GRUNDZÜGE

DER

ZOOLOGIE.

ZUM WISSENSCHAFTLICHEN GEBRAUCHE

VON

DR. CARL CLAUS.

O. Ö PROFESSOR DER ZOOLOGIE UND VERGL. ANATOMIE; VORSTAND DES ZOOLOGISCHEN VERGL. ANATOMISCHEN INSTITUTS AN DER UNIVERSITÄT WIEN. DIRECTOR DER ZOOLOGISCHEN STATION IN TRIEST.

VIERTE

DURCHAUS UMGEARBEITETE UND VERBESSERTE AUFLAGE.

ERSTER BAND.

MARBURG.

N. G. ELWERT'S CHE VERLAGSBUCHHANDLUNG.

Allgemeiner Theil.

Seite	e Seite
Organische und anorganische Natur-	Fortpflanzungsorgane 43
körper	Urzeugung 43
Thier und Pflanze 6	Monogene Fortpflanzung 44
Die Organisation und Entwicklung des	Geschlechtliche Fortpflanzung 45
Thieres	Parthenogenese 47
Individuum. Organ. Stock 12	Entwicklung 49
Zelle und Zellengewebe 15	
Zellen und Zellenaggregate 17	Keimblätterlehre 53
Die Gewebe der Bindesubstanz 18	Gastraeatheorie 54
Muskelgewebe 21	Directe Entwicklung und Metamorphose 59
Nervengewebe	Generationswechsel, Polymorphismus
Grössenzunahme und fortschreitende	und Heterogonie 61
Organisirung, Arbeitstheilung und	Geschichtlicher Ueberblick 65
Vervollkommnung 24	Linnés System 69
Correlation u. Verbindung der Organe 26	J 1
Die zusammengesetzten Organe nach	Gegenwärtige Eintheilung 75
Bau und Verrichtung 28	Bedeutung des Systemes 80
Verdauungsapparat 28	Definition der Art 81
Speicheldrüsen, Leber, Pancreas . 30	Varietät und Rasse 82
Herz und Kreislauf 31	Die Ansichten von Lamarck u. Geoffroy
Lymphgefässe 31	Saint-Hilaire 85
Athmungsorgane 31	Die Descendenzlehre, gestützt auf das
Kiemen, Kiementracheen 32	Princip der natürlichen Auswahl
Athembewegungen 33	(Darwinismus) 87
Wärmeproduction 34	Einwürfe gegen die Selectionstheorie 93
Harnorgane 35	Wahrscheinlichkeitsbeweis zu Gunsten
Animale Organe 36	der Descendenzlehre aus den Er-
Skeletbildungen 36	gebnissen der Morphologie 103
Nervensystem 37	
Sinnesorgane 38	
Psychisches Leben und Instinct 42	Mimicry

Rudimentäre Organe

Unvollständigkeit der geologischen

Seite

Seite

. 109

schichte	Uebergangsformen zwischen verwandten Arten			
Specie	eller Theil.			
I. Protozoa	64 III. Echinodermata 305			
Schizomyceten 15	1. Crinoidea 327			
Myxomyceten	m 1.4			
Flagellaten	4 1 1 1			
Noctilucen	0 0 1:1			
Catallakten 16	0 D1 1 1			
Labyrinthuleen 16	4 4 4 4 2 2			
Gregarinen	04/1			
	Ophiuridea 348			
1. Rhizopoda 16 Foraminifera 16	1 5 Wahin 01 d 00 342			
Heliozoa	$_{73}$ Regularia 358			
Radiolaria	₇₅ Clypeastroidea 358			
	Spatangoidea 36			
2 1	6. Holothuriolaea			
77 1	Pedata			
	95 Apoda			
	IV. Vermes			
and postations of the same	99 1. Plathelminthes 38			
	01 Cestodes			
Dicyemidae 20	Trematodes 39			
II. Coelenterata 20	02 Turbellaria 40			
	Nemertini 41			
	22 2. Nemathelminthes 420			
D. Ollia Willia Coolon College State	24 Nematodes 42			
	43 Acanthocephali 43			
	48 3. Rotatoria			
11) al olace v v v v v	66 4. Gephyrei 449			
Acalephae 2	74 5. Annelides 45			
1100010 11000	94 Hirudinei 458			
VI COLLO PAROLEO V				

Inhaltsverzeichniss.

			8	Seite	1	Seite
Chaetopodes .				465	Scorpionida	669
Oligochaeta				473	Pseudoscorpionida	673
Polychaeta .				485	Solifuga	674
6. Enteropneusta				506	3. Onychophora	675
					4. Myriopoda	676
. Arthropoda .			•	509	Chilognatha	679
1. Crustacea .				515	Chilopoda	682
a. Entomostraca				520	5. Hexapoda = Insecta	683
Phyllopoda .				520	Orthoptera	719
Ostracoda .				536	Thysanura	722
Copepoda .				543	Orthoptera genuina	723
Cirripedia .				561	Orthoptera pseudoneuroptera	729
b. Malacostraca				571	Neuroptera	735
Leptostraca				573	Planipennia	736
Arthrostraca				576	Trichoptera	738
Amphipoda				578	Strepsiptera	739
Isopoda .				588	Rhychota	741
Thoracostraca				600	Aptera	742
Cumacea .				605	Phythophthires	745
Stomatopoda				607	Cicadaria = Homoptera .	749
Podophthalmata	b			611	Hemiptera	752
c. Gigantostraca				638	Diptera	756
2. Arachnoidea				642	Brachycera	759
Linguatulida .				645	Nemocera	766
Acarina				647	Aphaniptera	768
Tardigrada .				656	Lepidoptera	768
Araneida				657	Coleoptera	780
Phalangida .				666	Hymenoptera	803
n 11 1 1				668		

4. Fam. Cypridae. Schalen leicht und zart, die vordern Antennen meist 7gliedrig und mit langen Borsten besetzt, die des zweiten Paares einfach beinförmig, meist 6gliedrig, mit knieförmigem Gelenk und an der Spitze mit mehreren Klammerborsten bewaffnet. Augen meist eng zusammengedrängt und verschmolzen. Mandibeln mit kräftig bezahntem Kautheil und mässig entwickeltem 4 gliedrigen Taster. Die Maxillen mit 3 fingerförmigen Laden, einem 2gliedrigen Taster und grosser borstenrandiger Platte. Die Maxillen des zweiten Paares (Kieferfüsse) tragen einen kurzen Taster, der beim Männchen meist beinförmig wird und mit einem Greifhaken endet. Zwei Beinpaare, von denen das hintere schwächere Paar aufwärts nach dem Rücken umgebogen ist. Furcalglieder sehr schmal und langgestreckt, an der Spitze mit Hakenborsten. Hoden und Ovarien zwischen die Schalenblätter tretend. Männlicher Geschlechtsapparat fast durchweg mit Schleimdrüse. Grossentbeils Süsswasserbewohner.

Cypris O. Fr. Müll. Die Antennen des ersten Paares mit langen Borsten besetzt. Die Kieferfüsse mit kurzem gestreckt conischen Taster und kleinem sog. Branchialanhang. Ein Bündel von Borsten am zweiten Gliede der untern Antennen. C. fusca Str. C. pubera O. Fr. Müll. C. fuscata Jur. u. a. A. Die Untergattung Cypria Zenk. unterscheidet sich vornehmlich durch schlankere Gliedmassen und die viel grössere Länge des Borstenbündels der hintern Antenne. C. punctata Jur. C. vidua O. Fr. Müll. C. ovum Jur. u. a., sämmtlich in den süssen Gewässern Europas verbreitet. Generisch kaum verschieden sind Cypridopsis Brd. und Paracypris G. O. Sars. Notodromus Lillj. (Cyprois Zenk.). Die Kieferfüsse ohne sogenannten Branchialauhang. Am zweiten Gliede der hintern Antenne sitzen sehr lange Borsten der Innenseite auf. Die beiden Augen gesondert. Die beiden Furcalglieder des Weibchens verschmolzen. N. monachus O. Fr. Müll. Candona Baird. Die untern Antennen ohne Borstenbüschel, die Kicferfüsse ohne sog. Branchialanhang. Auge einfach. Leben mehr kriechend am Boden der Gewässer. C. candida O. Fr. Müll. C. reptans Baird. Pontocypris G. O. Sars. Schalenoberfläche dicht behaart. Kieferfüsse mit beinähnlichem 3gliedrigen Taster, aber ohne sog. Branchialanhang. Vordere Antennen 7gliedrig, langgestreckt, mit langen Borsten besetzt. Marin. P. serrulata G. O. Sars, Norwegen.

3. Ordnung. Copepoda 1), Copepoden.

Entomostraken von gestreckter, meist wohlgegliederter Körperform, ohne schalenförmige Hautduplicatur, mit zwei Antennenpaaren, einem Paare von Mandibeln und von Maxillen, einem Doppelpaar von Kieferfüssen, mit 4 bis 5 Paaren zweiästiger Ruderbeine und 5gliedrigem gliedmassenlosen Abdomen.

Eine äusserst vielgestaltige Gruppe, deren freilebende Formen sich durch eine bestimmte Leibesgliederung und constante Zahl von Gliedmassenpaaren auszeichnen. Dagegen entfernen sich die zahlreichen parasitischen Formen in einer Reihe von Abstufungen von der Gestaltung jener und erhalten schliesslich eine so veränderte Körpergestalt, dass sie ohne Kenntniss der Entwicklung und der Eigenthümlichkeiten ihres Baues eher für Schmarotzerwürmer als für

¹⁾ O. F. Müller, Entomostraca seu Insecta testacea, quae in aquis Daniae et Norvegiae reperit, descripsit. Lipsiae. 1785. Jurine, Histoire des Monocles. Genève. 1820. W. Baird, The natural history of the British Entomostraca. London. 1850. W. Lilljeborg, Crustacea ex ordinibus tribus: Cladocera, Ostracoda et Copepoda, in Scania occurrentibus. Lund. 1853. W. Zenker, System der Crustacean. Archiv für Naturg. 1854. C. Claus, Zur Anatomie und Entwicklungsgeschichte der Copepoden. Archiv für Naturg. 1858. Derselbe, Zur Morphologie der Copepoden. Würzb. naturw. Zeitschr. 1860.

Arthropoden gehalten werden könnten. Indessen erhalten sich meist auch hier die characteristischen Ruderbeine, wenn freilich oft in geringer Zahl, als rudimentäre oder umgestaltete Anhänge. Beim Mangel der letztern aber gibt die Entwicklungsgeschichte sichern Aufschluss über die Copepodennatur.

