only the male is known. But in both these species the branches of the furea are bifid and close together, while the general proportions of the body and its parts are also entirely different.

The National Musemm collection includes sereral lots of this species taken during the voyage of the United States Bureau of Fisheries steamer Albutross in 1585. They are all from the northern Pacific, a portion of them on the American side and the rest on the Asiatic coast. From Humboldt Harbor, Shumagin Islands, Alaska, an ummunbered lot containing twenty females and ten male, no host given. From Loring Harbor, Alaski, an unnumbered lot taken from the cod of that region, Gectus mucrocepluthes.

From Chignik Bay, Alaski, another unnmmered lot; also from the cod, Gulus macroctphatus. From the Commander (Kommandorski) Islands, Siberia, ten femates and one male taken from P monronfremmer monopterygius (Pallas). From a halibut taken off A laska in the summer of 1880, an unnumbered lot of ten females. From station No. 4212 of the United States Burean of Fisheries steamer Albutross an unnumbered lot taken from a species of Lepidonsette.

No specimens of the Caligus curtus or C'r rapa, were obtained from these Pacific cod, as it seems practically certain would have been done had those species been found there.

It would seem, therefore, is if this new species of Lopeophitheirns. took the place on the Pacific cod occupied by the two species of culigus on the Atlantic cod.

LEPEOPHTHEIRUS BIFURCATUS, new species.
Plate XXIII, figs. 285-293.
Female.-Carapace elliptical, distinetly longer than wide, and about one-third longer than the rest of the body. Frontal plates well defined with a shallow incision at the center.

Posterior sinuses broad, well rounded, and slightly intlined away from the central axiv, leaving a median lobe considerably less than half the entire width and projecting well back of the lateral lobes. The latter are broad and well rounded.

Thoracic area considerably smaller than the cephalic and somewhat angular'; digestive glands prominent, shaped like a comma, witb the convex sides toward eath other.

Free segment short and narrow, abont one-fourth the width of the carapace, the bases of the fourth legs projecting strongly on either side. Genital segment orate, ronsiderably more than half as wide as the carapace, and three-fifthe as long, with smoothly rounded corners and a slightly emarginate posterior border. Abdomen very small, wider than long, with small, widely separated papilla. Egg tubes about the same diameter as the abdomen and short. only a trifle longer than the genital segment, each containing but twenty eggs.

Of the appendages the anterior antenna are stout, the two joints about the same length: the posterior antenna have a large hasal joint supplemented by a short and stont accessory spine, while the terminal joint is long and abruptly bent.

The first maxille are very large for a female, strongly curved and blunt at the tip. The second maxille are also very large, cut about to the center, the branches thick and stout, and flanged along either side. These branches are widely separated at their bases and diverge considerably giving the intervening sinns a deep hasin shape. The distance from tip to tip of the branches is the same as the entire length of the maxilla.

The proboscis is long and of medium width, with nearly parallel sides. The first maxillipeds are long and slender: the terminal joint carrics a small flattened spine on its anterior border at about the renter. The two terminal claws are very uneven in length and both have serrated flanges along their sides. The second maxillipeds are small and rather weak; the terminal claw is a little more than half the length of the hasal joint and strongly curved, with a small and weak accessory spine on its inner margin.

The furca is rery large and wholly unlike that of any other known species. It is almost as wide at the tip as it is long, bont is contracted to less than half that width at the base, giving the entire appendage somerhat the shape of a thick-stemmed wineglasis. The simus between the branches reaches nearly to the center and has a broad U shape, with the sides parallel.

The secondary branches are narrow and acmminate, and the simus between them is triangular and cut in a deeply as the central one. It thus differs markedly from the furca of hippoylessi and appendiculutus, the only other species in which the furca is doubly bipartite. In hifpemgensis the central sinus is triangular and its sides approach catch other rapidly and almost tonch at the tips. The secondary hanches are laminate and orparely truncate at the ends. In appendicnlutus the secondary simmes are not more than a rery small fraction of the length of the central simus.

The first swimming legs of this new species are short and thick, the basal joint with a short epine at the distal end, the terminal joint with the usual spines and sete.

The second and third legs are slender hut otherwse like those in other species. The fourth legs are large and stont, four-jointed, the hasal joint somewhat swollen and as long as the other three, with a plumose seta at its distal end on the outer margin. The second joint has a very short and strongly curred claw at its tip; the thind joint hats a much longer one, while the thre terminal claws are still longer and increase in size from withont inwards. The last four claws are close together and they all have serrate flanges along their outer margins. At the hase of each of the claws on the dorsal surface is a large semicircukar lamina made up of radiating theadd-like spines, connected by a membrane. The tips of the spines project beyond the edge of the membrane, giving it a serrated appearance. The fifth legs are smalland are not visible dorsally.

Total length 4.8 mm . Length of carapace 2.7 mm .; width of same 2.4 mm . ; length of genital segment 1.6 mm . : length of abdomen 0.3 mm.; length of egg cases 1.7 mm .; twenty eggs in each case.

Color, a dark-brownish yellow, without pigment spots.
(bifurcatus, forked or divided into two branches, i. e., with a double furca.)

There is but a single lot containing two females of this new species, and the male is unknown. They were taken from one of the common Hounders of the Pacific coast, Psettichethys melenostictus, in Sian Franeisco Bay, California.

This species is distinguished from all others by the peenliar structure of the furea, as ahready noted. The wide separation of the bramehes of the second maxille is another distinguishing characteristic, the sinus between the branches being very much broader than in any known speeies. The fourtl legs furnish a third character in the prominent spiny lamellie at the bases of the claws. So far as known these are not present in any other species of the genus. There is but a single female with egg cases from which to diagnose the species, but everything about them seems to point to a very small number of eggs. The thickness of the eggs for any species does not rary appreciably, whether many or few have been extruded. and in this species they are much thicker than ordinary. In fact, the only other species which approaches it in this respect is dissimulatus, which has just been described.

$$
\begin{aligned}
& \text { Plate XSIV. }
\end{aligned}
$$

> ('tligus mespe Milane-Einwimds, 1sto, p. toti.
> (itlignes stromii Bures), 1847.
$186: 3, \mathrm{p} .137$, pl. x'm, fig. 1 a-h.-Ratimbex, $1884, \mathrm{p} .487$.
Lequophtheirus stromii Baris, 1850, p. 27t, pl. xaxif, figs. 8 and $\%$-Bassett-

Femule. - Carapace orbicular, as wide as long; frontal plates narow and not well defined: posterior sinuses narrow, shallow, and somewhat inclined away from the median line. Median lobe hroad and well rounded, projecting hut little beyond the lateral lobes, and often raised posteriorly into a fold or wrinkle, which projects over the dorsal surfare of the free somment and hides it.

The grooves separating the carapace areas are well defined; the crossbar of the " H" is strongly curved, so that it makes a continuous half circle with the lower portion of the sides. The free segment is very short and namow, less than half the width of the genital segment. The latter is moarly as large as the campace, fully as long but a trifle narrowrr, with well-rounded lobes projecting posteriorly on either side of the abdomen. The abdomen is four-fifths as long as the genital segment and narrow, with a clearly marked comstriction near the posterior end. Fuch a constriction is usually good evidence of segmentation, hut the most rigid examination of the opaque preserved sperimens at the author"s disposal fails to contirm the segmentation. It is quite possible, howerer, that lising specimens would show it clearly, and for that reason the present species has been included twice in the artificial key herewith presented. The anal lamina are enlarged considerably at the tips and corved in toward each other.

The egge strings are fully three times as long as the entire body, and at the same time very narow, which of course emphasizes their elongate appearance.

Of the appendages the second antenne are stont, with the terminal hook ronsiderably longer than the basal joint; the latter also lacks a spine on ith posterior margin.

The first maxillat are very long and stout, the hasal portion swollen to about twice the diameter of the terminal curved part.

The second maxilla are of the usual size and shape. The first maxillipeds are stonter than msual. the terminal joint more than twice the length of the basal. The shorter torminal daw is abont three-fifthe the length of the longere one amd is dentate along its outere marein. In the seeond maxillipeds the teminal clatw is only abont half as lome as the lasal joint, amb in all the specimens examined it lacked an atecessory spine on the inner marein. The furca is proportionally small.
with short and bhant bramehes, which are somewhat divergent. The first swimming lege are short and stont; the basal joint has a short spine at its distal posterior corner, while the second joint late a similar one at the distal anterior corner. The terminal claws are nearly the same length, and the plumese setac on the posterior margin are memmonly large. Seeond and third legs as usual. The fourth legs are four-jointed, with four spines: the seeond joint has an onlarged tip, with rongh papillary elevations, but without a spine. The third joint has a short spine, about as long as the two outer ones on the teminal joint. The fourth or inner terminal spine is fully twice as long as the others. The fifth legs are broadly triangular and terminated by three small spines, but are not visible from the dorsal surfare.

Total length 18.2 mm . Length of carapace 6.6 mm . : width of same 6.6 mm . ; length of genital segment 6.6 mm.; length of abdomen 5 mm.; length of egge strings 53 mm .; total length inchding exge strings (6.) mm .

Color a dirty yellow brown, the dorsal surface often having : strongly metallic luster, quite different from any other meecies of this genus.
(xelmonix, pertaining to the salmon.)
Male.-Carapace elliptical, one-third longer than the rest of the body, and one-fifth longer tham wide. Frontal plates distinct, but not very wide; caranace areas as in the female.

Posterior sinuses much broader than in the female, but shallow and leaving the median lobe projecting well beyond the lateral lobes. Free segment long and narow, only five-seventhe as wide as the genital segment, and swollen at the center through the bases of the fourth legs.

Genital segment elliptical-oblong, slightly narrowed anteriorly and with a shallow emargination on the posterior border, leaving very short and hunt lobes on either side.

Abdomen ohlong, a little wider posteriorly, made up of two segments the basal of which is only about one-third as long as the terminal. Anal lamina very large, more than two-thirds as long as the terminal joint and broadly foliaceons, each carrying four long plumose sete.
There is the usual sexual difference in the appendages, but nothing worthy of special note save that the fifth legs are not visible any more tham in the female.

Total length 6 mm . Length of carapace 3.45 mm . ; width of same 2.9 mm .; length of genital segment 1.1 mm .; length of abdomen 1.25 mm .

This species wat first deseribed by Kröger in 1838 under the gemns Caligus, and again in 1sta's as a Leperphetheirus, adopting Nordmamis
sopatation of such sperion an had no lumules. It was also deseribed

 is the one subseguently retained by Passett-smith and T. Acott, the former of which gives Kröyers name as a synonym under it.

But if the two sperien are identical, as there seems to be no doubt, then Kröyers name has a priority of nine yearsorer Baird's, and must be retained.
The speries is common upon the salmon of our coasts as well as those of European waters, and often attains a large size.
some of the females examined by the author measured 22 mm . in length, and that. two, although they had been preserved in alcohol. They can be readily distinguished from other species by the extreme length and womlerness of the egg strings and hy the metallic huster so common on the dorsal surface.

The malesare very sare the material in the entire National Museum collection yielding but a single specimen. So far as known, no figure of the mate has erer been puldished previous to the one here included. The following are the lots in the National Mnsemm collection: Cat. No. so30, from salmon at the Tyne, England, nsed for identitication of the American specimens. No. 8109, four peeimens. including the single male from the gills of a salmon, locality not given. No. 8117, from the king satmon at Kenai, Alaska. No. 8ts?, fifteen specimens, from Ungasa, Lahmador, found on "sahmon and sea trout." No. 126ffif, from samon at St. Johns, Newfoundland. No. 36073, from salmon at East Orland, Maine. No. 41840, two specimens, from "Dolly Varden trout" in Alitak Bay, Alaska. No. Bi017, from 'melurrhyndlus gorbuswhen at Port Chatham, Cooks Inlet, Alawka. An mmmmbered lot, from Sulmo setlar, fomud at Rigolet, Labrador.

