IDemoirs of the תDuseum of Comparative Zoölogy
 at harvard college.
 Vol. XLI. No. 2.

REPORTS ON THE SCIENTIFIC RESULTS OF THE EXPEDITION TO TIIE EASTERN TROPICAL PACIFIC, IN CHARGE OF ALEAANDER AGAssiz, BY THE U. S. FISH COMMISSION STEAMER "ALBATROSS," FRONI OCTOBER, 1904, TO MARCH, 1905, LIEUT. COMALANDER L. MI. GARRETT, U. S. N., COMMLINDING, AND OF OTHER EXPEDITIONS OF THE "ALBA TROSS," 1888-1904.
XXI.

THE SPONGES.

2. THE ERILIDAE.

Br ROBERT YON LENDENFELD.

WITH EiGHT PLATES.
[Published by permission of George M. Bowers, U. S. Commissioner of Fish and Fisheries.]

CAMBRIDGE, U. S. A.:
Drinted for the תinseum.
September, 1910.

CON'TENTS.

No. 2. IREPORTS on the Scientific Results of the Expedition to the Eastern Tropical Pacific, in Charge of Alexander Agassiz, by the U. S. Fish Commission Steamer "Albatross," from October, 1904, to March, 190.5, Lieut. Commander L. M. Garmett, U. S. N., Commanding, and of other Experditions of the "Albatross," 18SS-1904. NXI. The Sponges. 2. Tife Erylidie. By Robert von Lendenfeld. 63 pp. S plates. September, 1910.

TABLE OF CONTENTS.

Page 267Erylidae
ERyLUS 267 268
E. oxyaster (Plate 3, firs. 29-3.5: Pate 1, figs. I-4:3) 268
L. sollasii (Plate I, figs. I-14; I'late 2, figs. I-26; Plate 3, figs. I-2N) 272
E. rotundts 290
var. megarhabela (Plate 5, figs. 15-23, 32; Plate 6, Ggs. 14, 14, 21, 33-35; l'late 7, figs. 22-31, 57-73; Plate 8, fig. 13) 309
var. typicat (Plate 5, figs. 1-4, 11-17, 30; Plate 6, figs. 15-17, 25, 27, 30-32; Plate 7, figs. 16-21, 46-56) 309
var. cidaris (Plate 5, figs. 5, 26-28, 31; Plate 7, figs. 1-10, 42 45, 75, 76, 79 ; luate S, fig. I4) 310
E. caliculatus (Plate 5, figs. 6-10, 24, 25, 29; Plate 6, figs. 1-I3, 19-23, 26, 28, 29 ; Plate 7, figs. 11-15, 31-11, 71, 77, 75, M: Plate \&, figs. 1-12, 15-20) 310
 FRON TIJE PAC'JFJC OCEAN 316
ERyuns 316
Summary of the species found in the Pacific Ocean 316
1之. placenta 317
L. montieularis 317
li. decumbens 317
E. oxyaster 318
L. nobilis 31 s
E. sollasii 318
E. rotundis 319
var. megarhabdat $3: 0$
var. typica 320
sar. cidaris $3: 0$
E. caliculatus 321
111. DlsTRIBUTLUN 322
11. I,NT OF STATJONK 323

1. EXJLINATHON OF THE PLATE

I. DESCRIPTION OF THE SPECIES COLLECTED BY THE "ALBATROSS."

Erylidae.

Tetraxonia with rhabd and teloclade megascleres, and a superficial armour composed of aspidasters ${ }^{1}$ and microrhabds. Euasters are always present in the choanosome.

Sollas ${ }^{2}$ divided the family Geordidae (Geodiadae) of Gray ${ }^{3}$ into the two subfamilies Erylina and Geodina, and placed the geodid genera Eryhus, Caminus, and Pachymatismat in the former. Later authors, I^{4} among others, have not retained these subfamilies and have placed the three genera named, together with the typical genus Geodia and its allies, in the family Geodidae. The genera Caminus and Pachymatisma are not represented in the collections of the "Albatross," so that I have not been able to give any new data concerning their systematic position during this work. The genus Erylus on the other hand is well represented, and the examination of the "Albatross" material has shown that, as I have already stated in the first part of this monograph (ante p. 17), Erylus differs very considerably from Ceodia the typical genus of the feodidae. I therefore now not only revert to Sollas's (loc. cit.) original proposition of dividing the family Geodidae into two subfamilies but propose to go cven farther and to place Erylus in a separate family: the Erylidae.

The question whether other genera (Pachymatisma, Caminus) should also be placed in this new family I shall not, for the reason given above, discuss here, and I leave them, for the present at least, in the Geodidae; the deseription of

[^0]the Parific species, not in the "Albatross" collection, will be found in the first part of this monograph.

The family Erylidac thas comprises the single genus Erylus.

ERYLUS Gray.

With uniporal afferents and uniporal efferents or larger oscules. Without ana- or protriaenes.

There are in the " Dlbatross" colleetion twenty-two specimens which belong to four species, one of which is divided into three varieties. All the species and varieties are new.

Erylus oxyaster, sp, nov:
Plate 3, figs. :9-35; Plate 1, figs. 1-43.
I establish this species for a specimen obtained in the Calapagos Islands. Its asters are oxyasters and to this the name refers.

The single, somewhat fragmentary specimen (Plate 4, fig. 24) is 30 mm . in maximum diameter and consists of two rounded lobose parts, one of which is broad cushion shaped, the other slender, digitate. The surface is smooth and bears mumerous smatl afferent pores. These are quite uniformly distributed and $0.7-1 \mathrm{~mm}$. apart. On the summit of the broater of the two lobes an irregularly circular oscule, 1.5 mm . in diameter, is situated.

The colour of the surface of the sponge (in spirit) is brown. A small part of it, which was probably sheltered from the light, is much lighter than the rest. The interior is light greenish yellow.

The superficial part of the body is differentiated to form a corter 4506.50 p thick. This is composed of two layers, an onter layer, $75-120 \mu$ thick, oecupical by mierorhables, and an inner hayer $360-560 \mu$ thick, ocrupied by aspidasters.
(amal-system. Many of the afferent pores appear to be quite closed. The open ones (Plate 4, fig. 25) are circular and surrounded by fine sphineter-membrancs in which numerous more or less radially disposed microrhabds are situatecl. These pores are $30-60 \mu$ wide. They lead into radial canals which traverse the cortex and open out into subortical cavities the radial diameters of which are usually greater than the paratangential.

The skeleton consists of regular rhabd megaseleres, irregular derivates of these, micromabels, teloclades, aspidasters, and oxyasters. The rhabd megat seleres are for the most part amphoxes, but a few styles have also been observed. These rhabds and their irregular derivates form bundles which
extend radially from the base of the sponge to the cortex and abut vertically on the latter. The microrhabds occupy in deuse masses the outer layer of the cortex. The superficial ones are situated paratangentially, the deeper ones mostly obliquely or radially. The teloclades are mostly regular diehotriaenes, but some irregular dichotriaene-derivates and simple plagiotriaenes have also been observed. The eladomes of these teloclades extend paratangentially; just below the cortex their rhablomes are directed radially inward. The oxyasters form a series from small many-riyed to large few-rayed ones. As, however, the asters of medium diameter and ray-number are not nearly so numerous as the large few-rayed and small many-rayed ones, this series does not appear uniform and large few-rayed and small many-rayed oxyasters can readily be distinguished. The large few-rayed oxyasters are quite uniformby seattered throughout the choanosome; the small many-rayed ones on the other hand, although also present in all parts of the chomosome, are much more numerous in the subcortical region, particularly in the roofs of the subcortical cavities and the walls of the cortical canals, than elsewhere. The aspidasters, which occupy the inner layer of the cortex, are rather irregularly arranged. They exhibit hardly a trace of a paratangential orientation.