Der Kopf erscheint in der Regel mit dem ersten Brustsegment verschmolzen und trägt dann als Cephalothorax zwei Paare von Antennen, zwei Mandibeln, ebensoviel Maxillen, vier Maxillarfüsse, welche übrigens als äussere und innere Aeste einem einzigen Gliedmassenpaare angehören, ferner das erste nicht selten abweichend gestaltete Paar von Ruderfüssen. Es folgen dann vier freie Thoracalsegmente mit ebensoviel Ruderfusspaaren, von denen das letzte indess häufig verkümmert, im männlichen Geschlechte auch oft als Begattungsorgan umgestaltet ist. Uebrigens kann sowohl das fünfte Fusspaar als das entsprechende Thoracalsegment ganz hinwegfallen. Das Abdomen besteht ebenso wie die Brust aus 5 Segmenten, entbehrt aber aller Gliedmassen und endet mit zwei gablig auseinanderstehenden Gliedern (Furca), an deren Spitze mehrere lange Schwanzborsten aufsitzen. Am weiblichen Körper vereinigen sich meist die beiden ersten Abdominalsegmente zur Herstellung eines Genital-Doppelsegmentes mit den Geschlechtsöffnungen. Sehr häufig erfährt nun auch das Abdomen vornehmlich bei den parasitischen Formen eine bedeutende Reduction.

Die vordern Antennen sind langgestreckt und vielgliedrig, sie dienen als Träger von Sinnesorganen besonders zum Tasten und Spüren, bei den frei umhersehwimmenden Formen auch als Ruder und im männlichen Geschlechte als Greifarme zum Fangen und Festhalten des Weibehens während der Begattung. Die untern Antennen bleiben durchweg kürzer und tragen nicht selten doppelte Aeste; wohl überall dienen sie neben der Unterstützung der Locomotion zum Anlegen oder Anklammern an festen Gegenständen und sind mit Klammerborsten und bei den parasitischen Formen oft mit kräftigen Klammerhaken bewaffnet. Von Mundwerkzeugen liegen unterhalb der Oberlippe zwei bezähnte, meist tastertragende Mandibeln, welche bei den freilebenden Copepoden als Kauorgane fungiren, bei den parasitischen aber in der Regel zu spitzen stiletförmigen Stäben sich umbilden und zum Steehen benutzt werden. Im letzteren Falle rücken dieselben häufig in eine durch Vereinigung der Oberlippe und Unterlippe gebildete Saugröhre, können jedoch auch bei Reduction der Oberlippe als sichelförmige Platten eine freie Lage bewahren. Die zwei auf die Mandibeln folgenden Unterkiefer sind durchweg schwächere Kauplatten und bei den Schmarotzerkrebsen nicht selten zu kleinen tasterartigen Höckern oder auch auch zu Stechborsten (Argulus) verkümmert. Dagegen zeigen sich die Maxillarfüsse weit gestreckter und werden sowohl zum Ergreifen der Nahrung als vornehmlich bei den Schmarotzerkrebsen zum Anklammern des Körpers benutzt.

Die Ruderbeine der Brust bestehen fast überall aus einem zweigliedrigen Basalabschnitt und aus zwei dreigliedrigen, mit langen Borsten besetzten Ruderästen, welche nach Form und Bedeutung breiten Ruderplatten vergleichbar erscheinen. Bei den Arguliden gewinnen die Aeste eine bedeutende Streckung und nähern sich durch ihre reichere Gliederung den Cirripedienbeinen, den sog. Rankenfüssen.

Die innere Organisation bietet den Verhältnissen des äussern Körperbaues und der Lebensweise entsprechend mannichfache Abstufungen. Ueberall findet sich ein Gehirn mit austretenden Sinnesnerven nebst einem Bauchstrang, der entweder während seines Verlaufes zu einer Anzahl von Ganglien anschwillt oder sich zu einer gemeinsamen untern Schlundganglienmasse concentrirt. Von Sinnesorganen kommt das dreitheilige Stirnauge (Cyclopsauge) ziemlich allgemein vor und fehlt nur einigen parasitischen Copepoden im ausgebildeten Alter. Dasselbe tritt in seiner einfachsten Form als ein xförmiger dem Gehirn aufliegender Pigmentfleck auf, aus dessen Einbuchtungen jederseits eine lichtbrechende Kugel hervorragt. Dazu kommt fast regelmässig (auch bei Cyclops) noch ein dritter ventraler Pigmentbecher hinzu. Auf einer höhern Entwicklungsstufe erlangt das Auge eine grössere Selbstständigkeit, erhält vom Gehirn aus einen ansehnlichen Sehnerven und wird durch besondere Augenmuskeln beweglich, während sich zugleich die Zahl seiner lichtbrechenden Kugeln vergrössert und Linsen des Hautpanzers als Cornealinsen hinzukommen. Daneben aber treten 2 seitliche, den paarigen Seitenaugen der Malakostraken gleichwerthige Augen auf, zwischen welchen Reste des unpaaren Auges zurückbleiben (Corycaeiden). Bei den Arguliden gewinnen jene eine bedeutende Grösse und enthalten wie die grossen Phyllopodenaugen eine grosse Zahl von Krystallkegeln. Ausser dem Tastsinn, dessen Sitz ganz besonders in den Borsten der vordern Antennen, aber auch an manchen andern Stellen der Haut zu suchen ist, kommen Riechfäden als zarte Anhänge der vordern Antennen, vornehmlich im männlichen Geschlechte, in weiter Verbreitung vor.

Der Verdauungscanal zerfällt in eine kurze und enge Speiseröhre, einen weiten oft mit zwei einfachen oder vielfach verästelten (Arguliden) Blindschläuchen beginnenden Magendarm und einem Enddarm, welcher sich am Hinterleibsende auf der Rückenseite des letzten Abdominalsegmentes öffnet. Häufig scheint die Darmwand selbst zugleich die Function der Harnabsonderung zu übernehmen, indessen findet sich daneben noch ein der Schalendrüse der Phyllopoden gleichwerthiger paariger Drüsenschlauch im Kopfbruststück zu den Seiten der Kieferfüsse, der wahrscheinlich ein ähnliches Harnprodukt ausscheidet. Auch treten im Larvenalter die später schwindenden Anlagen der schleifenförmigen gar oft mit der Schalendrüse verwechselten Antennendrüse auf. Kiemen fehlen überall und die gesammte Hautoberfläche besorgt die Respiration. Bei den Arguliden scheint das zu einer Platte umgestaltete Abdomen zur Athmungsfunction besonders tauglich (Branchiura). Auch rückt hier das Herz in das Endsegment des Thorax. Circulationsorgane können vollständig ausfallen und durch regelmässige Schwingungen des Darmcanals (Cyclops, Achtheres) ersetzt sein. In andern Fällen finden sich schwingende Platten, welche die Blutströmung in bestimmten Bahnen der Leibeshöhle unterhalten (Caligus), oder es tritt im Vordertheil der Brust oberhalb des Darmes ein kurzes sackförmiges Herz auf (Calaniden), welches sich häufig in eine Kopfarterie fortsetzt (Calanella).

Die Copepoden sind durchweg getrennten Geschlechts. Die Geschlechtsorgane liegen grossentheils in den Seitenhälften des Cephalothorax sowie der Brustsegmente. Dieselben bestehen aus einer unpaaren oder paarigen

Geschlechtsdrüse mit entsprechenden Ausführungsgängen, die in ihrem Verlaufe oder am Endabschnitt mit accessorischen Drüsen in Verbindung stehen und rechts und links am Basalgliede des Hinterleibes ausmünden. Fast regelmässig machen sich in der Form und Bildung verschiedener Körpertheile Geschlechtsunterschiede geltend, welche bei einigen Schmarotzerkrebsen (Chondracanthiden, Lernaeopoden) zu einem höchst auffallenden Dimorphismus führen. Männchen sind durchweg kleiner und behender, ihre vordern Antennen sowie die Füsse des letzten Paares, seltener die hintern Antennen und die Maxillarfüsse sind zu accessorischen Copulationsorganen umgestaltet und werden zum Fangen und Festhalten des Weibehens, wohl auch zum Ankleben der Spermatophoren verwendet. Die Spermatophoren bilden sich innerhalb der Samenleiter mittelst eines von den Wandungen derselben abgesonderten Secretes, welches in der Umgebung der Samenmasse zu einer festen Hülle erstarrt. Die grössern Weibchen bewegen sich oft weit schwerfälliger und tragen die Eier seltener in Bruträumen (Notodelphyiden), in der Regel in Säckchen und Schläuchen, am Abdomen mit sich herum. Im letztern Falle besitzen sie häufig eine besondere Drüse (sog. Kittdrüse), deren Absonderungsprodukt zugleich mit den Eiern austritt und die erstarrende Hülle der Eiersäckehen liefert. Während der Begattung, die beim Ausfall wirklicher Begattungsorgane überall nur eine äussere Vereinigung beider Geschlechter bleibt, klebt das Männchen dem Weibchen eine oder mehrere Spermatophoren am Genitalsegment und zwar an bestimmten Oeffnungen fest, durch welche die Samenfäden in ein besonderes mit den Oviducten verbundenes Recaptulum seminis übertreten und die Eier entweder im Innern des mütterlichen Körpers oder während ihres Austritts in die sich bildenden Eiersäckehen befruchten. Die Eier erleiden in den Brutsäcken eine totale, bei zahlreichen parasitischen Formen eine partielle Furchung. Im letztern Falle kann der Embryo an der Bauchseite des Blastoderms eine Verdickung (Primitivstreifen) zeigen, wie dies bei den Embryonen der Lernaeopoden, Caliginen und Lernacen der Fall ist, welche bereits eine grössere Zahl (7) von Gliedmassen zur Anlage bringen.