The sahmon at East Orland, Maine, must have been from fresh water, and several of the other species mentioned ocell as entirely landlocked forms in various localities. There can be very little doult, therefore. that this parasite is another instance of one which can remain upon its host during the passage of the latter from salt to fresh water. It would be of great interest to aseertain whether it remains upon such forms as have become entirely landlocked.

LEPEOPHTHEIRUS PACIFICUS Gissler.
Plate XXV, figs. 304-810.
C'aligus putcificus Gissier, 18s:3, p. ss5, figures in the text.
Femelf.-Carapace alont half the entire length, elliptical, a little longer than wide; fromtal phates short and narrow, but well defined. Posterior simses wide and shallow, learng a broad median lobe, more than half the entire wilth, and not projecting lack of the lateral lobes. Thoracic area relatively small and well romed posteriorly;
eyes small and situated far forward in the carapace. Fres segment short and narrow. Genital segment quadrilateral, wider than long, widest and somewhat emarginate posterionty; lobes very short and well romuded.

Abdomen only one-fonth the width of, hut slightly longer tham, the genital segment, and indistinctly four-jointed. It is cytindrial in form and tapers somewhat toward the tip; the joints also diminish regularly in length, the basal one being about twice the length of the terminal. The anal tamine are large and leaf-shaped, hut armed with short sete.
The egg strings are two-thirds as long again as the entire body, of medium width, and there are hetween sixty and serenty eggs in each.

The first anteme are short and inconspicuous. with the two joints about the same length; the second antenne are stout, the hasal joint short and wide, and tapering rapidly outward. This joint is provided on its imer surface with a knob-like process of chitin, the surface of which is raised into parallel transerse ridges, overlapping one another. There is thus formed a file-like surface which assists materially in the prevention of slipping. The terminal claw of this second antena has a long slender spine on its outer margin. The mandibles are three-jointed, the thirel joint curved in toward its fellow and toothed along its imer margin.

The second maxille are triangular and lifurcate for about one-third of their length; the branches are narrow and sharp while the basal portion is wide and strong.

The first maxilliped are very slender, the terminal joint much longer than the basal and amed with a short, shap spine on the immer margin near the center. The two terminal claws are not as mevenas in many species and both are bordered with a "delicate pectinate membrane" ((iissler). The second maxillipeds are large and stout, the basal joint considerably longer than the terminal claw. The accessory spine on the latter is near the hase. The fourth swimming legs are short and weak, four-jointed with tive spines, the basal joint as long as the other three, which latter are widener toward the tip.

The spine on the second joint is short and strongly curved, the other four spines are about equal and arranged in a row at the tip of the last joint. This is due to the fact that the second spine at the tip of the third joint is carried out by the elongation of the joint to a level with those on the terminal joint.

Total length 9.5 mm . Length of carapace 4.6 mm .; width of same 4 mm . length of genital segment 2.4 mm . ; length of abdomen 2.5 mm .; length of egg string- 15 mm .

Color dark rufons ou the dorsal surface. lighter below.
(pucificus, of or helonging to the Pacific.)
Twenty-three females of this aperies were obtained hy Gissle from
 inhathiting Puget somed, on the Pardife roat.

They were described hy him ats a mew specten." Ite called the - bercies a Culians, but that does not seem posible after a careful study of his deseription and text tigures.

There are no lumutes on the frental plates and the second maxillie are bifureated for one-third of their length, both of which are characteristice of the genus Leperphitherims as distinguished from Caliyns.

From correspondence with Gissler it was asertained that his type specimens had been turned over to the Amerian Musem of Natural History at New York City. Dr. H. (. Bumpus, the director of the musenm. very kindly made a careful search for the specimens at the author"s request, lut they could not lee fomd. The species will hate to stand. therefore, upon the original figures and deseription given by Gissler: Fortunately, these were carefully made and give us definite data to work upon. Nearly everything in the present account and the figures which are herewith presented were taken from Giswler. The species can be readily distinguished by the four-jointed abdomen; no other species in this gemms has more than two joints in the abdomen. Howerer, (rissler states that the segmentation is indistinet in fresh material, and only becones distinct on being treated with acetic atid.

There may be a suggestion in this that some species, like salmonis, just described, in which the abdomen has been hitherto regarded as unsegmented, would show a distinet segmentation if treated in the same way with acetic acid.

The species bears some resemblanee to salmonis, but the size and shape of the genital wegment are entirely different. as are the details of every one of the appendages given by (ixsler, particularly the second antenme and the fourth legs.

LEPEOPHTHEIRUS COSSYPHI Kröyer.

Plate NXV , figs. 311-313.
 1899 , p. 454.

Female- (arapace longer than the rest of the body (as 7 to 4), nearly as wide as long, narowed anteriorly. Frontal plates medium size, not well defined, withont any emargination at the center. Free segment very narrow and short, considerably las than one-fourth as wide as the genital segment.

Genital segment half as long as the carapace, a little wider than long, of a broad acorn shape, squarely trumated posteriorly. The corners are well rounded, and to-them are attached the long and slender fifth
legs．These are conical and them－jointerd，with a sota at the end of the first and second joints．

The abdomen is rudimentary，only one－righth the lengeth of the genital segment，and looking like a knot on ite posterior border．

Anal lamine proportionally large ，longer than the athemen，ats wide as long，with stont setie three or fom times the length of the laminar． Egg strings not present．
Joints of the first antemme of about the same length and slender； second antenne of medtium size and the unal shape．

First maxilla small and placed close to the second antemuse，the base swollen more than usial，so that they appear two－jointed．

Proboscis small and phomp，of the same length and width，and squarely romed at the cond．frecond maxillae the same length as the proboscis，tolerably stout：the branches pointed and weakly curved． Eyes small and circular．

Finst maxilliperts of the nsual form：seeond pair not as large as nsmal，and lacking the accescory pine on the terminal claw．

Fura small，the base siquarely truncate，ahmont rectangular；the foramen tolerably large and of about the same length and width． Branches not as long ats the base．simple，divergent，and pointed，the sinus between them triangular，with the sides ahmost meeting ante－ riorly．Rami of the third legs close together，but pointing straight backward．Fourth legs elongate，four－jointed，the basal joint as long as the three terminal ones．

There are five spines，of which those on the second and third joints are equal and of medime size，while of the three terminal spines the middle one is more than twice the length of the other two．

Total length 3.35 mm ．Length of carapace 2.1 mm ．：width of same 1.8 mm ．：length of genital segment 1.1 mum．；length of abdomen 0.125 mm ．

Color not given．
（cossyphi，the generie name of its host．）
Kröyer bases this new species upon a single female taken from the gills of the spanish ladytish or hogtish，Itarpe rufine in the West Indies．But althongh thus contined to a single specimen，the specties presents well－defined characters which serve to distinguish it from all others．

The first of these characters is the relative proportion of the rarions body regions．The carapace and genital segment are noticeably large． while the fiee segment and the abdomen are equally small．The gen－ ital segment is also of a peenliar shape，and the fifth legs are ummally prominent．

But the erowning mark of distinction，if we may helieve Kröyer＊s statement，is the fact that these fifth legs are indistinctly three－jointed． In no other known species of cintignis or Lepecophtheirns is there any
indication of jointing in these appendages. We thus have here a form in which the lifth legs are less rudimentary than usual, and one which leaves no possille dombt as to their morphological significance.

LEPEOPHTHEIRUS ROBUSTUS Kröyer.

Plate NXI', fign. 314, 315.
Lepeophtheims rolustus Kröyer, 1sei:, p. 135, 1l. vi, fig. 6 a-c.-Bassett-Smith, 1899,1 . 456.
Male. (arapace longer than the rest of the body, the proportion about 5 to 2 and strongly arched. Frontal plates weakly developed and not very distinct. Free segment quadrangular in form with rounded corners, a little contracted anteriorly.

Genital segment about one-fourth as long as the carapace, and of the same width and length. On either side anteriorly there is a fold of skin which fills up the space between this segment and the one in front of it. The posterior comers are sumaly rounded and the fifth legs appear as stout pointed knols armed with theee or four long setie.

The abdomen is half as long as the genital segment and of ahout the same wilth and length. The anal lamine are one-fourth as long as the abolomen and a little wider than long. They are armed with setee which are at least four times as long as they are themselves, and with tufts of hair on either side at the base of the setre.

The first antemna are short, with the basal joint somewhat plump and longer than the second joint. In the second antenme the terminal claw is particularly long and sharp.

The first maxilla are guite stout, while the second are larger still, and are deeply eleft at the tip into two armminate branches. The probosecis is plump, not guite twice as long as wide. The first maxillipeds are weak, the imer terminal claw fully twice as long as the outer. The second pair are proportionally larger lout with a short terminal claw.

Furca small and somewhat difficult to see; base longer than the branches, squarely truncated anteriorly, with a slender frame and a large, half-moon-shaped formen. The branches are short and plump and cleft at the ends; the secondary branches are very short, the outer one much wider than the immer, and turned outward. while the imner one points straight backward.

First swimming legs short and stout, the second joint plump and egg-shaped, with a spine and a romded protuberance on its anterior border. Second swimming legs characterized by their stoutness: rami of the third legs small and close together. Fourth legs small but stont, four-jointed, with the basal joint as long as the other three; the latter decrease regularly in size in the proportion of $t, 3$, and 2 . There are only four spines, the second joint ending in an enlarged and
papillated prominence instad of a spine. Of the three terminal spines the outer, whirh is the smallest, has a peculiar knife-blade shape.

Total length 7.8 .5 mm. Length of the (anapace 5.5. mme; width of the same 4.3 mm.; length of genital segment 1.45 mm.; length of abdomen 1.75 mm .

Color not given.
(rolustus, stout, strong.)
This species was founded by Kröyer on two mate specimens obtained from a species of Rajo off the (ireculand coast. It is not as well defined as the preceding species, but seems fairly well whatacterized by the skin protuberances on the genital segment and by the bipartite fural.

Genus ANURETES Heller.

Carapace large and shield-shaped, as in the preceding genera. Frontal plates well defined, without sucking disks. Second maxille small. simple, and straight. Second maxillipeds large and very powerful. Finst and fourth thoracie legs uniramose. second and thirl biramose, the rudiments of the fifth pair large and prominent. (renital segment large, well rounded, emarginate posteriorly. Free thorax segment small and without dorsal plater. Ahdomen entirely lacking, the anal lamine only left, attached to the rentral surface of the genital segment. Egg strings as in Caligus.
(Amuretes, av privitive, ov $\alpha \dot{x}$, tail.)

KEY TO THE SPECIES.

Genital segment semilunar, deeply cut posteriorly; fourth legs small, three-jointed, four spines close together at tip.
-herkelii, p. 647.
Genital segment almost circular, with shallow, triangrular posterior depression; fourth legs long, first spine removed some distance from the others. perplexus.

ANURETES HECKELII Kröyer.

Plate XXV', figs. 316-321.
Lepeophtheims herkelii Kröyer, 1863, p. 110, pl. vn, figs. 4, a-h.
Amuretes herkelii Heller, 1865, 1. 186.-Basisett-Smith, 189!, 1. 457.
Femalr.-Carapace somewhat longer than the rest of the body, about as wide as long. Frontal plates distinct, but narrow and only slightly emarginate at the center. Posterior sinuses broad and shallow; median lobe about half the entire width, projecting scarcely at all beyond the lateral lohes.