The regular amphioxes (Plate 4, figs. 6 9) are isoactine, gradually attenuated towards the ends, and usually rather sharply pointed (Plate 4, figs. 6-8), more rarely blunt (Plate 4, fig. 9). They are straight (Plate 4, fig. 6) or slightly and uniformly corved (Plate 4 , figs. $\overline{7}, 9$), exceptionally abruptly bent in the middle (Plate 4, fig. 8). The amphioxes are $1.8-2.9 \mathrm{~mm}$. long and $60-85 \mu$ thick.

The rare styles (Plate 4, figs. 10, 11) are slightly curved, simply rounded off at one end and gradually attenuated towards the other, whieh is usually very blunt. They are $1.9-2.3 \mathrm{~mm}$. Iong and $60-105 \mu$ thick.

The irregular derivates of the rhabd megaseleres (Plate 4, figs. 12-19) have similar dimensions to the regular rhabds. They appear as more or less curved amphioxes, either strongly angularly bent near one end, or provided with one or more branches. The angle in the angularly bent forms (Plate 4, figs. 12-13) is $15-95^{\circ}$. The branched forms bear one (Plate 4 , fig. 15) or, more frequently, two (Plate 4, figs. 16, 19) or three branches (Plate 4, figs. 17, 18), which arise either from the same part (Plate 4, figs, 16, 19) or from different parts of the shaft (Plate 4, figs. 17, 18). The branches are always very much shorter than the shaft, rarely over 400μ long, straight, conical, and terminally either pointed (Plate 4, figs. 16, 17, 18 the upper right one, 19) or rounded (Plate 4, figs. 15, 18 the upper left and the lower one). The angle at which they arise is very vari-
able. Fometimes two similar branches lie opposite each other in a straight line (Plate 4, fig. 17 the two lower ones, 19). The axial threads of the shaft and the branches are either joined in a regular manner, or slight irregularities oeeur at their junction. The most remarkable of these were observed in the two spicules represented on Plate 4 , figs. 15 and 18 . The axial thread of the single branch of the former and that of the lowest one of the latter do not reach down to the axial thread of the shaft, which passes the junction unaltered, but terminate with a bulbous thickening at a distance of about 3μ from it .

The mierorhubds (llate 3, figs. 29-31, 32a, 35a; Plate 4, figs. 28-33a) are more or less curved. centrotyle amphistrongyles, and generally isoactine. The curvature is cither uniform or one or both ends are also abruptly bent in the direction of the curvature. The isoactine miororhabls are usually $31-47 \mu$ long, but orcasionally very much larger ones, up to $93 / \mathrm{fin}$ length, are observed (Plate 4. fig. 31). The ordinary microrhabds are, near the centre (tyle), 3.5-4.5 μ thick; the tyle measures $4.55 .5 \mu$, msuatly about 1μ more than the adjacent parts of the spicule, in diameter. Towards the rounded ends the aetines taper
 to their greater length. The centre of the spherical tyle usually lies in the axis of the spicule ; sometimes, however, it is ecentrie and then the tyle bulges much more on one side than on the others. In some mierorhabds one actine is reduced in length; these appear as anisoactines. In a few one of the actines is completely suppressed; these appear as bhint tylostyles. The anisoactine mierorhabds are shorter and also somewhat thicker than the ordinary isoactine ones.

The rare playiotriuenes (Plate 4, fig. 20) have a straight, conical rhabdome, about 0.9 mm . long and, at the dadomal end, 75.90μ thick. The clades are nearly straight, about 0.7 mm . long, and enclose angles of $109-112^{\circ}$ with the rhabdome. The breadth of the cladome is $1.3-1.4 \mathrm{~mm}$.

The reguler dichotrinenes (Plate 4, figs. 1-5, 21-23) have a fairly straight, conical rhatdome, $0.6-1.6 \mathrm{~mm}$. long and, at the eladomal end, $70-105 \mu$ thick. The main clades are straight, $250-400 \mu$ long and enclose angles of $109-120^{\circ}$ with the rhabdome. The end elades are conical, pointed, and straight or, more rarely, slightly curved inwards (Plate 4 , fig. 5 , below), and $50-450 \mu$ long. The cladome is (0.9-1.5 mm . broad.

In the rare imegular diehotriaene-derivates either the clades are reduced in number or the rhabdome reduced in length, or both. Forms with two and with only one clade (dichodiaenes and dichomonaenes) have been observed. The reduced thabdomes are eylindrical, rounded at the acladomal end, $200-$
600μ long, and about as thick as the rhabdome of the regular diehotriaenes. In sueh rhabdomes the axial thread terminates some distance from the aclarlomal end, in the centre of its hemispherical surface. In the dichotriaenederivates with reduced clade number, the eentral parts of the axial threads of both the rhabdome and the clades usually exhibit considerable irregutarities.

The oxyasters (Plate 3, figs. 32e, d, 33d, 34c, 35b, d; Plate 4, figs. 26d, 27b, $28 \mathrm{c}, 29 \mathrm{f}, 30 \mathrm{~d}, \mathrm{f}, 32-34 \mathrm{e}, 38-40$) usually have a slight central thickening. This is most clearly discernible in the monactine (Plate 4, fig. 27b) and diactine forms (Plate 3, fig. 35b; Plate 4, fig. 2Sc). The rays are from one to twenty or more in number, concentric, regularly distributed, and usually equal in size. They are perfectly smooth (Plate 4, figs. $38-40$), comical, and pointed. Very rarely one or two rays are reduced in length, much shorter than the others, and terminally rounded (Plate 3, fig. 34e). The properly developed rays of the smatl oxyasters (Plate 4, figs. 39-40) are uniformly attenuated towards the pointed end, those of the large ones (Plate 4, fig. 38) attenuated more rapidly in their distal than in their proximal part. The rays are 6-55 k long and, at the base, $0.8-4.5 \mu$ thick. The whole aster measures $10-90 \mu$ in diameter. The raynumber is, as the following table shows, in inverse proportion to the size of the rays and, apart of course from the monactines, of the whole aster.

Number of rays	1	$2-3$	4.5	6-9	10-13	$1+20$ or more
Total diameter of aster, "	57	48-90	4.)-75	$32-53$	15-23	10-17
Length of rays measured from centrum, $/$.	55	29-50	$27-10$	19-35	9-11	6-10
Basal thickness of rays. μ	4.5	$3-1.5$	3-1.5	1.7-1.5	2-3.5	0.8-1.5

As mentioned above there is a kind of gap in the series of these oxyasters, produeed by the scareity of forms $20-35 \mu$ in diameter with from nine to cleven rays.

Most of the aspidasters (Plate 4, figs. 35-37, 41-43) are stout oval dises. Very rarely roundish (Plate 4, fig. 41) or irregular aspidasters have been olserved. The ordinary oval aspidasters are $208-243 \mu$ long, $125-150 \mu$ broad and in the middle $30-40 \mu$ thick. Towards the margin they thin out gradually. The average proportion of length to breadth to (eentral) thickness is $100: 63.3: 1.5 .7$.

The munilical pit is more or less circular in ontline, $30-50 \mu$ broad, and about 1.5μ deep. Its walls are usually quite smooth. The rest of the surface of the adult aspidaster is covered with protruding rays, often somewhat irregularly distributed, and $1.4-1.7 \mu$ thick. These rays bear terminal vertieils of usually six to eight lateral spines (Plate 4, figs. 36, 37). The youngest aspidasters observed were about 55μ long and appeared as oval, radially striated dises with deeply serrated margins. In a more advanced stage these spicules are smooth dises with slightly undulating margins. On the faces and the margin of such, small protuberances then make their appearance and these grow out to form the protruding rays of the adult aspidasters above deseribed. The centre of the aspidaster is occupied by a rosette-shaped granule about 1.7μ in diameter. Viewed in profile the adult aspidasters show a distinct stratification. The limits of the layers are smooth and nearly parallel to the two faces. Viewed en face they show fine straight striae radiating from the central gramule.