Die Entwicklung beruht auf einer complicirten und bei vielen Schmarotzerkrebsen rückschreitenden Metamorphose. Die Larven schlüpfen als sog. Naupliusformen von ovaler Körpergestalt, mit unpaarem Stirnauge und drei Paaren von Gliedmassen in der Umgebung des Mundes aus. Dieselben unterscheiden sich von den entsprechenden Naupliusformen der Cirripedien vornehmlich durch den Mangel seitlicher Stirnhörner und des langen Rüssels. Kauwerkzeuge fehlen vollständig, indessen dienen einige nach dem Munde gerichtete Borsten an dem zweiten und dritten Gliedmassenpaare zur Einführung kleiner Nahrungskörper in die grosse, in der Regel von einer grossen Oberlippe kappenartig überdeckte Mundöffnung. Die hintere gliedmassenlose Leibespartie trägt am hintern Pole zwei Endborsten zu den Seiten des Afters, und die ganze vordere Hauptmasse des Körpers entspricht den drei vordern Kopfsegmenten, da sich später die drei Gliedmassenpaare in die Antennen und Mandibeln verwandeln. Die Veränderungen, welche die jungen Larven mit dem weitern Wachsthum erleiden, knüpfen an mehrfache auf einander folgende Abstreifungen der Haut und beruhen im Wesentlichen auf einer Streckung des

Leibes und auf dem Hervorsprossen neuer Gliedmassen an den neugebildeten Segmenten, welche sich wie die der Annelidenlarven der Reihe nach aus dem terminalen Leibesabschnitt sondern. Schon das nachfolgende Larvenstadium weist ein viertes Extremitätenpaar, die spätern Maxillen auf; dann treten mit der nächstfolgenden Häutung auf einmal drei neue Gliedmassenpaare hervor, von denen die ersten den Kieferfüssen entsprechen, während die zwei letzten Paare die vordern Ruderfüsse in ihrer ersten Anlage vorstellen. Auf diesem Stadium (Metanauplius) erscheint die Larve noch immer Nauplius-ähnlich und erst nach einer nochmaligen Häutung geht sie in die erste Cyclopsähnliche Form über. Dieselbe gleicht bereits im Bau der Fühler und Mundtheile dem ausgewachsenen Thier, wenngleich die Zahl der Gliedmassen und Leibesringe eine noch viel geringere ist. Die beiden letzten Gliedmassenpaare stellen bereits kurze zweiästige Ruderfüsse (noch mit eingliedrigen Aesten) vor, zu denen noch die Anlagen des dritten und vierten Ruderfusses in Form mit Borsten besetzter Wülste hinzugekommen sind. Der Leib besteht aus dem ovalen Kopfbruststück, den drei nachfolgenden Thoracalsegmenten und einem langgestreckten Endgliede, welches mit den spätern Häutungen das letzte Thoracalsegment und alle Segmente des Abdomens durch fortschreitende Gliederung erzeugt und bereits mit der gabligen Furca endet. Bei den Cyclopiden haben die hintern Fühler den Nebenast verloren, und die Mandibeln den frühern Schwimmfuss abgeworfen, während diese Anhänge bei den übrigen Familien meist mehr oder weniger verändert (der letzte als Mandibulartaster) persistiren. Uebrigens gelangen viele Formen der parasitischen Copepoden, z. B. Lernanthropus, Chondracanthus, über diese Stufe der Leibesgliederung überhaupt nicht hinaus und erhalten weder die Schwimmfüsse des dritten und vierten Paares, noch ein vom stummelförmigen Abdomen gesondertes fünftes Brustsegment; andere Schmarotzerkrebse, z. B. Achtheres, sinken sogar durch den spätern Verlust der beiden vordern Schwimmfusspaare auf eine noch tiefere Stufe der morphologischen Differenzirung zurück.

Alle freilebenden und auch die meisten parasitischen Copepoden durchlaufen nun aber noch mit den nachfolgenden Häutungen eine grössere oder geringere Reihe von Entwicklungsstadien, an welchen in continuirlicher Aufeinanderfolge die noch fehlenden Segmente und Gliedmassen (der Reihe nach von vorn nach hinten) hervortreten, und die bereits vorhandenen Extremitäten zu einer gesetzmässig fortschreitenden Gliederung gelangen. Einige Schmarotzerkrebse (Lernaeopoden, Lernaeen) überspringen allerdings die Entwicklungsreihe der Naupliusformen, indem die Larve alsbald nach ihrem Ausschlüpfen die Haut abwirft und bereits in der jüngsten Cyclopsform mit Klammerantennen und stechenden Mundwerkzeugen hervortritt. Viele durchlaufen von diesem Stadium an eine regressive Metamorphose, sie heften sich als Parasiten an ein Wohnthier an, verlieren an ihrem unförmig wachsenden Leibe die Gliederung mehr oder minder vollständig, werfen ebenso auch die Ruderfüsse ab, die freilich öfter als Stummel erhalten bleiben und können selbst des ursprünglich vorhandenen Auges verlustig gehn. Die Männchen aber bleiben oft zwergartig klein und sitzen dann häufig paarweise in der Nähe der Geschlechtsöffnung am weiblichen Körper angeklammert fest (Lernaeopoden, Chondracanthiden). In andern Fällen (Lernacen) durchläuft die festgeheftete Larve die späteren Cyclopsstadien gewissermassen als Puppenformen, aus denen die freischwimmenden Geschlechtsthiere mit vollzähliger Leibesgliederung hervorgehen. Dann tritt erst nach der Begattung an dem von Neuem festgehefteten mächtig wachsenden Weibchen die ausserordentliche Umgestaltung des zu einem unförmigen Schlauche fortwachsenden Leibes ein. Nur ausnahmsweise kann das aus dem Eie ausschlüpfende Junge bereits die Körperform und sämmtliche Gliedmassen des Geschlechtsthieres besitzen, immerhin aber noch durch einfachere und abweichende Gliedmassenformen als Larve erscheinen (Branchiura).

1. Unterordnung. Eucopepoda 1).

Copepoden mit Ruderfüssen, deren kurze Aeste einfach, 2- oder 3gliedrig sind, mit kauenden oder stechenden und saugenden Mundwerkzeugen.

Diese sehr umfangreiche Gruppe umfasst die Copepoden im engern Sinne, auf welche die bereits gegebene Darstellung des Baues und der Organisation Bezug hat. Viele leben frei, ernähren sich selbstständig sowohl von kleinern Thieren als von Theilen abgestorbener Thiere und besitzen kauende, seltener stechende Mundtheile. Einige der letztern halten sich zeitweilig in den geschützten Leibesräumen glasheller Seethiere, z. B. in Schwiminglocken von Siphonophoren und in der Athemhöhle von Salpen auf, andere leben im ausgebildeten Zustand bereits dauernd in der Athemhöhle von Ascidien und zeichnen sich oft im weiblichen Geschlechte durch unförmige Auftreibungen des Leibes aus. Die Formen mit Kauwerkzeugen beleben sowohl die mit Pflanzenwuchs erfüllten süssen Gewässer als die Binnenseen und das offene Meer, in dessen reicher Fauna ihnen eine wesentliche Rolle im Haushalt des thierischen Lebens zufällt. Schon in Landseen, in den Gebirgsseen Bayerns und im Bodensee bilden sie mit den Daphniden (Cladoceren) die Hauptnahrung geschätzter Fische, z. B. der Saiblinge und Ranken. Unter den marinen Formen sind Cetochilus finmarchicus, Temora longicornis, Anomalocera Patersonii, Tisbe furcata und Canthocamptus Strömii als Fischnahrung hervorzuheben, die beiden letztern Arten wurden im Magen schottischer Häringe gefunden (Diaptomus castor im Magen des Küstenhärings Pommerns). Cetochilus australis soll nach Roussel de Vauzème in der Südsee förmliche Bänke bilden, welche dem Wasser meilenweit eine röthliche Färbung verleihen. So begreift man, wie diese kleinen Crustaceen selbst als »Wallfischspeise« dienen.

Auch die parasitischen Copepoden, die »Schmarotzerkrebse«, beginnen mit kleinen normal gestalteten Cyclopsformen, welche durch die zuweilen selbst

¹⁾ Ausser den bereits citirten Werken von O. Fr. Müller, Jurine, Lilljeborg, Kröyer, M. Edwards vergl.

W. Baird, The natural history of the British Entomostraca. London. 1850. Dana, The Crustacea of the United States etc. Philadelphia. 1852 und 1853. S. Fischer, Beiträge zur Kenntniss der in der Umgegend von St. Petersburg sich findenden Cyclopiden. Bull. Soc. Imp. Moscou. 1851 und 1853. C. Claus, Die freilebenden Copepoden. Leipzig. 1863. Derselbe, Die Copepodenfauna von Nizza. Marburg. 1866.

vollzählige Körpergliederung und regelmässige Gestaltung der Schwimmfüsse zur freien Bewegung im Wasser nicht minder als die frei lebenden Copepoden befähigt sind und direct an die Corycaeiden anschliessen. Eine scharfe Abgrenzung von den letztern dürfte um so weniger möglich sein, als auch diese oft mit hoch entwickelten Augen versehenen freischwimmenden Formen stechende Mundwerkzeuge zur Aufnahme einer flüssigen Nahrung besitzen.

Bei den Parasiten erscheinen die hintern Antennen und die Kieferfüsse zu kräftigen Greif- und Klammerapparaten umgestaltet. Die Mandibeln sind entweder geradgestreckte Stilete und werden dann von einer besondern Saugröhre umschlossen oder liegen als spitze sichelförmig gekrümmte und an der Basis verbreiterte Stechhaken frei vor 1) der Mundöffnung. Viele Parasiten verlassen zeitweilig ihren Wohnort und schwimmen in leichten und behenden Bewegungen frei umher, viele freilich bewegen sich unbehülflich und unsicher, wenn man sie von ihrem Wohnplatz entfernt, und andere bleiben von einem bestimmten Entwicklungsstadium an überhaupt fixirt. Im letztern Falle steigert sich die Umgestaltung des Körpers zugleich mit dem fortschreitenden Wachsthum bis zur Unkenntlichkeit der ursprünglichen Form und der Copepodengestalt überhaupt; die Ruderfüsse erscheinen an dem unförmig wachsenden Körper als kleine nur schwer zu erkennende Stummel (Lernagen) oder werden theilweise (Chondracanthiden) oder vollkommen (Lernaeopoden) unterdrückt. Die vordern Antennen bleiben kleine borstenähnliche Fädchen, die Augen werden versteckt oder ganz rückgebildet, der Körper selbst verliert die Gliederung, wird wurmförmig gestreckt und aufgetrieben, wohl selbst spiralig gedreht oder unregelmässig gekrümmt und gewinnt durch weite zipfelförmige Aussackungen oder widerhakenähnliche Fortsätze und selbst ramificirte Auswüchse ein ganz abnormes Aussehn. Ueberall aber ist es nur das weibliche Geschlecht, welches derartige absonderliche, mit bedeutender Grössenzunahme verbundene Deformitäten erleidet. Das Männchen, auch wenn die morphologische Ausbildung seines Leibes eine dem Weibchen entsprechende Reduction erfährt, bewahrt sich die Symmetrie und erkennbare Gliederung und bleibt durchaus im Gebrauch seiner Sinnesfunktionen. Dagegen wird das Wachsthum des männlichen Leibes schon frühzeitig unterdrückt. Je mehr derselbe aber an Grösse hinter dem des Weibchens zurückbleibt, um so mehr treten an ihm die Greif- und Klammerfüsse an Umfang und Stärke hervor. So sinkt endlich das Männchen — und gerade in den Gruppen mit stark ausgeprägter Umgestaltung des weiblichen Körpers (Chondracanthiden, Lernacopoden) zur Zwerggestalt herab und haftet, zwar noch frei beweglich aber kaum freiwillig seinen Befestigungsort verlassend, einem Parasiten vergleichbar an dem Leibe des Weibchens. Wie bei den Cirripedien mit complemental males sind