Free segment narrow and proportionally long with almost parallel sides. Genital segment two-thirds an long as the carapace and threefourths as wide, its sides strongly curved and projecting backward at the corners as a pair of stout papilla, representing the fifth legs. Between these papillie the posterior horder of the genital segment is slightly convex, but the projecting papilla give this border a deeply
emarginate appearance. Abdomen antirely lacking, or only appeatr ing in the faintest traces on the vent mal surface of the genital segment. Amal lamine as in other genera, not at all degenerate, hot attached to the rentral surface of the genital segment owing to the absence of the abdomen. Their exact pesition varies considerably in different specimens, but they are ustally attached some little distanee in front of the posterion border. For this reason they are wholly, or ahmost wholly, roncealed in dorsal view, only their tips or the seta attached to them appearing beyond the edge of the genital segment.

Finst antennar small and plump, the joints about even and armed as in other genera; second pair with a large terminal claw bent at a sharper angle tham nismal.

First maxilla rather large and plump, not much swollenat the base; seeom pair little mere than half as long ats the mouth tube separated from it quite a distance on either side, simple and pointed, with a greatly enlarged base.

Mouth tube large, twice as long as wide, and well romoded at the cond. Eyes small, situated porterior to the hase of the month tube, the lemses separated by about twice their own diameter. First maxillipeds with a blunt lobe on the middle of the inner margin of the terminal joint. Feeond pair very large and strong, the basal segment much wollen but without knols or spines, the terminal claw stont, bent ahruptly, and withont any accessory spine on the inner border.

Fiusea smatl, plump, the basal part slightly longer than the brancher. with a membranous frame and large oral formen.

The bramehes are simple, parallel and clut-shaped, with obtuse ends; the simes betwern them is long and rery narrow.

There is no spine at the distal corner of the terminal joint of the first thoracic legs, but only the three terminal chaw, the longest of which is almont the lrugth of the joint.

Second swimming legs as in cinligus. Third pair different from the generatatrady described; the basal lamina are lager and the rami are not attached to their posterior border or at the pesterior corners. but high up on the lateral borders and close together so that they partially overlap.

Furthermore the endopod consists of but a single segment, armed with three strongly curved bristles which hardly deserve the name of plumove setie. The exopod is two-jointed and but seantily armed. The forth legs are sumall but comparatively strong, theec-jointed, the hasal joint as long as the other two. There is a mine at the end of the serond joint and three on the terminal joint, all so close together as to form a single bunch or cluster.

The fifth legs appear as a pair of very stont and long papilla projerting from the posterion comers of the genital segment, each ending in a single stont npine.

Total length 2.8 mm . Length of carapace 1.53 mm .; width of same 1.6 mm .; length of genital segment 1 mm . Egg strings wanting.

Color not given.
(heckelii, to Prof. Ernst llëckel.)
This species was founded by Kröer upon three specimens, all females, two of which he obtaned from the Viema Museum while the third came from Biloxi, near New Orleans, on the shore of the (iult of Mexico. The two Vienna specimens were said to have been found by Hëckel on the gills of an Ephippus giges from the Brazilian cuast. They had been labeled by Kollar Cutigns heckelii and Kröyer retained the specific name of the label but changed the genus. The North Ameriean specimen was found on the gills of the same fish (the angelfish or spadefish. Chaxtodiptecus folber, Bronssonet).

This is the only representative of the genus found in North American waters and may be recognized by the entire absence of the abdomen.

NONAMERICAN SPECIES.

The collection of the National Museum includes specimens of the following species, which have not thms far been found in North Americem waters. Three of the species are new to science and one of them is made the type of a new gemus.

CALIGUS TERES, new species.
Plate XXVI.
Female-Carapace one-fourth longer than the rest of the body, about the same length and width, and vere strongly ovate in shape, the posterior portion being more than twice as wide as the frontal plates. The latter are well differentiated, with large, almost cireular lumules which project strongly in front of the antenne. The ponterior simuses are wide and comparatively deep, leaving a median lobe about half the entire width and projecting considerably behind the lateral lobes. The sinuses are slightly inclined away from the mid line, and the posterior margin of the median lobe is a little concave.

The lateral lobes are broad and well rounded, their thoracie portion leing very prominent and projecting considerably behind the rest of the lobes. Thoracie area large and well rounded, embracing hatf the length and fully two-thirds the width of the campace. The crossbar and the lower portion of the sides of the " H" make a nearly perfect semicirele.

The free thorax segment is almost half as long as the genital segment, and is strongly marowed in from of the bases of the fourth legs. leaving the sides concave.

The genital segment has a broad, harrel whape, with erenly rounded sides; it is two-tifthe the length of the carapace, ats wide as it is long,
with an emarginate posterior horder and short, well-romded lobes. The abdomen is three-fifthe the length of the genital segment, and like the latter has a broad. burel shape, abruptly narrowed into a neek, where it joins the genital segment.

The anal lamine are large and foliaceons, separated more than their own diameter, and armed with large and stont setae.

The egg tubes are about half as long as the body; each has a diameter a little more than half that of the abdomen and contains 60 eggs. The anterior antemar ane of medim size and very heavily armed with setio and spines: the posterior pair have a stont basal joint and a long, slender terminal hook. The accessory spines situated just posterior to the base of these antemere are small and weak.

The first maxille are of mediun size, slightly curved, and considerably enlarged at the base; the second pair are large and stont, as long as the proboscis, and abruptly curved near the base.

The terminal portion is nearly staight and ends in a rather blunt point. The temmal joint of the first maxillipeds is much longer than the basal and is tipped with two long and curved claws, the imer of which is longer than the outer, and has a serrate lamina along its anterior and posterior margins. There is also a stout curved spine mon the anterior margin of this terminal joint near its distal end.

The second maxillipeds are large and stont, the terminal claw about half the length of the swollen hasal joint, with a long acressory spine upon its imner margin close to the tip.

The inner margin of the basal joint is also raised into a slight protuberance just opposite the point of the claw.

The furca is narrow, the base as long as the branches and slightly swollen; the branches are straight, ahost parallel, and acute. The three terminal claws on the first swimming leg are long and strongly curved, decreasing in size from the anterior to the posterior. There is no seta at the distal corner, but the three phumose setex on the posterior margin are of the ustal size. The second legs are noticeable chiefly for the spines on the exopod and the curious shape of its terminal joint. There are but two spines, one on the basal joint and one on the second joint: the former is ahout three times the length of the latter, and stretches across the second joint and projects beyond its imer border nearly a third of itw length. The terminal joint of this exopod is shaped like the quadrant of an ellipse, the half of the shorter diameter joining the serond joint, while the half of the longer diameter forms the anterior border. The phomese seta are arranged in at row around the cured posterion margin.

The rami of the thied legs are well separated; the exopod has a stont basal joint with a medimm-sized claw, and a comsiderably smatler terminal joint, both joints being appessed closely to the margin of the apron. The fourth legs are long and sender, three-jointed with tive
spines, of which three are terminal. The outer of these terminal three is rudimentary and so small as to be casily overlooked. The tips of the legs slightly overlap the abdomen, the hasal jointo, which are the same size thronghout, being about as long as the two terminal joints. On the onter margin of the basal joint near the distal end is a short phumose seta; there is a large spine at the distal end of the second joint, and one on the outer margin of the terminal joint at about its center. At the bases of this last spine and also of each of the three terminal spines there is on the rentral surface a small lamina whose edge is cut into very long and acmminate teeth. The fifth legs are so small as to he wholly invisible dorsally and they can be seen on the ventral surface only with difficulty.

Total length 4.55 mm . Length of carapace 2.6 mm ; width of same 2.75 mm . ; length of genital segment 1 mm .; length of abdomen 0.7 mm .; length of egg strings 2.2 mm . Sixty eggs in each.

Male-Carapace threc-fifths of the entire length, and proportionally narrower posteriorly than in the female, but wider anteriorly.

Frontal plates wider and more prominent, and the lumules larger. The eves appear a little farther back in the carapace, owing to the width of these frontal plates.

Thoracic area as large as in the female and rounded similarly. The glands in this area which show as dark masses through the dorsal integument are of peculiar shape and very similar in the two sexes. Each consists of a large ovate posterior portion and a smaller elliptical or spherical anterior portion, the two being connected by a narrow neck. On the imner side both portions of these ghands are flattened against the intestine and present a nearly straight line for their entire length.

The free segment is longer and wider than in the female, and is similarly constricted in front of the fourth legs. It is fully as wide as the genital segment and overlaps the anterior end of the latter on either side by the width of the basal joint of the fourth legs.

The genital segment is oblong, narrowed considerably anteriorly where it joins the free segment, and has a convex posterior margin. On either side near the posterior end is a broad and hunt triangular spine, on the rentral side of which may be found the fifth legs.

The abdomen is abont two-thirds the width and seven-eighths the length of the genital segment, two-jointed, the basal joint considerably the smaller, with a strongly convex posterior margin.

The abdomen widens a little posteriorly and the amal lamine are set into the sides as muth ats the end of the terminal joint. They are very large and foliaceons, but the plumose seta upon them are not much larger than those of the female.

The appendages are very similar to those of the female, the chief differences being in the enlarged and branched second antenne, the
marged second maxillipeds, and the fourth legs. The latter have the name detail as in the female, but reach well heyond the posterior margin of the basal alylominal joint.

Total length 3.7 mm . Length of carapace 2.2 mm . ; width of same 2 mmı. : length of genital segment 0.7 mm . ; length of abdomen 0.54 mm .

Color. a dark-hrownish yellow, without pigment spots.
(tires, smooth, well romded.)
The National Museun collection includes two lots of this species, one of twenty-five females and two males taken from a Callowlymelliws, and the other of about the same number taken from a ray, both at Lota, Chile. The ray and the chimera were in the same tub of fish, so that it is very possible the parasites may have crawled from one to the other. This is a very clam-looking species, and the romblness of its ontlines gives it hoth grace and symmetry. It may he easily distinguished from other species by the rounded harrel shape of the genital segment and abdomen, and by the concave sides of the free segment. This preliminary diagnosis may then be verified by the presence of toothed lamina at the hases of the spines on the fourth legs.

In 1849 one Claudius Gay published what he styled IIistoria fisiea y politica de Chile, which was issued at Madrid and contained, among other things, a review of the animal and plant life of the country. The author has been mable to find a copy of the text of this work, but in the volume of plates there is a figure" of a parasitic copeporl which is designated Colitys. gryi. This was found upon an undetermined tish and resembles the present species in many particulars, hut there is still enongh difference, particularly in the coloration, to render it certain that the two are distinct species.

CALIGUS CENTRODONTI Baird.

Plate NXVII.

 smitu, 1s99, 1. 447.

Fenmle- Carapace considerably more than twice the length of the rest of the hody, and quite strongly marrowed anteriorly. Frontal phates large and distinct, with a deep central incision; lunules large, circular in outline, and not projecting much beyond the anterior margin. l'osterion simses of medimm depth, nearly parallel, and well romded: median lohe a little more than half the entire width, and squarely truncate or slightly emarginate posteriorly. Thoracic area large and very well defined lout with indistinct digestive glands.

Exas stmated far forward and entioly separated from wath other but wery "lose together, the axes slighty inclined toward each other anteriorly.

Free segment short and narrow, overlapped by the carapace anteriorly and by the genital segment posteriorly. From cither side of this segment there projects over the base of the fourth leg a narrow, blunt phate or spine, about half as long as the basal joint of the leg. This overlying plate, together with the small size of the fourth leg. renders the latter invisible in dorsal view.