This sponge was trawled in the Galapagos Islands, Station 2809, on April 4, 1888 ; $0^{\circ} 50^{\prime} \mathrm{S} ., 89^{\circ} 36^{\prime} \mathrm{W}$.; depth 82 m . (45 f.$\left.\right)$; it grew on a bottom of gray sand; the bottom temperature was $23.4^{\circ}\left(54.1^{\circ} \mathrm{F}\right.$.).

The only known species which appears to be allied to the sponge described above is E. polyaster Lendenfeld from the Iguthas bank, south Africa. From this it differs, apart from minor peculiarities, by the aspidasters, which are, absolutely and relatively more than three times as thick in k. polyaster ats in E. oryaster, a difference, of course, quite stifficient for specific distinction.

Erylus sollasii, sp. nov.
Plate 1, figs. 1-48; Plate 2, figs. 1-26; Plate 3, figs. 1-28.
I establish this species for seven specimens obtained at five stations among the Hawaiian Istimds. Among the known species of Erylus the one named after me by Sollas appears to be its nearest ally. I therefore return my distinguished friend's compliment by naming this new species after him.

The two specimens from Station 3847 are both small; one is partly light, partly dark in eolour: in the other the whole of the surface is dark. Both the specimens from station 3848 are large and whitish. The specimens from Stations 3849 and 4055 are large and dark. The specimen from Station 4062 is middle sized and light coloured.

The two specimens from station 3848 are in every way identical; all the others differ to some extent from these and from each other. We have to deal therefore with six different forms. As is shown below, these six forms fall into
three groups, which I consider as three distinet races. These I denominate I, II, and III. Race I contains four forms; the races II and III one each. The four forms of race I are designated $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . To race I , form A , belongs the partly light and partly dark speeimen from South Molokai (Station 38t7); to race I, form B, the small, entirely dark specimen from south Molokai (Station 3S17); to race I, form C, the two large whitish specimens from South Molokai (Station 3848); to race I, form D, the middle-sized, light-coloured specimen from northeast Ilawaii (Station 4062); to race II the large dark specimen from South Molokai (Station 3849); and to race III the large dark specimen from northeast Hawaii (Station 4055).

Shape and size. The smallest specimen is the entirely dark one from Station 3847 (race I, form B). It is massive, lobose, covered with small but relatively high gyriform ridges, and measures 18 by 9 mm . It has one oscule, about 1 mm . wide, which lies on the summit of a slight elevation. The partly light, partly dark specimen also from Station 3817 (race I, form A) is an irregular mass, with still higher gyriform ridges and measures 24 by 17 by 13 mm . It has two oscules, the larger 1.8 mm . in dianeter, and numerous small pores, which are scattered over its surface. The specimen from Station 4062 (race I, form D) is meandric, has small, but relatively quite high, gyriform ridges and measures 36 by 27 by 18 mm . Here and there small apertures are observed on its surface. Of the two specimens from station 3848 (race I, form C) one (Plate 1, fig. 27) is meandric, while the other appears as a mass with lobose, somewhat digitate processes $7-12 \mathrm{~mm}$. thick. The former measures 60 by 35 by 20 mm ., the latter is only 51 mm . long. A few oscules, up to 1.5 mm . wide, are situated on the elevations, and groups of small pores are scattered over the other parts of the surface. The specimen from Station 3819 (race II) (Plate 1, fig. 28) appears as an aggregate of vertical digitate parts about 15 mm . thick, which are joined for the greater part of their length. It is 73 mm . high, 64 mm . long, and 42 mm . broad. From the surface ridges protrude which are about 1 mm . high and 2.5 mm . apart. These ridges are somewhat curved and most of them extend longitudinally, parallel to the vertical axis of the sponge. On or near the summit of each digitate protuberance an oscule is situated. The largest of these oscules is oval and measures 3.2 by 2 mm .; the other oscules are $1-2.5 \mathrm{~mm}$. wide and more or less circular. On the sides of the digitate parts groups of small pores are met with. At one place there is a group of six much larger apertures about 1 mm . wide; here the sponge seems to have been injured some time before its capture. The specimen from Station 4055 (race III) (Plate 3, fig. 27) is an
irregular lobose mass with small gyriform ridges on parts of its surface and measures is by 62 by 40 mm . On or near the summits of some of the lobes oscules are observed. The largest are oval and measure + by 2 mm . The other parts of the surface are occupied by groups of small pores.

In regard to their colour the (spirit) specimens differ to a considerable extent. The two specimens from Station 3848 (race I, form C) are for the most part yellowish white, only some of the protruding parts having a purplish brown tinge. The specimen from Station 4062 (race I, form D) is dirty light brownish gray. The lower, basal portion of the partly dark, partly light-coloured specimen from station $38+7$ (race I, form A) is light gray, the upper portion dark chestnut-brown. In the entirely dark specimen from the same Station (race I, form B), the surface is dark chestnut-brown throughout. The specimen from Station 3849 (race II) is dirty brownish purple, some parts of its surface being considerably darker than others. The specimen from Station 4055 (race III) is rather dark purple-brown.

The superficial part of the body is differentiated to form a cortex (Plate 1, fig. 1a). This is $100-250 \mu$ thick and composed of an outer, middle, and inner layer. The outer, dermal layer is generally quite insignificant and on parts of the surface of most of the specimens absent altogether, probably rubbed off. In those parts of the cortex of race II where it is most highly developed, it attains a thickness of $30 \mathrm{\mu}$. This layer is rich in microrhabds, but contains no fibres and no aspidasters. The middle layer is from 83μ (in parts of the cortex of race II) to 210μ (in parts of the cortex of race III) thick and occupied by dense masses of aspidasters. The inner layer is often insignificant and hardly to be made out in the sections. In race I , form C , it attains in places a thickness of $20-30 \%$. It is composed of paratangential fibres and contains a few gramular cells and groups of granules.

Gramular cells, oval to spherical in shape and $12-18 \mu$ long, are abundant in most of the specimens. These cells are most numerous just below the cortex and here often quite densely packed (Plate 1, fig. 3). They also occur scattered in the interior of the choanosome. These cells are filled with granules of fairly equal size. In the granular cells of pale parts of the sponge, particularly in the region overgrown with symbionts, the granules are colourless. In the subeortical and cortical granular cells of the dark and exposed parts the granules are brown. Both the colourless and the brown granules stain deeply with aniline-blue. As mentioned above a few granular cells and groups of granules also occur in the inner layer of the cortex. These groups of granules are
massive, flattened, or drawn out so as to appear like strings of beads. Some of the granules forming these groups are similar to the granules in the granular cells, others are larger. They seem to be remnants of disintegrated granular cells.

Canal-system. The afferent apertures, which, as mentioned above, generally form groups on the surface, are uniporal. They are always circular but they differ very considerably in size, thẹir diameter varying between 70 and 520μ. The largest pores were observed in race I, form C, and in race III. From each pore a canal leads vertically downwards. This canal penetrates the cortex and opens out into one of the subcortical cavities which underlie the poral areas of the cortex. Its proximal opening into the subcortical cavity is surrounded by a chonal sphincter usually more or less contracted, but only rarely completely closed. The canals leading down from small pores are distended, those leading down from large pores constricted below the entrance. I am inclined to aseribe these differences and also, to a great extent, the differences in the width of the pores themsclves, to differences in the degree of contraction. The afferent eanals, which arise from the subcortical cavities and lead down into the choanosome, are not particularly wide and divide into numerons narrow branch-canals which supply the flagellate chambers. The latter (Plate 1, fig. 4) are spherical or somewhat compressed in the dircetion of their axis, and measure about 20μ in diameter. The efferent canals join to form lacunose cavitics, which sometimes attain a very considerable width (Plate 1, fig. 1). They open out on the surface with the oscules described above.