¹⁾ Wenn man diese Parasitengattungen mit stechenden Mundtheilen ohne Saugröhre (Poecilostomata Thorell) mit Sars und Claparède in die Reihe der normalen Copepoden stellen wollte, so würde man nicht nur die Gattung Lamproglene von den Dichelestiiden abtrennen und in der letztern aufnehmen, sondern auch die so reducirten und abnorm gestalteten Chondracanthiden mit ihren Zwergmännchen in derselben Reihe unterbringen müssen.

auch hier nicht selten zwei oder mehrere Zwergmännchen an dem Körper eines einzigen Weibchens befestigt. Indessen scheint auch hier die Begattung und Befruchtung der Umgestaltung und enormen Vergrösserung des weiblichen Körpers vorauszugehn und in eine Zeit zu fallen, in welcher beide Geschlechter ihrer Grösse und Körperform nach mehr übereinstimmen. Bei den Lernaeen, deren Weibchen unter allen Schmarotzerkrebsen den höchsten Grad von Deformität erreichen, ist diese Arbeitstheilung am strengsten durchgeführt, indem der Periode des dauernden Parasitismus, welche durch das abnorme Wachsthum und die Brutproduktion des Weibchens bezeichnet ist, eine Zeit des freien Umherschwärmens beider Geschlechter zum Zwecke der Begattung und Befruchtung vorausgeht. Natürlich tritt dann überhaupt nur das Weibchen in die spätere Entwicklungsphase ein, und es erklärt sich, wesshalb man am Körper der echten Lernaeen niemals Zwergmännchen gefunden hat.

Mit der Begattung werden dem Weibchen an die Oeffnung des überaus vielgestaltigen Receptaculum's Spermatophoren angeklebt, deren Inhalt in den weiblichen Geschlechtsapparat durch die Wirkung des Wassers eingetrieben wird. Nach v. Siebold 1), dem sich Claus, Leydig u. a. anschlossen, sollten der Endabschnitt der Spermatophore einen besondern durch Wasser quellenden Austreibestoff enthalten, die nach neuern Beobachtungen einem Theile der als Austreibezellen fungirenden Zoospermien entsprechen würden²). Fast allgemein werden die Eier in Säckchen oder in langen einreihigen Schnüren abgesetzt und bis zum Ausschlüpfen der Larven vom mütterlichen Leibe getragen. Die Bereitung des die Säckchenhüllen liefernden Sekretes fällt in zahlreichen Fällen (Parasiten) einer besondern schlauchförmigen Drüse zu, welche sich am Ende eines jeden Oviductes erhebt. Bei den freilebenden Copepoden erscheint dieselbe durch den Endtheil der Oviductwand selbst vertreten, wie neuere Beobachtungen von A. Gruber 3) wahrscheinlich gemacht haben, während bisher nach dem Vorgange von Claus angenommen wurde, dass die Wand der anliegenden Receptacula diese Funktion besorge.

Die Embryonalbildung leitet sich stets durch eine totale oder partielle Dotterfurchung ein. Im letztern für die Lernaeopoden und wie es scheint für die meisten Siphonostomen gültigen Falle bleibt eine grosse fettreiche Dotterkugel als Nahrungsdotter zurück, und nur ein kleiner eiweissreicher Theil des Protoplasmas liefert durch fortgesetzte Furchung die Bildungselemente des Embryonalkörpers. Dieselben ordnen sich in der Peripherie der Dotterkugel als Keimblase an, welche durch oberflächliche Ausscheidung eine zarte subcuticulare Hülle, gewissermassen die erste Embryonalhaut, erzeugen. Indem sich dann die Keimblase durch Zellenwucherung an einer Seite vornehmlich verdickt, entsteht ein bauchständiger Keimstreifen, an dessen Seite die drei (beziehungsweise zwei) Gliedmassenpaare der Naupliusform gleichzeitig hervor-

¹⁾ C. E. v. Siebold, Beiträge zur Naturgeschichte der wirbellosen Thiere. II. Ueber das Begattungsgeschäft des Cyclops castor. Danzig. 1839.

²⁾ A. Gruber, Ueber zwei Süsswassercalaniden. Leipzig. 1878.

³⁾ A. Gruber, Beiträge zur Kenntniss der Generationsorgane der freilebenden Copepoden. Zeitschr. für wiss. Zool. Tom. XXXII. 1879.

knospen. Indessen gelangt die Naupliusform schon innerhalb der Eihüllen zur weitern Fortbildung, indem sich unter der zarten cuticularen Naupliushülle die Anlagen der vier nachfolgenden Gliedmassenpaare zeigen. Die ausschlüpfende mit grossen Augen versehene Larve streift alsbald die Naupliushülle ab, um sofort mit Ueberspringung der spätern Naupliusstadien in die Gestalt der ersten Cyclopsform mit mächtigen Kieferfüssen und stechenden Mandibeln einzutreten. Somit erfährt die Metamorphose der Lernaeopoden eine wesentliche Reduktion. In dem Zustand der jüngsten Cyclopsform suchen sich die frei schwärmenden Siphonostomenlarven einen Wohnplatz, sie legen sich an den Kiemen bestimmter Fische vor Anker, um mit der nachfolgenden Häutung, durch die Anwesenheit eines Stirnbandes unterstützt, eine festere Verbindung mit dem Organ des Trägers einzugehn. In dieser Verbindung durchlaufen sie (Caligiden, Lernaeen) gewissermassen als »Puppen« sämmtliche nachfolgende Cyclopsstadien, oder treten — falls die morphologische Ausbildung des geschlechtsreifen Thieres eine Reduktion erfährt (Lernaeopoden) - früher in die Form des Geschlechtsthieres ein. Schliesslich wird mit der letzten Häutung unter Verlust des Stirnbandes das zur Begattungsreife mit 4 Ruderfusspaaren ausgestattete und (vom Abdomen abgesehn) vollzählig gegliederte Geschlechtsthier frei. Bei den Lernaeopoden und Chondracanthiden freilich erfährt die Entwicklung eine wesentliche Reduktion, indem die morphologische Ausbildung des geschlechtsreifen Thieres auf einem frühern Stadium zurückbleibt und die beiden hintern Fusspaare überhaupt nicht mehr zur Anlage kommen, ja sogar die beiden vordern (Lernaeopoden) abgeworfen werden können. Bei den Ergasiliden endlich scheint die Entwicklung von der normalen Metamorphose des freilebenden Copepoden kaum wesentlich abzuweichen.

Die Schmarotzerkrebse leben vorzugsweise an den Kiemen und in der Rachenhöhle, auch wohl an der äussern Haut von Fischen und nähren sich vom Schleim oder auch wohl vom Blut ihrer Wirthe, mit welchem sie ihren Darmcanal füllen. Viele haften nur lose an den Geweben des Trägers, andere (Lernacopoden) haften mit dem Klauentheil ihrer verwachsenen Klammerarme in der Schleimhaut, wieder andere liegen theilweise (Lernacen) oder vollständig (Philichthys) in Schleimhautaussackungen oder dringen gar wie Haemobaphes mit dem Vorderkörper in den Aortenbulbus von Fischen ein.

1. Gnathostomata 1).

Vorwiegend freilebende Copepoden mit kauenden Mundtheilen und vollzähliger Leibesgliederung. Die Oberlippe prominirt stark, oft helmförmig vorstehend und bildet mit einer zweilappigen, unter den Mandibeln folgenden Unterlippe (Paragnathen) einen Vorraum des Mundes.

¹⁾ Ausser Baird, Lilljeborg, C. Claus l. c. vergl. G. O. Sars, Oversigt af de indenlandske Ferskvandscopepoder. Christiania. 1863. Axel Boeck, Oversigt over de ved Norges Kyster iagttagne Copepoder etc. Vidensk-Selk. Forhandl. 1864. Derselbe, Nye Slaegter og Arter af Saltvands-Copepoder. Ebendas. 1872. Brady, A Monograph of the free and semi-parasitic Copepoda of the Brit. Islands. London. 1878.

1. Fam. Cyclopidae. Vorwiegend Süsswasserbewohner mit vollzähliger Gliederung. Beide Antennen des ersten Paares beim Männchen zu Greifarmen umgebildet. Die Antennen des zweiten Paares 4gliedrig. Mandibulartaster rudimentär. Fünftes Fusspaar rudimentär, in beiden Geschlechtern gleich. Herz fehlt. Beiderlei Geschlechtsorgane paarig. Zwei Eiersäckchen.

Cyclops O. Fr. Müll. Mandibulartaster durch 2 Borsten vertreten. Maxillartaster verkümmert. Kopf mit dem ersten Thoracalsegment verschmolzen. Leben im süssen Wasser. C. coronatus Cls. (C. quadricornis var. fuscus Jur.), C. brevicornis Cls., C. tenuicornis Cls., C. serrulatus Fisch., C. canthocarpoides Fisch., sämmtlich überall in Deutschland, England etc. verbreitet. Cyclopina Cls. C. norvegica A. Boeck. Oithona Baird.

2. Fam. Harpactidae. Körper häufig mehr linear mit dickem Panzer. Beide Antennen des ersten Paares im männlichen Geschlechte zu Fangarmen umgebildet. Die Antennen des zweiten Paares meist mit Nebenast. Die Mandibeln und Maxillen mit kurzen aber zweiästigen Tastern. Der innere Kieferfuss abwärts gerückt mit Greifhaken. Das erste Fusspaar mehr oder minder modificirt. Das fünfte Fusspaar oft blattförmig. Herz fehlt. Männlicher Geschlechtsapparat meist unpaar. Meist ein Eiersäckehen.