Genital segment transversely semilunar in shape, one-third wider than long, the sides well rounded, the posterior angles prolonged backward as stout bhut lobes. The posterior margin between these lobes is deeply concave, heing fully one-third of the entire length. The fifth legs are not visible dorsally, but may be distinctly seen upon the ventral surface of the posterior lobes. The abdomen is so small as to be at least partially rudimentary. It is less than one-fourth the width of the genital segment and does not quite reach the level of the tips of the posterior lobes of the genital segment. In shape it is ovate, the base being contracted strongly and joining the genital segment on its ventral surface, a little anterior to its posterior margin. The genital segment thus overlaps and partially conceals the base of the abdomen.

The anal lamine are proportionally of good size. but armed with small seta. Egg eases about two-thirds as long as the body, and considerably wider than the abdomen, each containing thirty-five to forty eggs.

Of the appendages the anterior antemme are short, the two joints about the same length and not very heavily armed with sete and spines. Second antenne small and without any accessory spine at the base of the proximal joint.

First maxillæ large and well curved, but with very little swelling at the base. Second pair simple, with a wide triangular bave and a short blunt tip; they are attached opposite the base of the mouth tube and extend slightly beyond its tip.

The month tube is short and evenly rounded, nearly as wide as it is long. First maxillipeds of the usual form; second pair very small and weak, hardly larger than the first pair; the terminal claw is a little more than half the length, and considerably less than half the width, of the basal joint.

The tiny aceessory spine is attaehed close to the distal end of the claw on the imner margin.

The first swimming legs are smaller than usual, with only one of the three terminal elaws at all developed, the other two heing rudimentary. The plumose setie on the posterior border of the terminal joint, however, are full size.

The exopod of the second legs has but two spines; the one on the first joint is large and stout, but the one on the second joint is radimentary. The rami of the third legs are large and well separated,
but the exopod is turned sidewise and appressed so elose to the margin of the hasal apron that the latter overlaps it somewhat. This brings the tip of the exopod over onto the endopod, so that the two appear close together. The fourth legs are small and weak, three-jointed with four nines; the first and third joints are about the same length, the second joint is only one-third as long.

The spine at the tip of the second joint is long. slender, and perfectly straight; of the three at the tip of the third joint the inner one is very short and rudimentary; the outer one is about the same length as that on the second joint, and like it slender and straight. The middle claw is much larger, nearly as long as the joint itself and strongly curved.

Fifth legs as already stated.
Total length 4 mm . Length of carapace 2.7 mm .: width of the same 2.5 mm . ; length of genital segment 1 mm .; length of abdomen 0.4 mm.; length of egg strings 3.5 mm .

Color a light yellowish brown without pigment spots.
(centrochorti, the specific name of its host.)
Mule.-Carapace as in the female, but proportionally much larger (as 7 to 2): not narrowed as much anteriorly. Frontal plate larger and wider and lunules larger. The median posterior lobe is not quite as large proportionally and is slightly rounded along the posterior margin instead of heing emarginate.

Free segment short and almost concealed beneath the carapace and the genital segment. It is proportionally mueh wider than in the female, and from tip to tip of the lateral plates is five-sevenths as wide as the genital segment.

The latter is narrower than in the female, but is of the same shape. The fifth legs show plainly at the tips of the posterior lobes. Abdomen relatively larger than in the female, with anal lamina almost as large as itself. The abdomen proper does not reach to the tips of the posterior lobes of the genital segment, hut the anal lamine project well beyond them (fig. 34t).

Of the appendages there is no increase in the size of the second antenme, as is usual, but there is enough increase in the second maxillipeds to more than compensate for this. Instead of the weak and puny appendages found in the female, the male carries a pair of enormons second maxillipeds.

The hasal joint is swollen until it is fully as wide as long, and is armed on the inner margin with two large protuberances or papillse, into the sinus hetween which the tip of the terminal claw fits sulugly. This hasal joint is supplied with rery powerful muscles, particularly the one which closes the terminal claw. The latter is three-quarters as long as the hasal joint and stout.

The first maxilla are also rery much enlarged, and are bent into a sickle shape, with a slightly enlarged base.

Total length 3.5 mm . Length of carapace 2.5 mm . width of same 2.3 mm .; length of genital segment 0.9 mm . ; length of abdomen 0.25 nmm .

The collection of the National Mnsemm contains one lot of this interesting species sent from England by Rev. A. M. Norman. It is numbered 8105, and was ohtained from the gill cavity of Iongellis centrodontro. The -pecies was origimally discovered by baird and described by him in 1850, and no further description has ever been given. Indeed, so far as known, it was not even noted by any other author mutil Bassett-Smith in 1899, and he simply gives the name.

The description here given supplements that of Baird in many particulars, especially with regard to the appendages.

Attention should be called to the lateral plates or spines on the sides of the free segment which are not mentioned by Baird, but which are important as comecting link between this form and those in the following subfamily, the Euryphorina. The latter are charasterized by the presence of just such plates in all the species, while the Caligina, which are here discussed, have no such plates or processes.

In the present species the plates are so small as to be easily overlooked, but if the large aprons at the bases of the second legs be removed and the copepod be then examined the plates appear plainly. Most of the Euryphorina are mable to swim abont freely, and with this lack of free locomotion there appear the dorsal plates on the thorax, or abdomen, or both.

It is interesting to find that the begimnings of these plates are foume among forms which still retain the ability, if not the disposition, to move about freely.

Another detail of anatomy is equally interesting, and this also was overlooked by Baird. The upper surface of the genital segment projeets considerably over the base and sides of the abdomen, so that the latter is partially concealed in dorsal view. But the posterior margin of the genital segment is cut in a deep semicircle, which reveals most of the dorsal surface of the abdomen. We have here, therefore, the initial step in the disuppearance of the abdomen; the genital segment is deeply incised to receive it, and it is attached on the rentral surface so as to be partly concealed. The second step is found in Lepeophtheirus dissimulatus, where the abdomen is attached as far forward on the ventral surface, but the genital segment is no longer incised, and consequently almost entirely covers the abdomen. The third and last step is the complete disappearance of the abdomen in the genus Aluuretes.

LEPEOPHTHEIRUS INNOMINATUS, new species.

Plato NXVIII, fige. $345-352$.
Femmb. Carapace elliptical, one-eighth longer than wide, equally narrowed anteriorly and posteriorly. Frontal plates small, hat well detined with a deep incision at the center.

Posterior simuse shallow, narrow, somewhat enlarged at the base and inclined diagonally outward. Of the grooves separating the carapate areas that which represents the crossbar of the " H" is only two-serenths of the length of the carapace from its posterior margin. Furthermore it is not eurved, but is made up of two straight lines meeting at the center like the sides of a very flat roof. This leaves a thoracie area proportionally smaller than in any known species of either Culigus or Leperphtheirus. The longitudinal grooves are strongly curved, so as to be practically parallel with the margin of the carapace. The eyes are situated well forward and are of̃ good size. The median lobe of the carapace projects backward well beyond the lateral lobes: it is abruptly narrowed at about the center as if jointed, the posterior half being semi-cireular and overlapping the free segment a little.

The latter is considerahly more than half as wide as the genital segment; is quite short and somewhat erescentie in shape.

The genital segment is fully ats large as the earapace, quadrangular in outline, with well rounded corners and a sparely truncated posterior margin. Anteriorly it narrows into a short neek, where it joins the free segment, the neck heing considerably nurower than the free segment.

The abdomen is marrow cylindrical, ahout one-third the width of the genital segment, and nearly four times as long as wide. It is twojointed, the basal joint three times the length of the terminal; the latter joint is also quite a little narrower than the former, hut does not taper posteriorly. The anal lamine are of good size and curve in toward each other at their tips; the plumose sete are rather short and slender.

The egg strings are two-thirds as wide as the abdomen and fiveeighthe the length of the body; the eggs are small, eighty or eighty-five of them in each string.

Of the appendages, the first antenne are abont as long as the frontal plates, the two joints of the same length, and well supplied with sefa and spines. The second antenna are long and slender, the most of the length being in the terminal claw, which is strongly bent near the tip. 'The hasal joint is short and stont. The two pairs of maxilla are small and slender, the serond pair bifid for only a third of their longth, with the branches parallel and elose together.

The furca is small, the base and branthes about the same length,
the former slightly enlarged where it joins the rentral surface, the latter of a broad U shape, with blunt points.

The second maxillipeds are enormons, the stont hasal joints filling the whole central portion of the carapace; the terminal claws are nearly as long as the basal joint and are strongly curved near their tip. The aceessory spine is small and weak and is attached near the base of the claw.

There are no spines on the first legs except on the terminal joint, where there are the usial three, and three plumose setie on the posterior horder. The three spines on the exopod joints of the second legs are the same size and all very sharp.

The rami of the third legs are close together, with a large spine at the base of the exopod. The fourth legs are long and stont, threefourthe the length of the genital segment.

The basal joint is nearly as long as the other three, exclusive of the claws. Of the latter there are five, a tiny, rudimentary one at the enlarged tip of the second joint, as somewhat larger one at the tip of the third joint, and three terminal ones.

These last are graded in size from withont inward. The onter one is no larger than that on the second joint, the second one is three times as large, while the immer one is twice the size of the second and is toothed along its outer border.

The fifth legs are invisible dorsally, but are painly discernible on the rentral surface.

Total length 9.2 mm . Length of carapace 2.8 mm .; width of same 2.5 mm . ; length of genital segment 2.8 mm .; length of abdomen 3.2 mm.: length of egg strings 6 mm . Eighty to eighty-five eggs in each.

Color a dark steel gray, changing but little in alcohol.
(imumimutus, without a mame, the one given to it heing preocenpied.)
The National Musemm collection has a single lot of this species, numbered soses, and including three females taken from a salmon at Cornwall, Englame, be the Rer. A. M. Norman.

These are labeled by Mr. Norman Lepeophtheirus yrucilis, but that name can not stand, for several reasons. In the first place. P. J. van Bencden deseribed, in 1851, a species which he called Cultigns: gracilis. but which was really a Lepeephtheirus. If any species of the gemus were to preserve the name gracilis, it would of necessity be this one. But even at casual glance at Beneden's figure will suftice to show that he was really describing something very different from the present species.

Again. Beneden's species has been shown by various anthors to be the same as L. thompsoni Baird, and hence must be included under the ynonyms of that species. Therefore it could not stand for the present species, an entirely ditherent form.

For these reasons we have considered it necesisaly to change Normans latel, which has nerer been published, and leare L. gracilis in its old place as a syonym of L. thompson i.

Under the latter species will be found (see p. (ize) a full disenssion of these troublesome synonyms. It will suffice here to state that the present speeies can be distinguished at one from L. thompenti, with which it is most likely to be confused, by the equality in size between the carapace and genital segment, ly the comparative length of the abdomen (considerably longer than either carapace or genital segment), and by the large size of the second maxillipeds. In the present species, atso, the hasal joint of the fourth leg reaches well heyond the matrgins of both carapace and genital segment, while in thompomi the entire leg. if straightened ont, would not reach the margin of the carapace, and the basal joint falls: far short of reaching the margin of the genital segment. Finally, the present species was found on a very different host.

LEPEOPHTHEIRUS CHILENSIS, new species.

Plate XXVIII, figs. 353-364.

Female.-Carapace orbicular. as wide as long, the frontal margin strongly curved and deeply incised at the center.