Skeleton. Loose strands of rhabd megascleres traverse the choanosome. Their distal portions extend more or less radially and they terminate just below the cortex. Triaenes with radial, centripetally directed thabdomes are quite abundant in the subcortical layer. In some of the sections a few spicules of this kind have also been found in the interior of the choanosome. I do not consider that as their natural position, however, and believe that these triaenes were brought there from the subcortical layer in cutting the section. No megascleres protrude beyond the surface, and this is entirely destitute of a spiculefur. Microrhabds occupy in large numbers the outer layer of the cortex and are found in smaller numbers also in the choanosome, chiefly in its distal parts. In the outer, cortical layer of the cortex these microrhabds are not regularly arranged; some are situated paratangentially, others obliquely, and others radially. The middle layer of the cortex is occupied by dense masses of aspidasters, most of which are arranged paratangentially, with their broad faces parallel to the outer surface. Only around the pores some of them are differently sit-
uated; these turn one broad side towards the pore-eanal and the edge towards the outer surface of the sponge. Young and adult aspidasters also oceur seattered in the choanosome. In some speeimens aspidasters are rather numerous in the choanosome. In all parts of the choanosome aeanthtylasters are met with. These asters, particularty the small many-rayed ones, are more numerous in the subeortical region than in the interior. In the spicule-preparations of race I, form C, large smooth-rayed oxyasters up to 50μ in diameter, and in those of race III small smooth-rayed oxysphaerasters (Plate 3, fig. 26b) have been observed. I consider these asters, which were not found in situ in the sections, as foreign spicules. About the foreign nature of the small oxysphaerasters in the pricule-preparations of race III there can indeed be no doubt, as a Donatia-like sponge-crust, containing such oxysphaerasters in large numbers, covers parts of its surface.

The rhabd megascleres (Plate 1, figs. 29-35, 42-48; Plate 3, figs. 19-22) are for the most part blunt amplioxes (Plate 1, figs. 29-31, 33, 44-46; Plate 3, figs. 19, 20, 22). Besides these also sharp-pointed amphioxes (Plate 1, figs. $34,35,42,43,47,48$), amphistrongyles (Plate 1, fig. 32), and styles (Plate 3, fig. 21) oceur. Generally these rhabels are rather uniformly curved (Plate 1, figs. 29-31, $33-35,42,43,46-45$; Plate 3, figs. 19-22), rarely straight (Plate 1, figs. 32, 45), or abruptly bent near one end (Plate 1, fig. 44; Plate 3, fig. 18). The styles and particularly the amphistrongyles are curved much less than the amphoxes. The rhabds are $425-980 \mu$ long and $8-24 \mu$ thick. The longest are found anong the amphioxes, the thickest among the amphistrongyles and styles. 'The small specimens, race I, forms A and B, have smaller rhabds than the larger ones. Among the latter race 1 , form D, and race $11 I$ have larger rhabds than race I, form C, and race II. Besides these simple rhabds, spicules similar in shape and size, possessing however a short branch-ray, are met with, chiefly in race III. In these mesomonaene-like rhabd-derivates the branch-ray (clade) is pointed or blunt, up to 50μ long, and situated near one end, in styles thus branehed near the pointed end. The branch-ray is either turned upwards proclade-, or downward anaclade-fashion. (See table, p. 277.)

Most of the adult microrhabds (Plate 1, figs. 37-41a, 39b, 41b; Plate 2, figs. 16-18; Plate 3 , figs. $13-15,26 a$) are quite stout, slightly and uniformly curved, centrotyle, isoactine amphioxes. Most of them are blunt, some sharp pointed. Sharp-pointed microrhabds are particularly frequent in race III. The blunt amphiox microrhabds are often somewhat constrieted just below their ends, so that the ends themselves appear as terminal knobs (Plate 2, fig. 18).

DIMENsIONS OF RHABD MEGASCLERES.

Besides these greatly preponlerating isoactine forms, some anisoactine ones, with one actime shortened and rounded at the end (Plate 1, figs. 39b, 41b), are met, with. In some of the microrhabds of race I, form A, and race II this reduction has gone so far that one actine is absent altogether. Such spicules appear as styles (tylostyles). Also branched microrhabds, composed of more than two actines, have occasionally been met with. These are most frequent in race I , form B. Nost of them are tetractine and appear to have been produced by an early conerescence of two simple microrhabds lying crosswise. Two opposite rays of such spicules usually form a microrhabd of similar dimensions to the ordinary ones. The microrhabd represented by the two other rays is usually considerably shorter. Rarely the two microrhabds presumably composing these spicules are equal in length. Their axis generally encloses small angles, 30° or less; rarely these angles are greater; forms with axis crossing at right angles are exceedingly rare. Sometimes the one microrlabibd is attached to the other by its end; such spicules appear as triactines. The tyle is usually a simple spherical thickening. In the isoactine forms it occupies the centre, in the anisoactine forms it lies nearer to one end than to the other, and in the mierorhabds with one actine quite suppressed, it is situated terminally. In a few of the mierorhabds of race I, form D, the tyle is irregular and appears as a cluster of rounded protuberances.

No correlation between the size of the sponge and the dimensions of its microrhabds is discernible. The thickness of these spicules is about the same in all the forms; their length however varies, those of race III being considerably shorter than those of the races I and II, although the specimens of some of these (race I, A and B) are very much smaller. The microrhabds are $30-78 \mu$ long and $2.5-5 \mu$ thick. The tyle is $0.3-1.5 \mu$ thicker than the adjacent parts of the spicule and measures $3.5-6.5 \mu$ in diameter.

DIMENSIONS OF MICRORHABDS.

The triuenes (Plate 1, figs. 5-26; Plate 3, figs. 1-6, 12, 23, 24) are orthoor, more frequently, plagio-triaenes with simple or branched clades. The rhabrlome is ahways straight. Usually it is simple and conical. Its acladomal end is sharp pointed (Plate 1, figs. $17,19,20$; Plate 3 , figs. 12, 23, 24) or blunt (I'late 1, figs. $15,16,24,26$). Sometimes slight knob-like protuberances are observed near the acladomal end. Rarely the rhabdome is reduced in length, cylindrical, and terminally rounded and slightly thickened (Plate 1, fig. 18; Plate 3 , fig. 1). The properly developed, conieal rhabdomes are $210-520 \mu$, the
reduced, cylindrical ones $140-220 \mu$ long. Their thickness at the acladomal end is $8-22 \mu$. Cylindrical rhabdomes are always thick; all the slender triaenerhabdomes observed were conical. The triaenes of the small speeimens (race I, forms A and B) have somewhat shorter and very much thinner rhabdomes than those of the larger ones. The averages of three thickest of the former being $10-13$, those of the latter 1821μ. Among the large specimens the one of race III has far larger triaene-rhablomes than those of the races I and II.

The cladomes of these triaenes are very polymorphic. Triaenes with simple clades oceur in all the specimens. In race I , form A, no other triaenes were observed. In race I , forms B, C, and in race II a few triaenes with one, more rarely two or three branched (bifureate) clades occur besides the ones with simple clades. The ramification of the triaene-clades is still greater in race I , form D , and in race III: in these the triaenes with branched clades are more numerous than the ones with simple clades.