Longipedia Cls. Erstes Fusspaar den nachfolgenden ähnlich und wie diese mit 3gliedrigen Aesten. Innerer Ast des zweiten Fusspaares sehr verlängert. Nebenast der hintern Antenne lang, 6gliedrig. L. coronata Cls., Nordsee und Mittelmeer. Hier schliesst sich Ectinosoma A. Boeck an. Euterpe Cls. Canthocamptus Westw. Beide Aeste des ersten Fusspaares 3gliedrig, wenig verschieden; der innere längere am Ende seines ersten sehr gestreckten Gliedes knieförmig gebogen mit schwachen Borsten. Unterer Maxillarfuss schmächtig. Mandibulartaster einfach, 2gliedrig. C. staphylinus Jur. (Cyclops minutus O. Fr. Müll.). C. minutus Cls. Beide im süssen Wasser sehr verbreitet. C. parvulus Cls. Marine Form, Nizza. Harpacticus M. Edw. Beide Aeste des ersten Fusspaares bilden starke Greiffüsse, der äussere Ast 3gliedrig, mit sehr langgestrecktem ersten und zweiten Gliede, fast doppelt so lang als der innere meist 2gliedrige Ast. Unterer Maxillarfuss sehr kräftig. H. chelifer O. Fr. Müll., Nordsee. H. nicaeensis Cls., Mittelmeer. Nahe verwandt sind die Gattungen Dactylopus Cls. (D. Strömii Baird) und Thalestris Cls. (Th. harpactoides Cls.).

Hier schliessen sich die *Peltidien* an, von den Harpactiden vornehmlich durch die flache, schildförmige Leibesgestalt verschieden. *Zaus* Goods. Beide Aeste des ersten Fusspaares sind Greiffüsse wie bei Harpacticus. Der fünfte Fuss sehr breit, blattförmig. Das Basalglied der untern Kieferfüsse sehr klein, die Greifhand dagegen von anschnlicher Grösse. *Z. spinosus* Cls., Nordsee. Nahe verwandt ist *Scutellidium* Cls., deren erstes Fusspaar ähnlich wie bei *Tisbe* gebildet ist. *Sc. tisboides* Cls., Nizza. *Eupelte* Cls. *E. gracilis* Cls., Nizza. *Porcellidium* Cls. *Hersilia* Phil.

3. Fam. Calanidae. Körper langgestreckt mit sehr langen vordern Antennen, von denen nur die der einen Seite im männlichen Geschlechte geniculirend ist. Die hintere Antenne zweiästig mit unfangreichem Nebenaste. Mandibulartaster 2ästig, der hintern Antenne ähnlich. Die Füsse des fünften Paares sind im männlichen Geschlecht meist zu Greiffüssen umgeformt. Herz vorhanden. Männlicher Geschlechtsapparat unpaar. Meist ein Eiersäckehen. Vorwiegend Bewohner des Meeres.

Cetochilus Rouss. de Vauz. Die vordern Antennen 25gliedrig. Das fünfte Thoracalsegment deutlich gesondert, das fünfte Fusspaar in beiden Geschlechtern ein zweiästiger,
den vorausgehenden Schwimmfüssen gleich gestalteter Ruderfuss. C. septentrionalis
Goods. (Calanus finmarchicus Gunner), Nord-Meere. Calanus Leach. Die vordern Antennen 24- bis 25gliedrig. Fünftes Thoracalsegment nicht gesondert. Fünftes Fusspaar
einästig mehrgliedrig, beim Männehen nur wenig umgebildet. C. mastigophorus Cls.,
Mittelmeer. C. Clausii Brady, Engl. Küste. Verwandte Gattungen sind Temora Baird.
T. longicornis. Candace Dana u. z. a. G.

Diaptomus Westw. Vordere Antennen 25gliedrig, die rechte des Männchens genikulirend. Fünftes Fusspaar 2ästig, der innere Ast beim Männchen borstenlos, rudimentär,

der äussere mit grossem Greifhaken. D. castor Jur. = Cyclopsina Castor M. Edw. In Deutschland und Frankreich sehr verbreitet. Süsswasserform. D. amblyodon Mrz., bei Wien. Heterocope G. O. Sars, Süsswasserform. H. robusta G. O. Sars.

- 4. Fam. Pontellidae. Calanidenähnlich. Die rechte vordere Antenne und der rechte Fuss des fünften Paares im männlichen Geschlechte Fangorgane. Ausser dem medianen Auge, welches oft in Form einer gestilten Kugel unterhalb des Schnabels vorspringt, ist ein paariges Seitenauge vorhanden. Herz vorhanden. Ein Eiersäckehen. Irenaeus Goods. (Anomalocera Templ.). Obere Augen seitlich, je mit 2 Cornealinsen und ebensoviel lichtbrechenden Körpern. Unteres Auge gestilt. Nebenast der hintern Antenne schmächtig. Endabschnitt der untern Kieferfüsse 6gliedrig. I. Patersonii Templ. = I. splendidus Goods., Ocean und Mittelmeer. Pontella Dan. (Pontia Edw.). Obere Augen unter 2 grossen zusammenstossenden Linsen in der Medianlinie verschmolzen. Unteres Auge gestilt. Nebenast der hintern Antenne mächtig entwickelt. Endabschnitt der untern Kieferfüsse 4gliedrig. P. helgolandica Cls., Helgoland. P. Bairdii Lbk., Ocean
- 5. Fam. Notodelphyidae 1). Körper mehr oder minder abnorm gestaltet. Im weiblichen Geschlecht haben meist das vierte und fünfte Thoracalsegment durch Duplicatur des Integuments einen grossen mächtig aufgetriebenen Brutbehälter (Matricalraum) erzeugt, der in 2 flügelförmige Lamellen aufgelöst sein kann. Hintere Antennen 3- bis 4gliedrig, ohne Nebenast, mit Klammerhaken an der Spitze. Augen einfach. Herz fehlt. Mandibeln mit scharfem eine Anzahl spitzer Zähne einschliessenden Kaurand und mächtig entwickeltem 2ästigen Taster. Maxillen meist mit mehrlappigem Taster. Kieferfüsse gedrungen mit kräftigen Borsten bewaffnet. Die vier vordern Fusspaare mit meist 3gliedrigen Aesten. Fünftes Fusspaar rudimentär, in beiden Geschlechtern gleich. Leben (als Tischgenossen) in der Kiemenhöhle der Tunicaten. Notodelphys Allm. Körper langgestreckt, kaum abgeflacht, mit sackförmig aufgetriebenem Matrikalabschnitt und stark verschmälertem Abdomen. Vordere Antennen ziemlich lang, 10- bis 15gliedrig. Beide Aeste des Mandibulartasters wenigstens 2gliedrig. N. Allmanni Thor., N. agilis Thor., Beide häufig in Ascidia canina. Doropygus Thor. Ascidicola Thor. Körper langgestreckt, augenlos. Kopf und erstes Thoracalsegment verschmolzen. Anstatt des Matricalsacks 2 flügelartige Lamellen, welche die Eiersäckehen bedecken. Vordere Antennen kurz, 5-6gliedrig. Mandibulartaster einfach. Die kurzen Fussäste 3gliedrig. Fünftes Fusspaar fehlt. A. rosea Thor.

2. Parasita 2) (Siphonostomata).

Copepoden mit stechenden und saugenden Mundtheilen, zuweilen noch mit vollzähliger, mit grossentheils mehr oder minder rückgebildeter Körpergliederung. Viele schwimmen noch frei umher und sind nur gelegentliche Schmarotzer

¹⁾ Thorell, Bidrag til Kännedomen om Crustaceer. K. Vet. Akad. Handl. 1859. Ph. Buchholz, Beiträge zur Kenntniss der innerhalb der Ascidien lebenden parasitischen Crustaceen des Mittelmeeres. Zeitschr. für wiss. Zool. Tom. XIX. 1869.

²⁾ Ausser den älteren Werken und Schriften von Linné, Goeze, Blainville, Roux, Otto, Hermann, Kollar, Leach, M. Edwards vergl. A. v. Nordmann, Mikrographische Beiträge zur Naturgeschichte der wirbellosen Thiere. Berlin. 1832. Derselbe, Neue Beiträge zur Kenntniss parasit. Copepoden. Bull. nat. Moskou. 1856. H. Burmeister. Beschreibung einiger neuen und wenig bekannten Schmarotzerkrebse. Nova acta Caes. Leop. Tom. XVII. 1835. H. Kröyer, Om Snyltekrebsene etc. Naturh. Tidsskrift. Tom. I und Il. 1837. und 1838. Derselbe, Bidrag til Kundskab om Snyltekrebse. Naturh. Tidsskrift. 3 Raeck. Tom. II. Kjobenhavn. 1863. Van Beneden, Recherches sur quelques crustacés inférieurs. Ann. scienc. nat. 3. Ser. Tom. XVI. 1851. J. Steenstrup og C. F. Lütken, Bidrag til Kundskab om det aabne Havs Snyltekrebs og Lernaeer. Kjobenhavn. 1861. C. Heller, Reise der Novara. Crustaceen. Wien. 1868.

(Sapphiriniden, Corycaeiden), andere dagegen leben im ausgebildeten Zustand ausschliesslich als Parasiten, ohne die normale Gliederung und das fertige Schwimmvermögen eingebüsst zu haben (Ergasiliden, Lichomolgiden).

- 1. Formenreihe ohne Saugröhre mit sichelförmigen Mandibeln und Tasterähnlichen Maxillen.
- 1. Fam. Corycaeidae ') Vordere Antennen kurz, nur aus wenigen Gliedern gebildet, in beiden Gesehlechtern gleich. Die hintern Antennen meist länger, aber ohne Nebenast, als Klammerorgane umgebildet. Kiefer tasterlos, meist in eine Steehspitze auslaufend. Unterer Kieferfuss im männlichen Gesehlecht sehr kräftig. Fünftes Fusspaar rudimentär und in beiden Gesehlechtern gleich. Herz fehlt. Zu dem Medianauge kommt in der Regel ein grosses paariges Auge hinzu. Meist 2 Eiersäckehen. Theilweise Schmarotzer. Copilia Dana. Leib wenig abgeflacht mit gradlinigem Stirnrand und sehr stark versehmälertem Abdomen. Die seitlichen Augen rechts und links am Stirnrand. Abdomen vollzählig. C. denticulata Cls., Mittelmeer. Corycaeus Dana. Körper kaum eomprimirt. Stirn schmal und abgerundet, mit zwei sehr genäherten Linsen. Abdomen meist nur 2gliedrig. Die hintern Antennen sind sehr kräftige Klammerorgane. Fünftes Thoraealsegment nebst Fusspaar verborgen. C. germanus Lkt., Nordsee. C. elongatus Cls., Messina. Oncaea Phil. (Antaria Dana).