Posterior sinuses shallow and widely triangular; median lobe about one-half the width of the carapace, and not projecting much behind the lateral lobes. Transerse groove separating the cephalic from the thoracic areas almost exactly in the center of the carapace; lateral groores nearly straight.

Free thoracic segment short and less than half the width of the genital segment; very prominently widened at the center through the base of the fourth leg. Genital segment half the width of the carapace, one-fourth wider than long, with strongly eurved lateral margins and somewhat reentrant posterior margin.

Abdomen half as long as the genital segment and one-fifth as wide, distinctly two-jointed, the joints about equal.

A nal lamine small and widely separated, curved in slightly toward each other and armed with small and short sete.
The anterior antemmare large, three-fourths an long as the frontal plates with the terminal joint shorter and much narrower than the basal. Both joints are heavily armed with setex, those on the terminal joint being gathered at the tip.
The posterior antemar are large, the hasal joint swollen and with a good-sized spine on its ventral surface. The terminal claw of these appendages is strongly bent in a horizontal direction at the base, and again in the nsual vertical direction at the tip. The first maxilla are close to the tip of these antenna, are of medium size, and nearly straight.

The second maxillae are of about the same size as the furea and are cut beyond their center with divergent branches, of which the imer one is the larger and eurved the more.

The tirst maxillipeds are of the usual form; the second pair are rather small, the basal joint more than twice the length of the terminal chaw; the latter is weak and not much curved.

The furca is of medimm size and cut beyond the center, making the branches longer than the base. The former are conical and widely divergent; the latter is swollen on either side at the center, giving a spindle shape.

The first swimming legs have a stout spine upon the outer and another upon the posterior margin of the basal joint. The terminal spines are nearly equal and not pectinate, while the phmose seta are rather short. The second legs have large spines upon the onter margin of the exopod; the rami of the third legs are well separated and longer than in most species.

The fourth legs are large and stont, their tips reaching back beyond the genital segment. They are four-jointed, the basal joint only half as long as the other three, including the spines. This hasal joint has a stout spine on its outer horder at a little distance from the distal end. The third joint is longer than the second and fourth and ends in a short spine. There is no spine on the second joint. The terminal spines are strongly curved and vary much in length, the imner one being nearly three times the length of the outer.

The tifth legs are large and prominent and project beyond the posterior margin.

In young females the free segment and genital segment and abdomen are each of nearly the same size, the fourth segment being the widest and the others narrowing slightly in order. The fifth legs project as very large papille from the posterior margin of the genital segment and are much more prominent than even in the adult male. There is no trace of segmentation in the abdomen, but this region is almost exactly like that in the adult male.

Total length 5.3 mm . Length of carapace 3.2 mm .; width of same 3.1 mm .; length of genital segment 1.2 mm .; length of abdomen 0.55 mm ; ; length of egg strings 3.3 mm .

Color a dull yellow with a slight tinge of brown, with no pigment spots visible in preserved specimens.
(chilensis, of or belonging to Chile.)
Male- Carapace twice the length and more than four times the width of the rest of the body, its own length and width being about the same. Posterior simses the same as in the female, but the thoracic area is relatively smaller and the digestive glands are larger. The free segment is as wide as the genital segment, one-fifth the width of the carapace, and relatively longer than in the female. The fourth
legs are attanhed to its posterior lateral margins, which are much widened through their hases. The genital segment is oblong, with well-rounded anterior corners where it is contracted into a neck on joining the free segment. It carries two pairs of papilla, one at the posterior corners and the other on the lateral margins just in front of those corners.

The abdomen is small, only half the length of the genital segment, as wide as long, with no trace of segmentation. The anal lamina are much larger than in the female and their seta are very much longer and stouter.

The second antennæ are enlarged as usual in this sex into clasping organs, but the branches are reduced to mere knobs. The rami of the third legs are especially prominent and protrude a long distance from the margin of the basal apron.

The fourth legs are relatively much larger than in the female: the basal joints alone reath more than three-quarters of the length of the genital segment, while the tips extend well beyond the ends of the anal lamine.

Total length 3.3 mm ; length of carapace 2.2 mm ; width of same 2.2 mm. : length of genital segment 0.55 mm ; length of abdomen 0.3 mm .

Color somewhat darker than in the female.
The National Museum collection includes three lots of this new species, all of which were obtained at Lota, Chile, during the voyage of the United States Bureau of Fisheries steamer Albutross in 1887-88.

The first two lots are numbered 1502 and 1503 , while the third lot is umumbered. No host is given for the first lot; the second, 1503 , was taken firom a ray, while the third was taken from a species of Sebustes. 'This third lot ineludes twenty-five females and two males, which are excellently preserved.

The species resembles purvicentris at first sight, but is considerably smaller and the proportions of the various body regions are markedly ditterent. This is seen especially in the general shape of the carapace and genital segment and in the relative size of the two.

The abdomen, also, in this species is relatively longer and is made up of two segments, while in parrimentris it is shorter and undivided. The eggestrings in purvicentris are as long as the entire body. while here they are only three-fifths as long. In parricentris the furea has a broad U shape, the branches widely separate and parallel; here the furca is much smaller, V shaped, with the branches starting elose together and diverging rapidly. In this species, also, the second maxillipeds are small and weak, while the fourth legs are very large and strong; in parvicentris exactly the opposite is true.

Carapace large and shiek-shaped. Frontal phates without lunules. Mandibles with sharp sawteeth along the imer margins only. Second maxilla small and divided as in Lepeophitheires. First and fourth swimming legs miramose, second and third biramose. Genital segment corered by a pair of dorsal plates which finally fuse into one. In the female this plate often grows forward and covers the free segment as well as the genital segment, overlapping the bases of the fourth legs. It extends backward to the center of the abdomen and on either side of the latter sends ont a well-rounded, flattened lobe. terminating in a stout blunt spine which reaches eren beyond the tips of the anal laminae. In the male the plate covers only the genital segment and does not quite reach the base of the abdemen. In this latter sex a pair of fifth and a pair of sixth legs are plainly visible on the genital segment, the former very well ditlerentiated.

Abdomen unsegmented, without plates or processes; anal lamina small, Hattened and armed with plumose seta.
(Ilomuiotes, бцоготиs, likeness or similarity.)

HOMOIOTES PALLIATA, new species.

Plate XXIX.
Female.-Carapace orbicular, as long as wide, much marrowed anteriorly and posteriorly. Frontal plates well definet but narrow, completely separated by a central incision, within which can be seen the remains of a frontal filament. Posterior sinuses narrow of medium depth, and inclined outward, leaving a median lole fully half the entire width and rather flatly rounded posteriorly. The lateral lobes are narrow, sharply rounded, and eurved strongly inward. Thoracic area rather small, the groove which separates it from the cephatic area being made up of two straight lines inclined toward each other like the sides of a roof. The digestive glands in the center of the area show plainly and are semicircular in shape.

The free segment, seen from the ventral surface, is about half the width of the genital segment and less than at third as long. In the adult its dorsal surface is entirely covered ly a mantle or lamina which overlaps the bases of the fourth legs on either sifle and extends back the entire length of the genital segment and half the length of the abdomen.

This lamina belongs really to the genital segment and grows forward over the free segment as can be seen in all young females, all males, and in several of the adult females, where the free segment is withont any covering. It starts as a pair of small plates, one on either side at the base of the genital segment. These grow inward toward each
other, backward, and in the adult females manally forward, until they finally fuse into a single plate or lamina.

The genital segment, seen from below, is about half the width of the carapace, and is ovate in shape, narrowing rapidly toward the posterior and. The sides are very evenly rounded and the dorsal lamina which covers the entire upper surface projects considerathy beyond the lateral margins, and extends backward on either side of the abdomen in a broad, flattened lobe. These lobes are about one-thire the width of the lamina at the point where they arise and earh is tipped with a stont spine. The simus between them is deep and almost a perfect semicircle in outline, leaving exposed the terminat half of the abdomen. This latter is small, only one-fourth the length of the genital segment, and composed of a single joint. It hase is concealed beneath the posterior edge of the dorsal lamina, which covers both the free and genital segments, and it tapers strongly posteriorly. It is tipped with a pair of small and narrow amal lamine, which are well separated and armed with short setie. The egg strings are a triffe wider than the abdomen and ahout as long as the carapace; each contains from seventy to eighty eggs.

Of the appendages the first antennx are large, more than half the length of the frontal plates; the two joints are the same length, the terminal one being narrow and club-shaped.

The second pair are of medium size; the basal joint is not much swollen and is furnished on its dorsal surface, at the inmer corner of the distal margin, with a circular plate covered with short and stiff bristles. The terminal claw stands at right angles to the basal joint and is sharply bent near its tip.

The first maxilla are small, slender, and strongly curved; the second pair are also smatl and are cut beyond the center, the inmer branch being considerably smaller than the outer one. The mandibles are strongly curved at the tip, with ahout a dozen large sermate teeth along the imer margin of the curve. The first maxillipeds have a small chitin lamina inserted in the inner margin of the terminal joint near its center. They terminate in three claws instead of the usmal two; the imer one is considerably longer than the two outer ones, which are about the same length. The onter claw hat a pectinate edge along its outer margin.

The second maxillipeds are small, the terminal claw not more than a third the length of the basal joint, with a long and stender accessory spine inserted near its base.

The furca is smail, the base longer than the hrowches and some what wollen, with a large rectangular foramen. The branches are short, well separated, a little divergent, and home at the tips.

The first swimming legs have a large plumose seta on the posterior margin of the basal joint and a stout spine at its distal corner. There
is a slender spine at the anterior distal corner of the second joint and the usual armature on the terminal joint, three plamose setie on the posterior margin, three terminal claws, and a spine at the distal corner.

The second legs are like those of Caligus and Leperphtheirus. 'The rami of the third legs are very close together, hut are not at all fused. They project well beyond the edge of the basal apron. The exopod is three-jointed and the endopod two-jointed. All the spines and setre are small except those on the respective basal joints.

The fourth legs are large. The basal joint is stout, but is considerahly less than half the entire length. The three terminal joints are about the same length. The second joint ends in a small and strongly curved elaw; the third joint is tipped with a longer and straighter claw, while the fourth joint ends in the usual three elaws, graded in size from withont inwards.

At the base of each claw is a large lamina tipped with radiating bristles, like those in Lepenphtheirus chluardsi.

Along the outer margin of the two longest terminal claws, and along both margins of the onter shortest claw, is a wide serrated fringe or lamina, again like that in L. eclucurdsi.

The fifth leg's are well defined with long sete, but are wholly concealed in dorsal view by the dorsal lamina.

Total length 5.3 mm . Length of carapace 3.5 mm .; width of same 3.5 mm . l length of lamina covering free and genital segments 2 mm .; length of egg strings 3.1 mm . Seventy or eighty eggs in each.

Color a light cimnamon brown, the pigment uniformly distributed and not in spots.
(pulliutr, wearing a cloak or mantle.)
Male-Carapace more quadrangular than in the female, distinctly wider than long, with the sides somewhat flattened.

Frontal plates well defined, relatively larger than in the female, the joint which separates them from the carapace almost a straight line. In this sex also the plates are completely separated by the deep median incision, in which can be seen the remains of a frontal filament. The posterior simuses are broadly triangular, leaving a median lobe less than half the entire width. The lateral lobes are broad and well rounded and they do not curve in at all at their tips.

Grooves and thoratic area as in the female, except that the digestive ghands are very pointed anteriorly and muth elongated.

The free segment is as wide as the genital segment, but is quite short. It is constricted anteriorly into a neck, where it joins the carapate, and is considerably enlarged throngh the bases of the fourth legs into a spindle shape.