In the triaenes with three simple clades (Plate 1, figs. 7, 11, 12, 15-20, $24-26)$ the clades are usually conical and blunt pointed, rarely reduced in length, cylindrical, and rounded at the end (Plate 1, figs. 16, 18). Such a reduction of the clades is usually associated with a reduction or other abnormity of the rhabdome. The simple triaene-clades are slightly and uniformly curved, concave to the rhabdome (Plate 1, figs. 17, 19), or nearly straight (Plate 1, figs. 22,25), or, more rarely, abruptly bent down at the end (Plate 1, figs. 18, 20, 24). Their chords are $120-300 \mu$ long.

As stated above, one, two, or all three clades of the triaenes may be branched. This branching is most frequently a simple and regular bifureation, the two branches (end clades) being simple, and fairly equal in length and angular position (Plate 1, figs. 6, 9, the lower ones in fig. 10; Plate 3, the lower left ones in figs. $2,3,5,6$). Irregularities due to a difference in the length or the position of the two branches or to secondary ramifications of the branches are frequently met with. The difference in the length of two end clades forming a pair is caused by the reduction of one of them. This reduction sometimes becomes so great as to lead to a complete suppression of one of the end clades, in which case a single end clade arises from the, in such spicules usually somewhat thickened end of the main clade (Plate $\mathbf{1}$, fig. 8). The differences of position are frequently so great that one end clade appears as a continuation of the main clade (Plate 1, the upper one in fig. 5; Plate 3, the upper one in fig. 3). Some of these spicule-rays might indeed be considered as simple clades from which a branch-ray arises laterally. A secondary ramification of the end
clades has been observed only in race I , form D , and in race III. It affects cither both end clades of a pair in a similar manner (Plate 3, the left ones in fig. 4) or one of them only (Plate 1 , the upper one in fig. 10; Plate 3, the upper in fig. 2 and the right ones in figs. 2-5). The proportion of the length of the main clade to the length of the end clades is, as a comparison of figs. 6 and 9 on Plate 1 shows, subject to very considerable variation. The main clades are $70-270$, the end clades $10-160 \mu$ long. The cladomes are $160-550 \mu$ broad. The triaenes of the small specimens of race I, form A, have the narrowest cladomes (average of the three largest 373μ), those of the large specimen of race III, the broadest (average of the three largest 530μ). The angle enclosed by the axis of the rhabdome and the chords of the simple elades and the stems (main clades) of the branched ones, is $56-116^{\circ}$ (general average 103.4°). It is smallest in the triaenes of race I, form A (average 97°), and largest in those of races II and III (average 107 and 107.5°). Thus most of these spicules are plagioclades, some orthoclades. (See table, p. 281.)

In race II some spicules, $310-330 \mu$ in diameter, composed of two simple (l'late 1, fig. 13) or branched (Plate 1, the right one in fig. 14) clade-like, and two short, conical, blunt rudimentary rays, have been observed. These spicules appear to be derivates of the triaenes described above.

The acanthtylasters (Plate 1, figs. 36-40c; Plate 2, figs. 1-4, S-11; Plate 3, figs. $7,8,25,26 c$) are destitute of a central thickening and have from two to fourtcen, a few perhaps more than fourteen, rays. The rays are concentric and nearly always uniformly distributed, simple, and equal in size. Acanthtylasters with rays unequally long or branched (bifureate) have been only very rarely (h)served. The rays of the larger acanthtylasters (Plate 2, figs. 1, 2, 8, 9; Plate 3, figs. $7, S$) are eylindroconical and at the base $1-3$ usually $1.5-2.3 \mu$ thick. They taper distinctly towards the end, and are, at their thinnest point a short distance below the end, $0.7-1.5 \mu$ thick. The rays of the smaller ones (Plate 2, figs. 10, 11) are somewhat more cylindrical and only $0.4-1.5 \mu$ thick. The rays invariably bear spines, some of which always congregate at the end of the ray and here form a terminal, acanthtyl cluster $1.3-3.5 \mu$ in diameter. The size of the spines is on the whole proportional to the size of the aster. Apart from this they are subject to considerable variation. Sometimes numerous small and insignificant (Plate 3, fig. 7), sometimes numerous medium sized (Plate 2, figs. 8,9), and sometimes only one or a few very large spines, $1-1.6 \mu$ in length (Plate 2 , figs. 1, 2; Plate 3, fig. 8), arise from the sides of the rays. In the tworayed acanthtylasters a cluster of spines arises from the centre of the spicule.

DIMENSIONS OF TRIAENES.

This appears as a rudiment of a third ray. Most of the spines are conical, straight, and vertical, some conical and recurved (Plate 2, fig. 1), some irregular, cylindrical, terminally rounded or even thickened, and occasionally lobose at the end.

The acanthtylasters measure $10-38 \mu$ in diameter. Their size is in inverse proportion to the number of their rays. To obtain a clearer insight into this correlation I measured (and counted the rays of) 207 of them and took the means of the diameters of those with the same ray-numbers. There is no
difficulty in counting the rays of the large few-rayed acanthtylasters, but it is impossible to ascertain the ray-numbers of the small many-rayed ones with sufficient exactitude. I therefore calculated the means of the two- to ninerayed acanthtylasters by themselves, but combined the ten- to fourteen-rayed ones in one group of which I took the mean. This mean can be taken as the mean diameter of the asters with a ray-number equivalent to the mean of 10,11 , 12,13 , and 14 , that is twelve. In this way 1 found that the average diameter of the acanthtylasters with two rays is 38μ,

	hose	ith	three	"	29 ",
،	،	"	four	"	$28^{\prime \prime}$,
	"	"	five	"	27 "
	"	"	six	"	25.
	"	"	seven	"	23 ",
	"	"	eight	"	21 ",
	"	"	nine	"	19 ",

" " " ten to fourteen (mean twelve) rays 14μ.
Apart from the two-rayed asters, which are so few that I was unable to measure a number sufficient for attaining a reliable mean, the mean given above shows that there is a very regular decrease in size with increasing raynumber, amounting in the asters with from three to five rays to 1μ and the asters with six or more rays to about 2μ per unit of difference of ray-number.

In all the forms four- to ten-rayed acanthtylasters have been observed. The four- to six-rayed appearing to be the most frequent ones. In the forms A, (, and D of race I and in race II also threerayed and in race II also a few tworayed acenthtylasters were found. Acanthtylasters with more than ten rays have been found in all the forms exeept race I, form C. In the small speeimens the acanthtylasters are not smaller than in the large ones. The largest acanthtylasters necur in the form A of race I and in the races II and III. (See table, p. '283.)

The aspidasters. The dise-shaped spicules of the cortieal armour of the species of Erylus have hitherto been designated, like the ovoid spicules of the armour of Ceorlia, as sterrasters. Closer examination of these spicules in the species of Erylus of the "Albatross" collection has shown, however, that they differ from the sterrasters found in the species of Geodia and allied genera not only in their shape, but also in their mode of development, to such an extent that it is advisable to give them another name. Aspidaster, the name selected for them, has reference to their shield ($\dot{\alpha} \sigma \pi i s)$ - like shape.

DIMENSIONS OF ACANTHTYLASTERS.