Hier schliessen sich die flachen, gestreckt schildförmigen Sapphiriniden an, deren farbenschillernde Männehen frei umhersehwärmen, während die Weibehen theilweise in Salpen leben. Sapphirina fulgens Thomps., Mittelmeer. Sapphirinella Cls. (Hyalophyllum E. Haeck.). Mit diesen nahe verwandt sind die parasitischen Lichomolgiden?). Lichomolgus Thor. Sabelliphilus Sars. Doridicola Leyd, u. z. a. G.

- 2. Fam. Ergasilidae. Der eyelopsähnliche Körper mehr oder minder bauchig aufgetrieben, mit stark versehmälertem, jedoeh vollzählig gegliedertem Abdomen. Auge einfach. Vordere Antennen von mittlerer Länge, mehrgliedrig. Hintere Antennen sehr lange und kräftige Klammerfüsse. Mundtheile steehend, ohne Saugschnabel. Mandibeln mehr oder minder gekrümmt, mit mehrzähniger Spitze. Maxillen kurz, tasterähnlich. Der obere Maxillarfuss mehr oder minder pfriemenförmig, der untere fehlt im weibliehen Geschlecht völlig. Vier 2ästige Sehwimmfusspaare. 2 Eiersäekehen. Ergasilus v. Nordm. Körper birnförmig mit kurzem und sehr sehmächtigem Abdomen. Vordere Antennen ziemlich gedrungen, meist 6gliedrig. Aeste der Fusspaare 3gliedrig. E. Sieboldii v. Nordm., an den Kiemen von Cyprinoiden. E. qasterostei Pag. Ergasilus Gasterostei Kr.
- 3. Fam. Bomolochidae. Die Segmente des Kopfbruststücks stark aufgetrieben, durch tiefe Einsehnürungen getrennt. Abdomen von ansehnlicher Grösse, 4gliedrig. Vordere Antennen schlank, je nachdem der sehr langgestreckte Basalabsehnitt in Glieder getheilt ist oder nicht, 4-7gliedrig, dicht beborstet. Unterer Maxillarfuss ganz nach aussen gerückt, beim Männchen mit viel längern Fanghaken. Erstes Fusspaar sehr flach und bedeutend umgestaltet, mit stark befiederten Schwimmborsten besetzt. Bomolochus Burm. B. bellones Burm., Mittelmeer. B. soleae Cls., Nordsee u. a. A. Eucanthus Cls.
- 4. Fam. Chondracanthidae ³). Körper meist ohne deutliehe Gliederung. Thorax umfangreieh. Abdomen rudimentär, oft mit kurzen Höckern oder längern Blindsäeken symmetrisch besetzt. Vordere Antennen kurz und weniggliederig. Klammerantennen meist mit sehr kräftigem Hakenglied. Mandibeln schwaeh gekrümmte Stilete, freiliegend,

¹⁾ E. Haeckel, Beiträge zur Kenntniss der Cerycaeiden. Jen. naturw. Zeitsehr. Tom. I. 1864.

²⁾ Kossmann, Zoolog. Ergebnisse einer etc. Reise in die Küstengebiete des rothen Meeres. IV. Entomostraca. 1877.

³⁾ Vergl. C. Claus, Beiträge zur Kenntniss der Schmarotzerkrebse. Cassel. 1859. C. Vogt, Reeherches Cotières. Genève. 1877.

ohne Saugrüssel. Kieferfüsse kurz mit pfriemenförmiger Endspitze. Die 2 vordern Fusspaare sind rudimentär oder in lange zweizipflige Lappen getheilt, die hintern fehlen. Die birnförmigen deutlich gegliederten Männchen zwergartig klein, mit 2 rudimentären Fusspaaren, am weiblichen Körper befestigt.

Chondracanthus Delaroche (Lernentoma Blainv.). Vordere Fühler 2- bis 3gliedrig. Klammerantennen kurz, aber mit sehr kräftigem Klauenglied. Maxillen zu ganz kurzen, wenige Borsten tragenden Stummeln reducirt. Körper oft mit zipfelförmigen Auswüchsen und kugligen Auftreibungen überdeckt. 2 Eierschnüre. Ch. gibbosus Kr., auf Lophius piscatorius. Ch. cornutus O. Fr. Müll., auf Pleuronectes-arten. Ch. triglae Nordm. u. v. a. A.

- 2. Formenreihe. Mit wohl ausgebildetem abgeflachten oder röhrenförmig gestreckten Saugrüssel.
- 1. Fam. Ascomyzontidae'). Köper cyclopsähnlich, jedoch mehr oder nuinder schildförmig verbreitert. Antennen langgestreckt, 9 bis 20gliedrig. Mandibeln stiletförmig, in einem langen Saugrüssel gelegen. Obere und untere Kieferfüsse mit mächtigem Fanghaken versehen. Vier zweiästige Schwimmfusspaare. Fünfter Fuss rudimentär, einfach oder 2gliedrig. 2 Eiersäckehen. Artotrogus A. Boeck. Körper schildförmig verbreitert. Letztes Glied des stark gedrungenen Abdomens lang und stark verbreitert. Vordere Antennen gestreckt 9gliedrig. Saugschnabel sehr lang. Schwimmfüsse mit sehr schlanken 3gliedrigen Aesten. A. orbicularis A. Boeck., an den Eiersäckehen einer Doris. Ascomyzon Thor. Körper fast birnförmig mit breitem Kopfbruststück und anselnlich entwickeltem, verschmälertem Abdomen. Vordere Antennen langgestreckt, 20gliedrig. Die Klammerantennen mit kleinem Nebenast. Maxillen 2lappig. A. Lilljeborgii Thor., in der Athemhöhle von Ascidia parallelogramma. Nahe verwandt ist Asterocheres A. Boeck mit 18 gliedrigen Antennen. A. Lilljeborgii A. Boeck., auf Echinaster sanguinolentus gefunden. Dyspontius Thor.

Einer besondern Familie gehört *Nicothoë* Edw. mit flachem scheibenförmigen Saugrüssel an. Thorax des Weibehens jederseits zur Bildung eines sackförmigen Anhangs erweitert. Vordere Antennen 10gliedrig. Hintere Antennen schmächtig. Saugrüssel kurz und scheibenförmig verbreitert. *N. astaci* Edw. An den Kiemen des Hummers. Auch die Gattung *Nereicola* Kef. muss als Familie gesondert werden.

2. Fam. °). Caligidae. Körper flach, schildförmig. Auch das zweite und dritte Brustsegment meist mit dem Cephalothorax verschmolzen. Abdomen mit umfangreichem Genitalsegment, in seiner hintern Partie reducirt. Zuweilen entwickeln sich an den Segmenten flügelförmige Anhänge (Elytren). Auge meist unpaar. Vordere Fühler am Grunde zur Bildung eines breiten Stirnrandes verwachsen. Mandibeln stiletförmig, in einem Saugrüssel gelegen. Hakenförmige Chitinvorsprünge seitlich vom Munde. Die hintern Antennen und beide Paare von Kieferfüssen enden mit Klammerhaken. Die Ruderfusspaare theilweise einästig, das vierte oft zu Schreitfüssen umgebildet. Zwei lange einreihige Eierschnüre.

Gattungen mit kurzem dicken Schnabel und ohne Elytren.

Caligus O. Fr. Müll. Körper schildförmig, ohne Rückenplatten. Vordere Fühler mit halbmondförmigen saugnapfähnlichen Ausschnitten (lunulae) und 2 freien Engliedern. Erstes Fusspaar einästig. Das zweite und dritte Fusspaar sind 2ästige Schwimmfüsse, jenes mit 3gliedrigen Aesten, dieses mit einer sehr breiten lamellösen Basalplatte und 2gliedrigen Aesten. Viertes Brustsegment frei, aber sehr stark verschmälert, das Fuss-

¹⁾ Axel Boeck, Tvende nye parasitiske Krebsdyr etc. Vidensk Selsk. Forhandl. Christiania. 1859.

²⁾ C. Claus, Beiträge zur Kenntniss der Schmarotzerkrebse. Zeitschr. für wiss. Zool. Tom. XIV. 1864.

paar desselben einästig, birnförmig. Abdomen oft mehrgliedrig. (Die mittelst Stirnbänder befestigten Puppen wurden von Burmeister als Chalimus unterschieden). C. rapax Edw., auf Cyclopterus lumpus. Trebius Kr. Das Kopfbruststück umfasst nur das erste und zweite Brustsegment. Auch das dritte Brustsegment ist frei. Drittes und viertes Fusspaar mit 2 dreigliedrigen Aesten. Tr. caudatus Kr., auf Galeus vulgaris. Elythrophora Gerst. Männehen am freien Thoracalsegment, Weibehen an diesem und am Genitalring mit Rückenplatten. Alle 4 Schwimmfusspaare 2ästig. E. brachyptera Gerst. An den Kiemen von Coryphaena. Bei Caligeria Dana fehlen die Flügelanhänge am Genitalring, bei Euryphorus Nordm. ist der Genitalring des Weibehens mit einem scheibenförmigen Hautsaum umgürtet. E. Nordmanni Edw.

Gattungen mit Elytren am Rücken des Thorax. Die Männchen theilweise noch unbekannt, theilweise als Nogagus-arten beschrieben.