There is no dorsal plate or lamella, as in the female, but the segment is like that in Culigus and Leperphtheirus.

The genital segment is quadrangular in ontline, slightly emarginate
posteriofly, with ahmost straight sides. It is only one-fourth as wide as the carapace, about as wide as long, and carvies two pairs of papillaone on the lateral margin and the other at the posterior eorners, the two rlose together.

The first pair, on the lateral margins, represent the fifth legs and are much better developed than in any species of ('aligus or Leperpher theires thus far observed. On the ventral surface in farorable specimens this patir of legs mat be traced to the very late of the genital segment; and they also show an indistinct segmentation, which is very unusial.

The serond pair represent the sixth legs, and are in the condition usually assmmed by the fifth pair, except that they show only two spines instead of three.

As in the female, the dorsal surface of this segment is covered with a lamina which projects over either lateral margin and rovers the hases of the tifth leges posteriorly.

The abomen is very short, scareely reaching beyond the tips of the fifth-leg papillae, and is wider than it is long, with rery large anal laminer, amed with long and stont sete.

The first antema are large and project well beyond the lateral margins of the carapace. The second pair are also entarged, as usual in this sex, and well brunched.

The second maxillipeds are entarged rather more than msual, and monst form powerful prehensile organs.

The hasal lamina, or apron of the third legs, are very large and reach back fully to the center of the genital segment. Being plentifully supplied with powerful muscles, they form a swimming organ of great strength, and must propel the animal through the water swiftly. They must also be equally effective in the prevention of slipping.

The fourth legs are much enlarged and so long that they reach well beyond the tips of the phmose setse on the anal lamina. The bisal joint on each of them is as large as the entire free segment. They are armed, as in the femate.

Total length 2.. $\quad 1$ mm. Length of earapace 1.8 mm.: width of same 2 mm ; length of genital segment 0.35 mm . ; length of the fourth legs 1.5 mm .

The National Museum collection inchades a single lot of this interesting species; it is mombered W. 76 , and was taken from the blue cod. ('phiodom domgutus. lomality unknown.

Its chief interest lies in the fact that it forms a connecting link botween the subfamily Caliginat, which is here treated, and that of the Euryphorinae, their nearest relatives.

By reference to the key on page $5: 2$ it will be seen that the Caligina are characterized hy the entire absence of domal phates or appendages on the fourth segment of the thorax. with the exception of the fourth
legs. The Eurrphorime, on the other hand, have a pair of plates on the dorsal surface of the fourth segment which usually overlap the genital segment.

The present species has a pair of dorsal plates which start at the groore between the free and genital segments and, in the female, grow backward and forward until they fuse and cover both segments. In the male they corer only the genital segment. It would seem at first as if this new genus and species should be placed with the Euryphorine by reason of these dorsal plates. But there are several good reasons for placing it here among the Caligina.

First the growth and fusion of the dorsal plates is as mulike the condition which pertans in the Euryphorinae as it is mulike that in the Caligine. No gemus in the former subfamily shows such a fusion of plates, nor do we find it until we come to the Pandarina. But in this latter subfamily the character of the appendages has changed materially, and we no longer find anything there which resembles the Caligine. The fusion of the plates then is like Pundurus, but the detail of the appendages is still like that of Coligus Lepeophtheirus in every particular.

Again attention has been called in both sexes to the fact that the remains of a frontal filament can still be seen in the bottom of the incision between the frontal plates.
This shows conclusively that in its development this genus has a stage during which the foung are fastened by a frontal filament, exactly like the chatimus of the Caligina.

When we come to discuss the development of the Eurrphorine we shall find that they possess no frontal filament but acomplish their attachment in an entirely different mamer.

The present genus, therefore, in the detail of its appendages and in the different stages of its development, is very plainly one of the Caligine. Yet at the same time it possesses a pair of fused dorsal plates, which are developed in a manner similar to that of the Pandarine.

Hence it is to be classed with the Caligine, hut regarded as exhibiting the first signs of that degeneration in structure and function so plainly shown in the Pandarine.

In this first begimning the dorsal plates do not stiffen the body enough, nor is their weight sufficient, to retard the copepod's freedom of motion. If they should offer an impediment in this direction the increase in the size of the apron of the third legs, which is the chief organ of locomotion, would more than offset it.

It is an extremely fortunate circomstance that this single lot of parasites includes well-preserved adults of both sexes and the young in sereral stages of development, so that the foregoing points are clearly demonstrated.

BIBLIOGRAPIIY.

The following biblography simply enumerates the papers to which reference is made in the text. The author is compiling an exhanstive biblingraphy of the entire group of parasitic copepods, which will the pallished at some future time.
1850. Rame, W. The Natural History of the British Entomostraca. Printed for the Ray Soriety, Lomlon.
1896. Bassetr-imin, P. W. Notes on the Parasitic Copepoda of Fish obtained at Plymonth, with Descriptions of New Species. Annals and Magazine of Natural History (6), XVIII, 16 pp., pl. m-vi.
1898a. Bısett-Smitn, 1. W. Some New Parasitic Copepods found on Fish at Bomłaty. Annals and Magazine of Natural 1Iistory (7), I, 17 pp., pls. 1-vin.
1898b. Baseett-Matu, P. W. Further New Parasitic Copepols from Fish in the Indo-tropical Region. Annals and Magazine of Natural History (7), II, 22 [p., pls. III-vi.
1898e. Bassett-smitif, P. W. Some New or Rare Parasitic Copeporls found on Fish in the Imdo-tropical Region. Annals and Magazine of Natural History (7), 1I, 16 pr., pls. x-xi1.
1899. Bassett-Smith, P. W. A Systematic Deseription of Parasitic: Copepoda fomed on Fishes, with an Enumeration of the Known Species. Proceedings of the Zoological Society of London, 1899, pp. 438-507, pl. xxvi.
1765. Baster, Job. Opuscula sulseciva, observationes miscellaneas de animaleulis ct phantis quibusdan marinis, eorumque oraries et seminilous continentia. 2 vols., (fuarto. 11arlem, 1759-1765.
1851. Beneden, P. J. van. Recherches sur quelques Crustacés inférieurs. Annales des sciences Naturelles (3), XVI, pp. 71-131, phs. II-v1.
1892. Benmen, I'. J. van. Quelques monveanx Caligidés de la Côte d'Afrique, et de l'Archipel des Açores. Bulletins de l'Académic Royale des Sciences, des Lettres et des Beanx-arts de Belgique (3), XXIV, p户. 241-262, pls. 1-15.
1883. Brany, (i. S. Report on the Copepoda. Challenger Expedition, YIII, Pt. XXill, pl. Lv.
I898. Brian, A. Catalogo di Copepodi parassiti dei Pesci della Liguria. Atti della Societì Ligustica di Scienze Naturali e (ieografiche, IX, 31 pp., phs, i-N.
1899. Brine, A. Diphyllograster thompsoni, n. gen. di Caligide della Dicerobutis giorna (Günther), idem, X, pp. 5-11, pl. $n 1$.
1833. Burmenter, H. Beschreibung einiger nenen oder weniger bekannten Schmarotzerkrebse, nebst allgemeinen Betrachtungen ïber die Gruppe, weleher sie angehören. Kaisertich-leopoldinisch-carolinisehe dentsche Akademie der Naturforscher, Acta, N'1I, Pt. 1, pp. 271-336, pls. xxil-xxy.
1885. Cunes, J. V. Prodromns Famæ Mediterraneas, I, quarto, Stutgart.

186t. Clacs, C. Beitrage zur Kenntniss der schmarotzerkrebse. Zeitschrift für wissenschaftliche Zoologie, XIV, pp. 365-382, pls. xxxin-xxxvi.
184ti. Daxa, J. D. Notice of some Genera of Cyclopacea. Silliman's American Journal of Science and Arts (2), 1, pp. 225-230.
185\%. Dssa, J. D. Conspectus (rustaceorum que in Orbis Terrarum circumnavigatione, Carolo Wilkes e Classe Reipublice Fuderate Duce, lexit et descripsit Jacobos D. Dana. Pt. … Proceedings of the American Academy of Arts and Sciences, Philadelphia, 1I, pp. 9-61.
1853. Dana, J. D. United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842, moder the Command of Charles Wilkes, U. S. N., XIII, 1't. 2, pp. 1309-13s', phe xer-xeri.
18品. Desmarest, A. G. Considérations générales sur la classe des Crustacés, et description des espèces de ces animanx, qui vivent dans la mer, sur les côtes, ou dans les eaux douces de la France. Paris and Strasbourg.
1860. Fiscuer, s. Beiträge zur Kenntniss der Entomostrareen. Abhandlungen der mathematisch-physicalische Classe der Kueniglich bayerschen Akademie der Wissenschaften, Munich, V'IIf, p. 645, pl. xxur.
1847. Frey, H., and Letckabt, R. Beitrage zur Kemotniss wirbelloser Thiere mit Jesonderer Berücksichtigung der Fama des Nordlentschen Meeres. Brannschweig, 170 pp., 2 pls.
1849. Gay, C. Historia física y política de Chile. Madrid, quarto. (iives a figure (Crnstíceos, pl. 11, fig. 12) of Caligus guyi.
1866. Gerstafeker, A. The Copepoda in Bronn's "Klassen und Orduungen dos Thierreichs," V', Pt. 2.
1883. Gissler, C. F. A new Parasitic Copepod Crustarran. American Naturalist, XVII, PP. 885-887, 10 text figures.
1842. Goodsir, H. D. S. On a New Genus and on Six New Speries of Crustarea, with Obvervations on the Development of the Egg, and on the Metamorphoses of Caligus, Carcinas, and Pagurus. Edinhurgh New Philosophical Journal, XXX1II, pp. 174-192, pls. in and m.
18i5. Heller, C. Reise der Ötterreichischen Fregatte Novara, in den Jahren 1857, 1858 und 1859. Zoologische Theil, II, Pt. 3, Crustaceen. Wien.
1866. Hellw, C. Carcinologische Beiträge zur Fanna des atriatiswhen Meeres. Verhandlungen der Kaiserlich-koeniglichen, zoologisch-lotanischen Gesellschaft, Wien, 1866, pl. 723-760.
1858. Hesse, E. Hémoire sur les moyens ì l'aide desinels certaines Crustacés parasites assurent la conservation de leurs espèes. Annales des riciences Naturelles, Zoulogie (4), IN, pp. 120-125.
1877. Hesse, E. Remarques sur Ie Genre Chalime. Amnales dew Siences Naturelles (6), Zoologie, V, article $10,3 \mathrm{pp}$.
1883. Hesse, E. Crustacés rares ou nouveaux les côtes cle France. B3me article. Annales des Sciences Naturelles (6), XV', article 3, 48 pp., pls. iv-vi. Cłoses with a review of the classification of the parasitic Copepods.
1824. Jonsston, G. Notice respecting the Genus Caligus of Leach. Elinburgh New Philosophical Journal, X, pp. 292-294, pl. vir.
1835. Kollar, V. Beiträge zur Kemntniss der Lemaienartigen Crustaceen. Annalen des Wiener-Museums rler Naturgeschichte, I, pp. 81-92, pls. ix and x.
1837. Kröyer, H. Om Snyltekrebsene, isaer med Hensyn til Danske Fanna. Naturhistorisk Tidsskrift, I, pp. 172-189, pl. 11; pp. 203-208, pl. 11; pp. 252-304, pls. 11 and 11 ; pp. 476-505, pl. v.; pp. 605-628, pl. vi.
1838. Кrȫer, H. Idem. Idem, II, pp. 7-52, pl. ı; pp. 131-157, pl. ии.
1863. Kröyer, H. Bidrag til Kunlskal, om Snyltekrebsene. Naturhistorisk Tidsskrift, Tredie Raekke, Andet Bind, pp. 75-426.
1818. Lamarce, J. B. P., Chevalier de. Histoire naturelle des animanx sans vertèbres, V, Paris, July, 1818.
1813-1814. Leacil, W. E. Crustaceology. Edinburgh Encyelopedia, Vil.
1816. Leacı, W. E. Annulosa. Encyclopedia Britannica, Supplement I, 1816, p. 405, pl. xx, figs. 1-5.
1855. Leus, J. Contributions towards a Knowledge of the Marine Invertebrate Fana of the Coasts of Rhode Island and New Jersey. Jounal of the Academy of Natural Siciences at Philadelphia, HI, pp. 1-20, phs. xand xi.
1889. Lemp, J. A Parasitic Copepod. Proceedings of the Acallemy of Natural -Sciences at Philatelphia, 1889, p. 95, with figure in the text. A chalimus, probably of (aligus rapar.
1875. Mc\&xtosir, W. C. On the Invertebrate Marine Fauna and Fishes of St. Andrews. Annals and Magazine of Natural History (4), NIV, ple 2ise-27t.
1840. Milne-Edifaris, H. Histoire Naturelle des Crustacés, Paris, 111, pp. 432-52?.