		Race							all forms
		I				II	III		
		Forms					1-12		
		A	B	c	D			limits	general average of the largest three
Number of rays		1-12	3-13	310	3-14	$2-14$		2-14	
1 Hameter	of all asters measured with six rays or fewer, μ	20-36	21-32	21-32	22-31)	$22-35$	25-36	15-3s	
	of all asters measured with seven or more rays, "	10-27	6-20	$17 \cdot 22$	12.27	12-21	13-24	10-27	
	average of the three largest, p	33	29	31	29	35	33		31.7

The adult aspidasters of Erylus sollusii (Plate 1, fig. 36d; Plate 2, figs. 5-7, 12-15, 19 26; Plate 3, figs. 9-11, 16, 17, 25d, 28) are $95-156 \mu$ long, $55-82 \mu$ broad, and 7414μ thick. The general average proportion of their length to their breadth to their thickness is 100:55.8:8.8. Optical transverse sections show that these disc-shaped spicules are gradually attenuated towards the margin, which is usually quite sharp. The shape of their outline is variable; some of them (Plate 2, figs. 13, 23, 26; Plate 3, fig. 9) are quite regularly oval, some rounded rhomboidal (Plate 2, fig. 22; Plate 3, figs. 10, 17), and some irregular (Plate 2, figs. 12, 24,25) with lobose marginal protuberances of which one or a few broad ones, or a larger number of narrow ones may be present. On one face of the dise there is a very shallow, more or less circular depression $20-30 \mu$ in diameter. In this depression, which is obviously homologous to the umbilicus of the sterrasters of Geodia, the surface is either quite smooth, or bears only a few small rays or spines. From all the other parts of the surface (Plate 2, figs. 5, 6; Plate 3 , fig. 28) and also from the margin, rays usually about $1-2 \mu$ thick protrude. Those on the margin are about 1.5μ long, those on the faces appear to be shorter. These rays are scattered rather irregularly and (measured from centre to centre) $2-6 \mu$ apart. Each ray bears a terminal verticil of four to ten lateral spines. The centre of the aspidaster is occupied by a small group of granules, from which very numerous and perfectly straight radial
lines extend towards the margin. In some adult aspidasters this radial structure is well defined (Plate 2, fig. $\overline{7}$), in others it can hardly be made out.

There appears to be a certain degree of correlation between the size of the sponge aud the size of its aspidasters, the latter being smaller in the small specimens of race 1 , forms A and B (average length of the three largest of these forms 118 and 120$) \mu$ respectively), larger in the middle-sized specimen, race I, form D (that average 12.4%, and still larger in the large specimens of race I, form C , and races II and III. Among the latter those of races II and III (that average 150 and 152μ are very considerably larger than those of race I , form C (that average $128 / t$), and the other smaller forms of race I. Aso in their shape the aspidasters of the different forms differ to a certain extent, those of race II being much more slender and those of race I, form C (Plate 2, fig. 25) much more irregular than those of the others. Also in the number of the ray-spines differences are olserved, the rays of the aspidasters of race II bearing up to ten, those of the aspidasters of the races I and III only from four to six lateral spines.

DIMENSIONS OF THE ASPIDASTERS.

		kace						all forms		
		1				H	111			
		Forms								
		A	B	c	D			limits	general average of the three largest	general average
Length	(of all measured, ر	$\begin{gathered} 102- \\ 121 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 120 \end{aligned}$	$\begin{gathered} 105 \\ 130 \end{gathered}$	$\begin{gathered} 107 \\ 126 \end{gathered}$	$\begin{gathered} 120- \\ 156 \end{gathered}$	$\begin{aligned} & 125 \\ & 153 \end{aligned}$	$\begin{gathered} 95 \\ 1.56 \end{gathered}$		
	arerage of the three longest, "	120	118	128	121	152	150		132	
Bradth	of all measured, ${ }^{\text {a }}$	$\begin{aligned} & 57- \\ & 68 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 59- \\ & 73 \end{aligned}$	$\begin{aligned} & 60- \\ & 75 \end{aligned}$	$\begin{aligned} & 60- \\ & 76 \end{aligned}$	$\begin{aligned} & 71 \\ & 82 \end{aligned}$	$55-$		
	average of the three broadest, μ	67	69	73	73	7.5	82		73	
Thiekness	of all measured, $/ 2$	$\begin{aligned} & 7.4- \\ & 12.2 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 10.4 \end{aligned}$	10	$\begin{gathered} 11.2- \\ 12 \end{gathered}$	$\begin{aligned} & 9.2 \\ & 11.4 \end{aligned}$	1211	$\begin{gathered} 7.1 \\ 14 \end{gathered}$		
	average of the three thickest, $/ t$	11.6	10	10	11.6	11	14		11.6	
Averate of proportion of length to breadth to thiekness, !"		$\begin{aligned} & 100: \\ & 55.3: \\ & 8.2 \end{aligned}$	$\begin{gathered} 100: \\ 59.1: \\ 9 \end{gathered}$	$\begin{gathered} 100: \\ 57 \\ 8.4 \end{gathered}$	$\begin{gathered} 100: \\ 56: \\ 9.8 \end{gathered}$	$\begin{aligned} & 100: \\ & 49.8: \\ & 7.6 \end{aligned}$	$\begin{gathered} 100: \\ 57.7: \\ 10 \end{gathered}$			$\begin{gathered} 100: \\ 55.8: \\ 8.8 \end{gathered}$

Young aspidasters were found in considerable numbers scattered throughout the choanosome in several specimens. They are imbedded in the ground substance. A special membrane or plasmatic sheath enclosing them could not be made out even in sections strongly stained with aniline-blue.

The youngest (smallest) aspidasters observed (Plate 2, fig. 14) were oval dises, about 25μ long and 10μ broad, and composed of numerous exceedingly slender and perfectly straight rays which radiated from a granular centrum about 3μ in diameter. These rays are, at first, quite isolated. They grow in length and in thickness and so the whole aspidaster increases in size (Plate 1, fig. 36d; Plate 3, fig. 25d) and the basal parts of the rays become united. The solid, central mass of silica thus produced forms a dise from the margin of which the still isolated, distal parts of the rays protrude (Plate 2, fig. 19; Plate 3, fig. 16). When this stage is reached the longitudinal growth of the rays slows down or ceases altogether, while the transverse growth of the rays, that is their increase in thickness, continues. In consequence the marginal spines become joined more and more (Plate 2, figs. 20, 21) until they entirely lose their individuality, the margin of the aspidaster becoming quite smooth. In young forms of regular aspidasters this smooth, non-serrated margin is continuous (Plate 3, fig. 11), in young forms of irregular ones lobose (Plate 2, fig. 15). Not only the margin but also the two broad faces of such young aspidasters are smooth. Their smoothness in this stage constitutes the chief difference between them and the sterrasters of Cicodia, which do not pass through a smovth stage during their development. Later small, spine-like protuberances make their appearance on the surface of the smooth young aspidaster. These develop into the protruding rays with terminal verticils of lateral spines, which have been described above.

LOCALITIES AND NATURE OF ENVIRONMENT

	Locality	Date	Depth		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3817	s. coast of Molokai, Lae-o Kia Latu Light. N. 61° 30^{\prime}, W. 23°	April 8, 1902	$\begin{gathered} 42-41 \mathrm{~m} . \\ (23-24 \mathrm{f} .) \end{gathered}$	-	sand and stones	$\begin{gathered} 2 \\ \text { Forms } \\ \text { A, B } \\ \text { (Race 1) } \end{gathered}$
3818	s. coast of Molokai, Lae-o Ka Laau Light. N. $65^{\circ} 15^{\prime}$, W. 22.4'	April \&, 1902	$\begin{aligned} & 50-133 \mathrm{~m} . \\ & (41-73 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 21.7^{\circ} \\ \left(71.1^{\circ} \mathrm{F} .\right) \end{gathered}$	sand and gravel	Form (' (Race I)

LOCALITIES AND NATLRE OF ENVIRONMENT (continued).