Dinematura Latr. Körper fast oblong mit sehr langgestrecktem Genitalsegment, das vordere zweite und dritte Brustsegment frei zwischen den Hinterlappen des Kopfschildes, ohne Elytren, das vierte mit 2 Rückenplatten von mittlerer Länge. Der zweigliedrige Endabschnitt des Hinterleibes mit 3 Rückenplättehen und 2 mächtigen Furcalplatten. Erstes Fusspaar mit 2gliedrigen, zweites und drittes mit 3gliedrigen Ruderästen. Viertes Fusspaar zu grossen häutigen Platten umgebildet. Bewohnen die Haut von Haifischen. D. producta O. Fr. Müll. D. paradoxus Otto. Pandarus Leach. Die Brustringe frei, sämmtlich mit Rückenplatten, die beiden hintern median vereinigt. Genitalsegment von mittlerer Grösse, der Hinterleib ungegliedert, von einer Rückenplatte bedeckt, mit 2 griffelförmigen divergirenden Furcalgliedern. Die Aeste der 3 vordern Fusspaare 2gliedrig, des vierten Fusspaares einfach, sämmtlich ohne befiederte Ruderborsten. P. Cranchii Leach. = P. Carchariae Burm. Laemargus Kr. Vordere Fühler durch den freien Stirnrand weit getrennt, mit 2 Endgliedern. Zweiter und dritter Brustring frei, beide sehr kurz, die beiden nachfolgenden Abschnitte beim Weibchen sehr umfangreich, jeder mit einer breiten in der Mitte gespaltenen Rückenplatte, von denen die zweite das Abdomen und die Eierschnüre vollkommen bedeckt; die beiden hintern Beinpaare zu grossen Platten umgebildet. L. muricatus Kr., auf Orthagoriscus mola. Cecrops Leach. C. Latreillii Leach.

3. Fam. Dichelestiidae. Körper langgestreckt, die Thoracalsegmente gesondert und von ansehnlicher Grösse. Genitalsegment des Weibehens zuweilen sehr lang. Abdomen meist rudimentär. Vordere Antennen mehrghedrig. Auge einfach. Klammerantennen lang und kräftig. Saugrüssel meist lang. Beide Maxillarfüsse starke Klammerorgane. Selten sind sämmtliche Fusspaare 2ästig und dann mehr Klammerfüsse, meist besitzen nur die zwei vordern Fusspaare 2 Ruderäste und die hintern sind schlauchförmig ohne Ruderborsten oder ganz rudimentär. Männchen kleiner mit kräftigeren Klammereinrichtungen. Zwei lange Eierschnüre.

Eudactylina Van Ben. Kopf und erstes Brustsegment verschmolzen, fünftes Brustsegment ungewöhnlich gross mit rudimentärem Fuss. Die untern Kieferfüsse enden mit kräftiger Greifzange. Die vier Fusspaare 2ästig, mit kurzen Hakenborsten bewaffnet. Genitalsegment von mässiger Grösse, Hinterleib 2gliedrig. E. acuta Van Ben. Dichelestium ') Herm. Kopf gross schildförmig, die 4 nachfolgenden freien Thoracalsegmente gross, die vordern mit kurzen Seitenfortsätzen. Genitalsegment gestreckt. Abdomen verkümmert, mit 2 blattförmigen Furcalgliedern. Vordere Antennen 8gliedrig, Klammerantennen mit scheerenförmigem Ende. Die beiden vordern Fusspaare mit 2 eingliedrigen Ruderästen, das dritte lappenförmig, das vierte fehlt. D. sturionis Herm., an den Kiemen des Störs. Lamproglena²) Nordm. Kopf und Thorax geschieden, der erste mit

¹⁾ Rathke, Bemerkungen über den Bau von Dichelestium sturionis und der Lernaeopoda. Nova acta Caes. Leop. Tom. XIX. 1839.

²⁾ C. Claus, Neue Beiträge zur Kenntniss der parasitischen Copepoden. Zeitschr. für wiss. Zool. Tom. XXV. 1875.

2 sehr starken Kieferfussparen, von denen das vordere weit hinaufgerückt ist. Anstatt des Schnabels ein wulstiger (Oberlippe) Mundaufsatz. Die 4 freien Brustringe mit kurzen 2spaltigen Fussstummeln. L. pulehella Nordm., an den Kiemen von Cyprinoiden. Lernanthropus Blainv. Vordere Antennen mehrgliedrig. Klammerantennen sehr gross, mit mächtigem Greifhaken. Mundtheile wie bei den Pandariden. Die 2 vordern Beinpaare mit blattförmigem Basalabschnitt und 2 einfachen stummelförmigen Aesten, von denen der innere mit einem kurzen Hakendorn endet. Das dritte und vierte Paar in lange zipfelförmige Schläuche umgebildet. Hinterleib kurz, mehrgliedrig, zuweilen von einer breiten Rückenplatte des Thorax bedeckt. L. Kroyeri Van Ben. Cygnus Edw. Kroyeria Van Ben.

4. Fam. Lernaeidae ¹). Körper des Weibchens wurmförmig verlängert, ohne deutliche Gliederung, aber mit kleinen 2ästigen Ruderfusspaaren oder wenigstens mit Resten derselben. Die vordere dem Kopfbruststück entsprechende Region meist mit einfachen oder verästelten Armen oder dicht gehäuften knospenförmigen Auswüchsen. Die hintere Partie des Thorax und das Genitalsegment häufig enorm verlängert und aufgetrieben. Abdomen ganz rudimentär mit kleinen Furcalstummeln. Unpaares Auge meist wohl erhalten. Vordere Antennen mehrgliedrig, borstenförmig. Klammerantennen mit Haken oder Zange endend. Mund mit weitem Saugrüssel und stiletförmigen Mandibeln. Kieferfüsse an die Mundöffnung gerückt, beim Weibchen nur ein Paar erhalten. Männchen und Weibchen im Begattungsstadium frei umherschwärmend (Lernaea) mit 4 Schwimmfusspaaren. Entwicklungsweise wie bei den Caligiden. 2 Eiersäcken oder 2 Eierschnüre. Sind mit ihrem Vorderleib in die Schleimhaut, in die Leibeshöhle oder Blutgefässe eingebohrt.

Lernaeocera Blainv. Kopf mit 4 kreuzweise gestellten Fortsätzen und schwachen Klammerantennen. Thorocalringe und Genitalsegment gleichmässig verlängert, sackförmig aufgetrieben und gebogen. Saugrüssel sehr kurz, mit rudimentären Mandibeln, von den Kiefern (obern Kieferfüssen) bedeckt. Untere Kieferfüsse kräftig. Zwei kurze aber weite Eiersäckehen. L. esoeina Burm., L. cyprinacea L., L. gobina Cls. Verwandt ist Therodamus Kr., Th. serrani Kr., auch Naobranehia Hesse. Lernaea L. Kopfbruststück mit 2 verästelten Seitenfortsätzen und einem einfachen Rückenhaken. Die 4 kleinen Schwimmfusspaare liegen dicht hinter einander. Genitalsegment wurmförmig gestreckt, in der mittlern und hintern Partie sackförmig erweitert und in doppelter Umbiegung verdreht. Klammerantennen mit kräftiger Zange endend. Saugrüssel wohl entwickelt, mit Mandibel und tasterförmiger Maxille. Nur 1 Kieferfuss erhält sich, am weiblichen Körper 2 lange Eierschnüre. L. branchialis L., lebt an den Kiemen von Gadusarten der nordischen Meere. Penella Oken. Leib langgestreckt mit 2 oder 3 querstehenden Fortsätzen unterhalb des aufgetriebenen mit warzenförmigen Excrescenzen besetzten Kopf, dicht unter demselben sitzen wie bei Lernaea 4 Paare von Schwimmfüssen. Am Hinterende findet sich ein langer mit Seitenfäden besetzter fadenförmiger Anhang. Mundtheile ähnlich wie bei Lernaea. Zwei lange Eierschnüre. P. crassicornis Stp. Ltk., in der Haut von Hyperoodon. P. exocoeti Holten, P. sagitta L.

5. Fam. Lernaeopodidae ²). Körper in Kopf und Thorax abgesetzt, letzterer mit dem ganz rudimentären Hinterleib zu einem sackförmig erweiterten Abschnitt vereint. Vordere Antennen kurz, weniggliederig. Hintere Antennen auffallend dick und gedrungen,

¹⁾ Metzger, Ueber das Männchen und Weibchen von Lernaeen. Göttinger Nachrichten. 1868. C. Claus, Beobachtungen über Lernaeocera, Peniculus und Lernaea. Ein Beitrag zur Naturgeschichte der Lernaeen. Marburg. 1868. A. Wierzejski, Ueber Schmarotzerkrebse von Cephalopoden. Zeitschr. für wissensch. Zoologie. Tom. XXIX. 1877.

²⁾ Vergl. C. Claus, Ueber den Bau von Achtheres percarum. Zeitschr. für wiss. Zool. Tom. XI. 1861. Fr. Vejdovsky, Untersuchungen über die Anatomie und Metamorphose von Tracheliastes polycolpus Nordm. Ebend. Tom. XXIX. 1877. W. Kurz, Studien über die Familie der Lernaeopodiden. Ebend. Tom. XXIX. 1877.

an der Spitze spaltästig mit Klammerhäkehen. Mundtheile mit breiter Saugröhre, stiletförmigen Mandibeln und tasterähnlichen Maxillen. Die äussern Maxillarfüsse sind im weiblichen Geschlechte zu einem mächtigen Doppelarm verschmolzen und haften mittelst eines chitinigen (von Drüsen secernirten) Haftkolbens an der Spitze des letztern in dem Gewebe des Trägers. Schwimmfüsse fehlen vollständig. Die viel kleinern häufig als »Zwergmännchen« am weiblichen Körper angeklammerten Männchen mit Auge und sehr kräftigen aber freien Kieferfüssen und schmalem gegliederten Leib. Rückschreitende Metamorphose der mittelst Stirnband fixirten Larven. Zwei Eiersäckehen.

Achtheres Nordm. Kopf kurz birnförmig, nach vorn zugespitzt. Leib breit, sackförmig, undeutlich 5ringelig. Männchen ähnlich geformt, aber kleiner. A. percarum Nordm, in der Rachenhöhle und an den Kiemenbogen von Perca. Bei Basanistes Nordm. ist das Abdomen mit kugligen Anschwellungen besetzt. B. huchonis Schrank. Bei Lernaeopoda Blainv. ist der Leib sehr langgestreckt und ohne nachweisbare Gliederung. L. elongata Grant, auf Squalus. L. salmonea L. Hier schliesst sich Charopinus Kr. an. Brachiella Cuv. Kopf wurmförmig gestreckt. Innere Kieferfüsse bis an den Saugrüssel heraufgerückt. Aeussere armförmige Kieferfüsse lang, meist mit einem oder mehreren cylindrischen Fortsätzen. Leib zuweilen in zipfelförmige Anhänge auslaufend. B. impudica Nordm., Kiemen vom Schellfisch. Nahe verwandt ist Tracheliastes Nordm. Tr. polycolpus Nordm., auf Rücken- und Schwanzflosse von Cyprinus Jeses. Anchorella Cuv. Die armförmigen Maxillarfüsse sehr kurz und bereits an der Basis verschmolzen. A. uncinata O. Fr. Müll., an den Kiemen von Gadus-arten.