1776．Mïnask，O．F．Zondogiar Danice．Havmice［Copenhagen］，1776．Introtuces the groms chligns muter the name Bimoculus．
178．Mitller，O．F．Entomostraca seu Insecta Tentacea phe in ayuis Danie et Norvegice roperit．Lipsife，1785．Corrects his previons error and founds the gemus Cialigus．
1851．Mílusk，F．Ueber Caligus appendiculatns，n．s．Arehiv für Naturgeschichte， 1851，N VII，I＇t．1，p．91．
 Chatimus．Archiv für Naturgeschichte，XVIII，Pt．1，pr． 91 and 92.
18：3．Nommann，A．van．Mikrographische Beitrage zur Naturgeshichte der wir－ hellosen Thiere，Berlin，quarto，1882，Pt．2，pls．1－x．
1864 ．Nordmann，A．van．Neue Beiträge zur Kenntniss Parasitischer Copepoden． Erster Boitrag．Bulletin de la Société Impériale dees Naturalistes de Moscou， XXXVII，No．4，pp．461－520，ןls．v－－v11．
186\％．Olsmox．P．Prodrouns fanne Copepodorum parasitantium Scandinavi天．Karo－ linska universitet，Lund，Arsskrift，1868，p． 36.
187ヶ．Olsion，I＇．Om Parasitiska Coperoder i Jemtland．Otfersigt af Kongl． Yetenskaps－Akademiens Forhandlingar，XXXIV，No．5，pp．75－88，pls． 15－Yi．
1828．Orm，A．W．Beschreibung einiger nenen，in den Jahren 1818 uml 1819 im Hitteltandischen Meere gefundener Crustareen．Kaiserlich－leopoldinisch－ carolinische dentscle Skatemie der Naturforscher，Nova Acta，XIV，pp． 331－35t，ple．xx1－xxin．
1838．Pickepinti，C．，and Dana，J．D．Description of a specien of Catigns，O ameri－

1884．Rathbix，R．Amotated List of the described Species of Copepods from Amer－ ican Waters contained in the U．S．National Musem．I＇roceedings of the U．S．National Museum，Vit，ph．483－492．
1843．Ratnke，M．II．Beiträge zur Fimua Norwegens，Crustarea，mit 12 Kupfertafeln． Kaiserlich－leopoldinisch－carolinische deutsche Akademie der Naturforscher， Verhandlungen， XX ，I＇t．1，pp．98－132，244－249．
1880．Richunin，s．Contribuzione alla Fama d＇Italia．Catalogo sistematico dei Crostarei che vivono sal eorpo degli animali acopuatici．Catalogo degli Espo－ sitori e defle Crse Esposte，Espozitione internazionale di Pesca in Berlino， 1850，111．147－152．
181s．Say，T．An Aceount of the Crustacea of the Tnited States．Journal of the Academy of Natural sciences at Philadel ${ }_{l}$ hia，1，Ptw． 1 and 2.
190日a．Acott，A．Lepeophtheirns and Lernea．Transactions of the Liverpool Bio－ logical society，NV，pp．188－241，pls．1－r．
1901b．Fioutr，A．Fome Additions to the Fanna of Liverpool Bay，Collected May 1， 1900，to April 30，1901．Transactions of the Liverpool Biological Society， XV，pl． $8+2-352$, pls．I and 11 ．
1894．Footr，T．Repurt on Entomnstraca from the Gulf of Guinea．Transations of

1！00．S＇ott，T．Notes on some Crnstacean Parasites of Fishes．Eighteenth Ammal Repert of the Fishery Board for Scotland，P＇t．3，pp．144－187，phe．v－rins．
1！002．Sotr，T．Notes on some Parasites of Fishes．Twentieth Ammal Report of the Fiwhery Poard for Scotland，Pt．3，pl．288－303，pls．x11－xin．
1778．Slabber，M．Naturkundige verlustigingen behelzende microscopise．Waar－ neemingen vain in－en utlandse Water－en Land－Dieren．Te Haarlem， 1769.
1sita．Surns，S．I．Invertebnate Amimals of Vineyarl Somm．Report of the Commiswioner of Fish and Fisheries for 1871 and 1872，pp．295－747，ph．v11 （parawitic＂opeporls）．

1sith. Smmi, ㄷ. Crustacean Larasites of Fresh-water Fishes. Report of the U. S. Fiwh Commission for 1872 and 1873, It. 2, p. 662.
1901. Stebming, T. R. R. Un ernstacea brought by Doctor Willey from the South Seas. Willey's Zoological Researches, Pt. 5, pp, 605-690, pls. 1 -xy.
1861. Steenstrup, J., and Jïtken, C. Bidrag til Kumlskal, om det aabme Havs Snytekrels og Lerneer. Kongelige Danske Videnskabernes Selwalos Skrifter, 5te Raekke, naturhistorisk og mathematisk Iffeling, V, Pp. 3ti432, pls. 1-xr.
1762. Stroen, H. Physiske (ng ()eromomisk Beskrivelske over Fogrleriet אöndmör, I, Deel, 1762.
1895. Thompon, I. C. Revised Report on the Copeporla of Liverpool Bay. Report of the Fama of Liverpool Bay, I ${ }^{\prime}$, pis. $81-1: 36$, pls. xv-xxxv.
1889. Thomson, (i. 11. Parasitie Copepoda of New Zealanl. Transations of the New Zealand Institnte, XXII, 1. 354, phs. xxi-xxix.
18!日. Thomone (i. M. On a New Parasitic Copeporl. Transartions of the New Zealand Institute, XXIII, pp. 2et-229, pl. xxin.
1850. White, A. List of the Specimens of British Animals in the Collection of the

1903. Whmax, (\quad. B. North American Paravitic Copeport of the Family Argulicat, with a Biblingraphy of the (iroup and a Systematic Review of all Known Speries. Proceedings of the U. S. National Musemm, XXV, plo 635-742,

1904. Wilmon, C. B. A New Spectes of Arguhs, with a more complete Aceoment of two siperies alreally deseribed. Proceedings of the U. S. National Musemm, XXVII, 1p. 627-655, text figures.

ENPLANATION OF THE PLATES.

Plate V. Caligus rufimaculatus, new species. Fig. 51, Dorsal view of female; fig. 52, Dorsal view of male; fig. 53, Dorsal view of a fully developerl mate chalimus; fig. 54, First maxilla and second antemmof female; fig. 5n, First maxilliped of female; fig. 56 , Second maxilla of female; fig. 57 , Second maxilliped of male; fig. 58, Second maxilliped of female; fig. 59, Furca and first maxilla of male; fig. 60, Furea of female; figs. 61-64, First, second, third, and fourth swimming lege of female.
Plate VI. C'tligus schistomy; new species. Fig. 65, Dorsal view of male; fig. 66, Dorsal view of female; fig. 67, second antenma of female; fig. 64, First maxilliped of female; fig. 69, First maxilla of male and female; fig. 70. Second maxilliped of female; fig. 7I, Secont antenna of male; fig. 72 , secoml maxilla of female; fig. 73, Furea of female; fig. 74, First swimming leg of female; fig. 7.5, Tip of same enlarged to show the divided chaws; figs. 76-is, Second, third, and fourth swimming legs of female.
Plate VII. ('aligus rapor Milne-Elwards. Fig. 79, Dorsal view of alult female; fig. 80, Dorsal view of adult male; fig. 81, Dorsal view of young female, showing fitth legs at the posterior corners of the genital segment; fig. 82 , Seeond antema of female; fig. 83, Second maxilla; fig. 84, Furea; figs. 85-8s, First, second, third, and fourth swimming legs of female; fig. 89, Ventral surface of genital segment, showing the rement glamds.
Plate V11I. Calign, mutuhilis, new speries. Fig. 90, Dorsal view of female; fig. 91, Dorsat view of male; fig. 92, Second antenna; figs. 93 and 94, First and second maxille; fig. 95, Furca; figs. 96 and 97, First and second
Proc. N. Ml. vol. xxviii- $04-43$
maxillipets; figs. 98, $100-102$, First, seeomd, third, and fonth swimming legs; tig. 99, One of the plomose setar from the fosterior border of the terminal joint of the first legs. All the appendages are from the femmale.
Plate IX. ('uligus ulimmos, new species. Figr. 10:s, Dorsal view of female; tig. 104, Second :mtenna; fig. 105, seconl maxilla; fig. 106, Furca; fig. 107, Second maxilliperl; fig. 108, Firet swimming leg; fig. 109, Terminal "law of same entarged toshow its serrated border; figs. 110, 111, Thimd and fonrth swimming legs.
Plate X. ('uligus rurtus Müller. Fig. 11:2, Dorsal view of male; fig. 113, Dorsal view of fomale; fig. 114 , Very foung (halimms, the third thorax segment not fully fused with the heal; firg. 115, Fully developed mate Chalimus; fig. 116 , First maxilliper ; tig. 117, Fecoml maxilliped; tig. 11 s , Fince; fig. 119, fecond swimming lag; fig. 120, First swimming leg; figs. 121, 122, Thirl and fourtl swimming legs; fig. 123, Second antemma of male; fig. 124 , seromd maxilliperl of mate.
Plate XI. C'aligus chelifor, new speetus. Fig. 12.5, Dorral view of female without egge strings; tig. 126, Dorsal view of fomalo with exg strimgs, showing differente in shape of genital segnent; tig. 127 , Secomd antemna and first maxilla; fis. 128, scoond maxilla, shmwing rurlmentary emolo-