	Locality	Date	Depth		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
$3 \checkmark 19$	\& coast of Molokai, Lae-n Ka hatu Light. N. 71°, W. 21.9'	A]ril 8 , 1902	$\begin{aligned} & 133-i s \mathrm{~m} . \\ & (73-13 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 19 . \mathrm{s}^{\circ} \\ \left(67.6^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse sand, broken shells. and corals	$\begin{gathered} 1 \\ \text { Race } 1 I \end{gathered}$
40.5	N. E. coast of llawaii, Alia Point Light. Hilo Bay. N. 20°. IV. 3.5^{\prime}	July 16, 1912	$\begin{aligned} & 91-121 \mathrm{~m} . \\ & (50-62 \mathrm{f} .) \end{aligned}$	-	Fine gray sand and Foraminifera	$\begin{gathered} 1 \\ \text { Race } 11 I \end{gathered}$
1062	N. F. coast of Ilawaii. K:uhola light. ㅅ. $69^{\circ} 1{ }^{\circ}$, E. $6.9{ }^{\prime}$	July is, 1902	$\begin{aligned} & 152-207 \mathrm{~m} . \\ & (\mathrm{n} 3-113 \mathrm{f} .) \end{aligned}$	-	Coral, volcanic sand, shells, and Foraminifera.	$\begin{gathered} 1 \\ \text { Form } 1) \end{gathered}$

There ean be no doubt that the seven sponges deseribed above are very closely alliecl, still they differ to a certain extent in size, shape, colour, and spiculation. As to the size it is to be noted that the forms A and B of race 1 are very much smaller than the others. Since, however, the spiculation of these small specimens exhibits immature characters, there can be no doubt that they are young forms, that their small size is merely due to their age and of no systematic importance whatever. Neither can any importance be attached to the differences in shape, since they lie well within the limits of individual variation usual in sponges of this kind. The differences in colour, which ranges from dirty white to dark chestnut-brown, are indeed great. If, beginning with the lightest coloured one, we arrange the forms in the order of the deyree of their pigmentation, we get, 1) race I, form $\mathrm{C}, 2^{2}$) race I , form D , 3) race $I I, 4$) race 111,5) race I, form A, and 6) race I, form B. If, begiming with the deepest, we arrange them in the order of the depth of the water at the place where they were found, we get, 1) race 1, form D, 152207 m ; 2) race I, form C, race II and $111,78-133 \mathrm{~m}$.; and 3) race 1 , forms A and $B, 42-44 \mathrm{~m}$. Although it is unknown which of the specimens of race I, form C, race II, and race $11 I$ grew in deeper, and which in shallower water, we see that the depth of the locality is, on the whole, roughly in inverse proportion to the degree of pigmentation. The darkest forms, the partly or wholly dark chestnut-brown, race I, forms A and B, grew in the shallowest water, at a depth of $42-44 \mathrm{~m}$., to which, in clear tropical sea water, considerable day light penetrates. This and the fact that in some of the specimens the upper protruding parts are darker than the basal, lead me to suppose that these differences of colour are
merely due to differences in the amount of light to which the different specimens were exposed during life. I am therefore inclined to consider these differences as direct individual adaptations of the simplest kind to which no systematic importance whatever can be attached.

The chief differences in the spiculation of the six forms is shown in the following tabular view of the averages of the three largest observed of the most important spicule dimensions and of the character of the triaene-cladomes and aspidasters.

This table shows that in race I, form A, all the triaene-clades are simple; and the rhabd megaseleres shorter and thinner, the mierorhabds longer and thicker, and the triaene-eladomes smaller than in any of the others. In race I,
form B, most of the triaene-clades are simple; and the microrhabds thinner and shorter, and the aspidasters absolutely shorter and relatively broader than in any of the others. In race I , form C , most of the triaene-clades are simple; and the rhabl megascleres thicker and the aspidasters more irregular than in any of the others. In race I, form D, most of the triaene-clades are branched; and the triaene-rhabdomes relatively thicker than in any of the others. In race II most of the triaene-clades are simple; and the acanthtylasters larger, the aspidasters absolutely longer and relatively considerably narrower and thinner and their rays provided with a larger number of lateral spines than in any of the others. In race III most of the triaene-clades are branched; and the rhabd megaseleres longer, the microrhabls very considerably shorter, the triaenerhablomes much longer, the triane-cladomes much broader, and the aspidasters relatively thicker than in any of the others.

That the megascleres of race I, form A, are smaller in size and more simple in character than those of the other forms and that there are other differences of this kind, appears to be due to differences in the age (size) of the specimens. Some peculiarities, as for instance the irregularity of the aspidasters of race I, form C, may be pathological. Some are, no doubt, to be accounted for by differences in the external forces which acted on the different specimens. All these can be considered as mere somatic non-germinal characters, destitute of systematic significance. There remain however some, the nature of which is more doubtful and which might well be germinal. These peculiarities are the exceptional narrowness and thimess of the aspidasters and the richness of their rays in spines in race II, and the exceptional shortness of the microrhabds and the exceptionally large size of the triane-cladomes in race III. If these peculiarities are considered germinal three systematic groups must be distinguished, one for the forms $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D of race I , one for race II, and one for race III.

There can, I think, be no doubt that these three groups must be united in one and the same species; it is another question, however, whether or not varieties should be established for them. After a careful consideration I have decided that these differences are probably germinal and systematically important, but sufficient only for racial distinction, and I distinguish three races, designated I, II, and III, in this species accordingly.

Race 1.

Rhabd megaseleres 425-S80 by S-23 μ; centrotyle microrhabds $30-78$ by $2-5 \mu$ and a tyle $3-6 \mu$; triaenes with simple clades only, or with simple and branched clades, either the former or the latter predominating; rhabdome 104470 by $8-22 \mu$, cladome $160-490 \mu$ broad; acanthtylasters with from three to fourteen rays, $20-36 \mu$ in diameter; aspidasters, regular or irregular, with from four to six ray-spines, $95-130$ by $55-75$ by $7.4-12.2 \mu$, average proportion of length to breadth to thickness $100: 56 . S$: S.S. This race comprises four forms, designated, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

South Molokai, northeast Hawaii.

Race 11.
Rhabd megaseleres 450-760 by $9-20 \mu$; centrotyle microrhabds $39-61$ by 3.4-4.3 μ, tyle 3.5-5.5 μ; triaenes with simple and with branched clades, the former predominating ; thabdome $240-400$ by $12-20 \mu$, cladome $170-450 \mu$ broad; acanthtylasters with from two to fourtcen rays, $22-38 \mu$ in diameter; aspidasters mostly regular, with up to ten ray-spines, $120-156$ by $60-76$ by $9.2-11.4 \mu$, average proportion of length to breadth to thickness $100: 49.8: 7.6$.

South Molokai.
Race III.
Rhabd megascleres 720-980 by 12-22 μ; centrotyle microrhabds $30-44$ by $3-4.5 \mu$, tyle $3.5-5.5 \mu$; triaenes with simple and branched clades, the latter predominating; thabdome $180-520$ by $13-22 \mu$, cladome $280-550 \mu$ broad; acanthtylasters with from four to twelve rays, $25-36 \mu$ in diameter; aspidasters, mostly regular, with from four to six ray-spines, 128-153 by $71-\$ 2$ by 12-14 μ, average proportion of length to breadth to thickness $100: 57.7: 10$.

Northeast coast of Hawaii.
The character of the canal-system and the spiculation show that these sponges belong to the genus Erylus. From all the species of this genus, with the exception of the one from Freemantle, S. W. Australia, which Carter ${ }^{1}$ erroneously identified as Erylus (Stelletta) euastrum O. Schmidt and for which Sollas ${ }^{2}$ established Erylus lendenfeldi, they differ very considerably. Sollas's description indicated, and a reexamination of the type, kindly placed at my disposal by

[^1]Mr. Kirkpatrick, clearly shows, that this species also differs from Erylus sollasii. The chief differences between the two are the presence of asters 100μ in diameter and exceedingly irregular aspidasters in E. lendenfeldi, and their absence in E. sollasii. These differences are quite sufficient for specifie distinction.