2. Unterordnung. Branchiura 1).

Mit schildförmigem Kopfbruststück und flachem gespaltenen Abdomen, mit grossen zusammengesetzten Augen, langem vorstülpbaren Stachel vor der Saugröhre des Mundes, mit 4 langgestreckten spaltästigen Schwimmfusspaaren.

Die Karpfenläuse, von einigen Forschern mit Unrecht als parasitische *Phyllopoden* betrachtet, von andern als den Caligiden zunächst verwandt unter die Copepoden aufgenommen, entfernen sich von den letztern in mehrfacher Hinsicht so wesentlich, dass für dieselben mindestens eine besondere Unterordnung aufgestellt werden muss. In der allgemeinen Körperform gleichen sie allerdings bis auf den in 2 Platten gespaltenen Hinterleib (Schwanzflosse) mit den rudimentären Furcalgliedern den Caligiden, indessen ist der innere Bau und die Bildung der Gliedmassen von jenen Schmarotzerkrebsen verschieden. Die beiden Antennenpaare liegen vom Stirnrand entfernt und zeigen eine verhältnissmässig unbedeutende Grösse; die oberen und innern sind an ihrem breiten plattenförmigen Basalgliede mit einem mächtigen gebogenen Klammerhaken bewaffnet, die untern sind fadenförmig und aus nur wenigen Gliedern gebildet. Ueber der Mundöffnung erhebt sich eine breite Saugröhre, in welcher fein gesägte Mandibeln und stiletförmige Maxillen verborgen liegen. Oberhalb dieses Rüssels findet sich noch eine lange cylindrische in einen einziehbaren

¹⁾ Jurine, Mémoire sur l'Argule foliacé. Annales du Museum d'hist nat. Tom. VII. 1806. Fr. Leydig, Ueber Argulus foliaceus. Zeitschr. für wiss. Zoologie. Tom. II. 1850. C. Heller, Beiträge zur Kenntniss der Siphonostomen. Sitzungsber. der Kais. Acad. der Wiss. zu Wien. Tom. XXV. 1857. E. Cornalia, Sopra una nuova specie di crostacei sifonostomi. Milano. 1860. Thorell, Om tvenne europeiska Argulider. Oefvers af K. Vet. Akad. Förh. 1864. C. Claus, Ueber die Entwicklung, Organisation und systematische Stellung der Arguliden. Zeitschr. für wiss. Zoologie. Tom. XXV.

stiletförmigen Stachel auslaufende Röhre, welche den Ausführungsgang eines paarigen als Giftdrüse gedenteten Drüsenschlauches in sich einschliesst. Zu den Seiten und unterhalb des Mundes sitzen die kräftigen Klammerorgane auf und zwar ein oberes den Kieferfüssen entsprechendes Paar, welches bei Argulus unter Verkümmerung des hakentragenden Endabschnittes in eine grosse Haftscheibe umgebildet ist und ein zweites am breiten Basalabschnitte stark bedorntes Maxillarfusspaar, an dessen Spitze ein Tasthöcker und 2 gebogene Endklauen sich erheben. Nun folgen die vier Schwimmfusspaare der Brustregion, bis auf das letzte in der Regel von den Seiten des Kopfbrustschildes bedeckt. Dieselben bestehen je aus einem umfangreichen mehrgliedrigen Basalabschnitt und zwei viel schmälern mit langen Schwimmborsten besetzten Aesten, welche nach Form und Borstenbekleidung den Rankenfüssen der Cirripedien nicht unähnlich sehen und wie diese aus Copepoden-ähnlichen Füssen der Larve ihren Ursprung nehmen.

Die innere Organisation erhebt sich entschieden weit über die der verwandten parasitischen Copepoden und erinnert in mehrfacher Hinsicht an die höhern Typen unter den Phyllopoden. Das Nervensystem zeichnet sich durch die Grösse des Gehirns und des aus 6 dicht gedrängten Ganglienknoten zu-sammengesetzten Bauchmarks aus. Vom Gehirn entspringen ausser den Antennennerven die grossen Sehnerven, welche vor ihrem Eintritt in die zusammengesetzten zitternden Seitenaugen ein Ganglion bilden. Auch ein un-paares dreilappiges Medianauge liegt der Oberseite des Gehirnes unmittelbar an. Vom Bauchmark gehen zahlreiche Nervenstränge aus, indem jedes Ganglion mehrere Nervenpaare entsendet. Am Darmeanal unterscheidet man einen kurzen bogenförmig aufsteigenden Oesophagus, einen weiten in zwei ramificirte Seitenanhänge auslaufenden Magendarm und einen Darm, der gerade nach hinten in der mittlern Ausbuchtung der Schwanzflosse oberhalb zweier der Furca entsprechenden Plättchen nach aussen mündet. Zur Circulation des farblosen mit Blutkörperchen erfüllten Blutes dient ein kräftiges Herz, dessen lange Aorta unmittelbar unter der Rückenhaut von der Basis der Schwanzflosse bis zum Gehirn reicht. An dem erweiterten Herzen finden sich zwei seitliche Spaltöffnungen, in welche das Blut aus den Seitensinus der Schwanzlamellen einströmt. Als Respirationsorgan fungirt offenbar die gesammte Oberfläche des Kopfbrustschildes, indessen scheint in der Schwanzflosse eine besonders lebhafte Blutströmung statt zu finden, so dass man diesen Körpertheil zugleich als eine Art Kieme betrachten kann.

Die Arguliden sind getrennten Geschlechts. Männchen und Weibchen unterscheiden sich durch mehrfache accessorische Sexualcharaktere. Die kleinen lebhaftern und rascher beweglichen Männchen tragen an den hintern Schwimmfusspaaren eigenthümliche Copulationsanhänge. Am Vorderrande des letzten Fusspaares erhebt sich ein vorspringender Tastzapfen mit starkem nach unten und einwärts gekrümmten Haken, dem am hintern Rand des vorletzten Fusspaares eine stark vorspringende dorsalwärts geöffnete Tasche entspricht. Der paarige in der Schwanzflosse gelegene Hoden entsendet jederseits einen Ausführungsgang (Vas efferens) in die Brustsegmente. Beide Gänge vereinigen sich über dem Darm zur Bildung einer bräunlich pigmentirten

Samenblase, von welcher zwei besondere Gänge (Vas deferentia) entspringen und zu den Seiten des Darmes herablaufen, um nach Aufnahme zweier accessorischer Drüsenschläuche auf einer medianen Papille an der Basis der Schwanzflosse auszumünden. Die weiblichen Geschlechtsorgane bestehen aus einem schlauchförmigen Ovarium, welches im Brusttheil über dem Darm verläuft und mittelst eines kurzen unpaaren Oviductes an der Basis der Schwanzflosse ebenfalls auf einem Vorsprung ausmündet. Dazu kommen zwei rundliche an der ventralen Aufwulstung (Genitalsegment) der Schwanzplatte gelegene Samenbehälter (Receptacula seminis) von dunkler Färbung. Während der Begattung füllt das am Rücken des Weibchens festgeklammerte Männchen durch Umbeugen des vorletzten Fusspaares bis zur Mündungsstelle der Samenleiter die Kapsel der einen Seite mit Sperma und bringt dieselbe an die Papille der weiblichen Samentasche. Samenkapsel und Papille bleiben eine Zeit lang in einer sehr innigen Berührung, wobei wahrscheinlich der Haken des letzten Fusspaares die Ueberführung des Samens aus der Samenkapsel in das Receptaculum des weiblichen Körpers vermittelt.

Die Weibchen tragen ihre Brut nicht wie die echten Copepodenweibchen in Eiersäckehen umher, sodern kleben die austretenden Eier, deren vom Dotter ausgeschiedene Hülle eine blasige Beschaffenheit gewinnt, als Laich an fremden Gegenständen an. Die etwa nach Verlauf eines Monats ausschlüpfenden Jungen durchlaufen unter wiederholter Häutung eine wenngleich nicht bedeutende Metamorphose. Dieselben besitzen nach dem Ausschlüpfen die vordern Antennen mit dem Hakenstück, ferner zweiästige Klammerantennen und gefiederte als Mandibulartaster zu deutende Borstenfüsse. Der Stachel am Mundrüssel ist schon vorhanden, ebenso die grossen Seitenaugen, die Hautdrüsen und der Darmapparat. Anstatt des spätern Saugnapfpaares besitzen sie ein starkes mit Klammerhaken endendes Kieferfusspaar, dem ein zweites schwächeres Kieferfusspaar folgt. Von den Schwimmfüssen stehen nur die vordern als Ruderfüsse frei vor, die übrigen sind nur als kurze dem Leibe eng angeschlossene Stummel bemerkbar. Das letzte Leibessegment mit den Furcalgliedern entspricht der spätern Schwanzflosse. Etwa 6 Tage später erfolgt die erste Häutung, mit der das Thier seine vordern Borstenfüsse verliert, dagegen nunmehr 4 freie Schwimmfusspaare besitzt. Mit den später eintretenden Häutungen wird die äussere Form dem ausgebildeten Thiere immer ähnlicher, endlich erfolgt die Umbildung des grossen vordern Kieferfusspaares in einen Saugnapf mit anhängendem rudimentären Hakengliede, welches selbst am ausgebildeten Thiere noch nachweisbar bleibt.

Fam. Argulidae, Karpfenläuse. Mit den Charakteren der Unterordnung.

Argulus O. Fr. Müll. Kieferfusspaar in grosse Saugnäpfe umgestaltet. Stiletförmiger Stachelapparat vorhanden. In der Regel tragen die beiden ersten Beinpaare einen zurückgebogenen geisselförmigen Anhang. A. foliaceus L. (Pou de poissons Baldner), auf Karpfen und Stichling. A. coregoni Thor., A. giganteus Luc. Gyropeltis Hell. Kieferfusspaar endet mit einer Klaue. Stiletförmiger Stachel fehlt. Schwanzflossen sehr lang, die 3 vordern Fusspaare mit geisselförmigem Anhang. G. Kollari Hell., Kiemen von Hydrocyon, Brasilien. G. Doradis Corn.