 1:3:3, Terminal joint of the same, enlarged; fig. 134, Fourth swinming lex.
Plate XII. ('aligus belones Kroiyer and Culigns lutifoons, new species. Fig. 135, Culigns: lofomes, dorsal view of female; tig. 13th, Second antemad; fig. 1:37, First and second maxilla, and furcat ligs. 138 and 139, Third and fourth swimming legs; fig. 140, Galigus lutifroms, dorsal view of female; fig. $1 \not 11$, Secomd antemma; fig. 142, Second maxilla; fig. 143 , Second maxilliperl; fig. 144, Fura; fig. 145, First swimming les; fig. 146, Terminal joint of same enlarged; figs. 147-149, Second, thind, and fourth swimming legs.
Plate XIII. (aligns bomilo, new speciers, and ('uligns pelamydis Kröyer. Fig. 150, ('uligns bonito, dorsal view of female with egg strings; fig. 151, chorsal view of female without egos strings, drawn by Richard Rathban; tig. 152,]omsal view of male, Jrawn hy Richard Rathbon; fig. 15is, Posterior pht of young femak, showing the abdomen segments of about erpal length; fig. 15t, ('uligus pelamydis, dorsal view of female; fig. 155, Second antema; fig. 15th, First and veroml maxillit; fig. 157, Second maxilliped; fig. 158, Furea; figs. 159-161, Second, third, and fourth swimming legs.
Plate XIV. Caligus pooductus Dana and ('aligus isomy.r Steenstrup and Lütken. Fig. 161 a, First swimming leg of Caligns pelamyrlis; fig, 162, Culigns productus, dorsal view of female; fig. 163 , Second antemat; fig. 164 , Second maxilla; fig. Itis, Fimca; fig. 166, Second maxilliped; figs. 167-170, First, second, third, and fourth swimming legs; fig. 171, Culigus isonyx, dorsal view of female, after Steenstrup and Lütken.
Plate XV. North American species of Culigus not in the National Museum collection. Fig. 172, f. balistup, Steenstruy and Lütken, dorsal view of female; fig. 17:3, inlem, Donsal view of male; fig. 174, Furea; fig. 175, seeond maxilliperl; figs. 176, 177, Third and fourth swimming legs; fig. 178 , ($:$ thymmi Dana, ventral view of male; fig. 179, Dorsal view of genital segment and alndomen of female; fig. 180, 1: hsmulonis Kröyer, dorsal view of female; fig. 181, idem, Dorsal view of male;
fig. 18: Furca; fig. 18:', First swimming leg, showing alnemer of phmose retre on the terminal joint; fig. 18t, (isem! 4 , seeond maxilla; fig. 185, Furat fig. 18t, Fourth swimming leg. The figures on this plate are all taken from the respective anthors named.
Plate XVI. (abligndes megrecopholus, new species. Fig. $18 \dot{\bar{r}}$, Dorsal view of fomale; fig. I8s, Seennd antenna; fig. 1s!1, Serond maxilla; fig. 190, Aceessory spine om either side of the month tube; fig. 1!11, Furea; fig. 192, second maxilliperl; tigs. 193-195, First, second, and fourth swimming legs.
 view of sume female; fig. liss, Serond antenna; fig. 199, Month tube and recond maxillat; fig. 200, First maxilljped; fig. 201, hecomd maxilliped; figs. $20-205$, First, secomd, thind, and fourth swimming legs.

 fig. 209, Furca; figs, 2l0, 2ll, First and second swimming legs; fig. 212, L. thompsomi Baird, dorsal view of female; fig. :21:', Second
 maxilliperl; firs. $217-219$, First, serome, and fourth swimming legs.
 These two figures are under the same magnification as figs. :2It and 215. Fig. 2e:2, L. Irmgipes, second maxilla.

Ilate XIS. Lemophtheirns mondmmmii Milne-Edwards. Fis. 2es, Dorsal view of female, drawn by lmertom; tig. 22. 4 , lorsal view of mak; tig. :2.25,
 fig. 2.s. Secomi maxilliped; fig. $2 \because 9$, Furca; figs. 230-2 $2: 3$, First, secomd, thiml, and fourth swimming legs.
Plate AX. Lepeophtheirus hippoglessi Kröser. Fig. 23t, Dorsal view of female; fis. 235,1 orsal view of male; fig. 236 , Second antenna; fin. 237, Second maxilla; fig. 238, Serond maxilliped; fig. 23:4, Furea; fige. 240-243, First, second, third, and fourth swimming legs.
Plate NXI. Leprophthrims celmerdsi, new species. Fig. att, Dorsal view ol female; fig. 245 , Dorsal view of male; fig. 246 , Serond antenna of female; fig. 247, Teminal elaw of secoml intema of male; tig. 248, herond maxilla of female; fig. 249, second maxilla of male with arcessory chitin ridge; fig. 250 , Furea; fig. 251 , Second maxilliped of female; figs. 25 ± -255, First, second, third, and fourth swimming logs; fig. 25 5 , Ventral view of genital segment of female, showing c. If cement gland; o. oviduct; s. spermatophores; s. s. semen receptacles; ru. vagina; fig. 257, Newly hatched namplins, the pigment spots a deep yellowish purple.
Plate XXII. Lepeophtheirus. Fig. 258, L. edwandsi, dorsal view of chalimus, half developed; tig. 259, L. dissimulutus, new speries, dorsal view of male; fig. 260 , Dorsal view of female; fig. 261, Serond antemat of female; fig. $26: 3$, Seond antemat of male, showing branches; fig. 26in, First maxilla; fig. 264 , Second maxilla of (ialapagos specimen; fig. थlin, The same, Bermuda specimen; fig. 266, Furea of (talapagos nyerimen; tisr. 267, The same, Bermuda specimen; fig. 2fs, scomd maxilliped; figs, 2fo-
 view of genital segment and almomen of Bermudarnerimen; fig. 27-7. The sathe, (ralapages specimen.
Plate XI11I. Leprophtheirus purvimtris, new speries, and L. hifuratus, new specjes. Fig. 275, L. prorirentrie, dorsal view of female; fig. 276, Horsal view of male; fig, 277, Second antenna, with accessory spine; fig. 278,

Second maxilla; fig. 2T9, Fura; fig. 280, serond maxilliped; figs. 281-2st, First, secom, third, and fourth swimming legs; fig. 285, 1. lifincoltus, lorsal view of female; fig. 286, Second antenna with accessory phine; thg. 2st, First maxilla; fig. 2s8, Setond maxilla; fig. 2s9, secomel maxilliped; fig. e99, Fura; figs. 291-293, First, seeond, and fourth swimming legs, with one of the thothed and ribled plates at the base of the spines on the fourth legs.
Plate NXIV. Lepmotherirus sulmonis Kröyer. Fig. 294, Inorsal view of female; hig. 295 , Dorsal view of male; fig. 296, Seeom antenna; tig. 297, First maxilla; lig. 295, Furea; tig. 249, Secon] maxilliped; fig. 300, First maxilliperd; figs. 301-303, First, second, and fourth swimming legs.
 of femate; lig. 305, Nolemen of the same after treatment with aretic acid; fig. BOH, Fewond antemna; fig. 307, second maxilla; fig. 30s, Fecond maxilliged; fig. 309, Mandible; fig. :310, Fourth swimming lex. Alf the figures atter (iissler. Fis. 311, L. cossthmi Kröer, genital segment and abdomen of female; fig. 32 , Fourth swimming leg; fig. 31\%, Thirl swimming leg. All the figure from Kroyer, and the mly onew over jublished. Fig. 31t, L. robustus Kroyer, tirst swinming legof male; lig. :3n, Fura. Both figures from Kroyer, and the omly ones ever publishoci. Fig. 316, Amurtes heckelii Kröyer, ventral riew of female; fig. 317, Secom antema; fig. 318, Second maxilla, fig. 319, teeond maxilliped; fig. :320, Furea; fig. 321, Fourth swimming log. All the figures from Kröger.
Plate XIXII. (chligus terse, new species. Fig. 322, Dorsal viow of female; fig. 323, Doral view of male; lig. 32t, hecond antema and first maxilla; fig. 325 , second maxilla; figs. 8264, , 227 , First and second maxillipeds; fig. 32s, Furea; tigs. 329-332. First, semond, third, and fourth swimming legs.
Plate XXVII. Caligus montontomti Lairt. Fig. 33: Dorsal view of female; fig. 3:3, Dorsal view of male; fig. 33-5, Second antema; fig. 336, First maxilla; fig. :337, Second maxilla and mouth tube; fig. 33s, Furea; fig. 33: Feromd maxillipecl; figs. :3t0-343, First, second, third, and fouth swimming legs; fig. ist, Genital regment and abdomen of male, ventral view.
1'late XXVIll. Leqwophthrirus imominutus, new species, and L. chilensis, new species. Fig. 3tis, L. imnmimutns, dorsal view of female; fig. 3\&6, secont maxilla; fig. 347, Fecond antema; fig. 348, Second maxilliped; figs.
 L. chilensis, dorsal view of femake; fig. 3nt, Dorsal view of male; fig.
 illa; lig. 35s, Furea; fig. 359, Second maxillipel; figs. 360-363, First, reornd, third, and fomrth swimming legs; fig. B6t, Dorsal view of genital segment and abomen of a young female, showing filth legs.
l'late NXIX. Homointes pulliutn, new genns and new species. Fig. 365, Dorsal riew of female; fig. 366 , Dorsal view of male; fig. 367, Seroml antema, lig. 369, Mandible; ligs. 370, 371, First and second maxiliipeds; fig. 37^{2}, Furea; figs, 373-376, First, secom, third, and fourth swimming legs; fig. 37, Dorsal view of genital segment ant abdomen of make, showing donal plate grown down over the fith and sixth legs; tig. 3is, borval viow of genital regment of young femaie, showing that the dorsal phate is really made up of two plates which start on either side at the baw of the segment and atterwark fine along the mid-line; fig. 379, Ventral view of genital segment of male, showing the fifth and sixth legs.

The Male and Female of Caligus rufimaculatus.

The Male and Female of Caligus schistonyx.
For explanation of plate see page 669.

The Male and Female of Caligus rapax.
For explanation of plate see page 669.

The Male and Female of Caligus mutabilis.
For explanation of plate see pages 669, 670.

The Male, female, and Chalimus of Caligus curtus.
For explanation of plate see page 670.

The Female of Caligus chelifer.
For explanation of plate see page 670.

The Females of Caligus belones and Caligus latifrons.
For explanation of plate see page 670.

Cal'gus bonito and Caligus pelamydis.

Caligus productus and Caligus isonyx.
For explanation of plate see page 670.

Caligus Species from the West Indies.
For explanation of plate see pages 670, 671.

The Female of Caligodes megacephalus.
For explanation of plate see page 671.

The Female of echetus typicus.
For explanation of plate see page 671.

LEPEOPHTHEIRUS LONGIPES AND LEPEOPHTHEIRUS THOMPSONI.
For explanation of plate see page 671.

The Male and Female of Lepeophtheirus nordmannit.

The Male and Female of Lepeophtheirus hippoglossi.
For explanation of plate see page 671.

The Male, female, and Nauplius of Lepeophtheirus edwardsi.
For explanation of plate see page 671.

The Male and Female of Lepeophtheirus dissimulatus.
FOR EXPLANATION OF PLATE SEE PAGE 671.

LEPEOPHTHEIRUS PARVIVENTRIS AND LEPEOPHTHEIRUS BIFURCATUS.
FOR EXPLANATION OF PLATE SEE FAGES $671,672$.

The Male and Female of Lepeophtheirus salmonis.
For explanation of plate see page 672.

Lepeophtheirus Species and Anuretes heckelil.

FOR EXPLANATION OF PLATE SEE PAGE 672

The Male and Female of Caligus terms.
For explanation of plate see page 672.

For explanation of plate see page 672.

LEPEOPHTHEIRUS INNOMINATUS AND LEPEOPHTHEIRUS CHILENSIS.
FOR EXPLANATION OF PLATE SEE PAGE 672

The Male and Female of Homolotes palliata.
For explanation of plate see page 672.

[^0]: Proc. N. M. vol. xxviii-04-_

[^1]: "This is Bascett-smith's spelling; scott changes it to seombri.

[^2]: "He has used the term "rentris" here to express a portion of the thorax; it is the genital segment which is rotund and not the abdomen.