Erylus rotundus, sp. now.
megarhabda, var. nov.
1Pate 5, figs. 18-23, 32; Plate 6, figs. 14, 18, 21, 33-35; Plate 7, figs. 22-30, 57 73; Plate s, fig. 13.
typica, var. nov.
Plate 5, figs. 1-4, 11-17, 30; Plate 6, figs. 15-17, 25, 27, 30-32; Plate 7, figs. 16-21, 46-56.
cidaris, var. nov:
Plate 5, fiys. 5, 26-28, 31: Plate 7, figs. 1-10, 42-15, 75, 76, 79; Plate 8, fig. 14.
I establish this species for thirteen speeimens obtained at five different stafions among the Hawaiian Islands. The aspidasters of these sponges are nearly circular in outline and to this the name refers.

The thirteen specimens represent seven distinet forms which fali into three groups. The latter I consider as varieties. One of these varieties possesses remarkable thabd-clusters resembling certain Cidaridae in appearance, hence the varietal name cidaris. The other two varieties, which are destitute of these spicules, differ in respect to their microrhabds, these being very much larger in one of them than in the other. The former I name megarhabdu; for the latter, which is the most frequent of the three, I have selected the name typica.

Two forms belong to the var. megarhabda, four to var. typica, and one to var. ciduris. The number of specimens and the habitat of each form are tabulated below: -

Erylus rotundus

var. megarhabda
form A: 2 specimens from the south coast of Molokai (Station 3849);
" B: 1 specimen from the coast of Kauai (Station 3982); var. typica
form A: 4 specimens from the south coast of Molokai (Station 3849),
" B : 3 dark-coloured specimens from the coast of Kauai (Station 4024);
form C: 1 light-coloured specimen from the coast of Kauai (Station 4128);
" D: 1 specimen from the northeast coast of Hawaii (Station 4061);
var. cidaris
1 specimen from the south coast of Molokai (Station 3849).
Shape and size. The larger of the two specimens of var. megarhabdu, form A (Plate 6, fig. 32), is upright, somewhat flattencl, ellipsoid, 45 mm . high. Its largest and smallest horizontal diameters are 38 and 27 mm . respectively. The surface is rugose. The protruding ridges are high and irregular on the apex, lower and arranged in a more regular manner longitudinally, at the sides of the sponge. On the apex and the upper parts of the sides numerous circular or oval apertures, $0.1-0.7 \mathrm{~mm}$. in diameter, are ohserved. The smaller specimen of this form is irregular, massive, 32 mm . long, and in part covered with foreign boclies, attached to the partly undulating, partly rugose surface. There are a few groups of apertures up to 0.8 mm . in diameter. The single specimen of var. megarhabda, form B , is irregular, massive, and 23 mm . long. To its rugose surface foreign bodies are attached. There is one group of six conspicuous apertures $0.7-1.4 \mathrm{~mm}$. wide on the surface.

The largest of the four specimens of var. typica, form 1 (Plate 5, fig. 30), appears as an upright bunch of thick lobose parts, joined for the greater part of their length to form a continuous mass, from the upper side of which their free lobes protrude. The whole sponge is 67 mm . high; its largest and smallest horizontal diameters measure 69 and 72 mm . respectively. The lobose parts are $16-36 \mathrm{~mm}$. thick and distally rounded. The surface is slightly rugose. On and near the summits of the lobes a few larger apertures, $1-2 \mathrm{~mm}$. wide, are observed; the sides are occupied by numerous small pores. Considerable parts of the surface are covered by an incrusting composite ascidian (Plate 5, fig. 30). The other three specimens of this form are similar, but smaller, the smallest only 33 mm . high. To the surface of one of them numerous foreign bodies, fragments of shells, ete., are attached. The largest of the three specimens of var. typica, form B , is an irregular lobose mass, measuring 55 by 51 by 46 mm . It appears to be composed of more or less coalesced gyriform parts up to 10 mm . in thichness. Some of these terminate in slightly protruding digitate excrescences. The surface is penetrated by numerous small apertures and partly covered with symbiotic sponge-crusts and foreign bodies (fragments of shells, ete.). The other two specimens are similar and only slightly smaller. The
smallest is 52 mm . long. One of them possesses, besides numerous small pores, two larger apertures (oscules) 1.5 and 2 mm . in diameter. The single specimen of rar. typica, form C, is irregular, massive, and 34 mm . long. Several short, lobose protuberances arise from it. The surface is perforated by numerous small pores and foreign bodies are attached to parts of it. The single speeimen of var. typica, form D , is an elongate mass, attenuated at one end to a digitate process, 5 mm . thick. The total length of the sponge is 44 mm . Small pores are seattered over its surface.

The single speecimen of var. cidaris (Plate 5, fig. 31) is an upright, lobose mass, 67 mm . high. Its largest and smallest horizontal dianeters measure 5i and 4.5 mm . respectively. Small irregular grooves are observed on its otherwise smooth, undulating surface. Here and there two adjacent grooves extend for some distance in parallel directions, enclosing a gyriform fold. The surface is perforated by numerous small pores, and a few crusts of symbiotic organisms, hut no dead foreign bodies, are attached to it.

The colour of the interior of these spirit specimens varies from dirty white to light brown, that of the surface is subject to considerable variations. The upper part and the sides of the large specimen of var. megorhabda, form A, are dark purplish hrown, the base and the interior being light dirty brown. Where the dark colour of the sides gradually merges into the light colour of the base, numerous whitish spots, marking the position of the - mostly closed - pores, are observed on the surface. The smatler specimen of this form is coloured in the same way, but the light-coloured part of the surface is here relatively more extensive. The single specimen of var. megarhabde, form B , is rather dark purplish gray.

Three of the specimens of var. typien, form A, are purplish brown alove and light dirty brown below; one is bluish gray. The three specimens of var. typica, form 13, are dark purplish black above and much lighter purplish brown below. The single specimen of var. typica, form C, is light purple with a small, consilerably darker patch. The single specimen of var. typica, form D, is dirty white. The single specimen of var. cideris is whitish with a large brown patch, in which numerous whitish spots, marking the position of the mostly closed pores, are ohserved.

The differences in the degree of pigmentation of these sponges are probably due to differences in the amount of light that fell on their surface during growth. I think that in the specimens not uniform in colour, the upper parts, which were more exposed to the light, became more strongly pigmented than the lower parts,
which were more or less in the shade, and am inclined to ascribe the differences in the degree of pigmentation of the darkest parts of different specimens to differences in the amount of light due to differences in the depth at which they grew. Unfortunately the information about the depths given is not sufficiently exact to allow of a definite conclusion on this point.

The superficial part of the body is differentiated to form a cortex, composed of an outer and an inner layer. The outer layer is oceupied by dense masses of spieules and appears as an armour. Under the outer exposed parts of the surface this armour usually is $65-90 \mu$, in the walls of sheltered cavities, extending farther into the interior, only 35μ thick, or even thinner. Pigment cells occur in the armour between the spicules on the dark parts of the surface. The inner layer of the cortex is usually $55-75 \mu$ thick and contains hardly any spicules. It is composed of paratangential fibres, pigment cells, and usually contains also granule cells.

The pigment cells, the number of which is in proportion to the degree of darkness of the surface, are nearly always clongate and usually extend paratangentially. They have one or, more frequently, several lobose or filiform processes, appear irregularly amoeboid, and are very variable in size, $0-29 \mu$ long. The transparent plasm of these cells contains numerous apparently spherical granules, dark brown in transmitted light, which measure $0.30 .8 \mu$ in diameter. These granules are usually rather uniformly distributed throughout the body of the cell and its processes, but sometimes parts of the cell are free from them. Occasionally rows of single pigment granules, appearing like strings of beads, have been observed in the sections. These probably lie in (invisille) filiform processes of pigment cells.

In the distal part of the choanosome and in the lower layer of the cortex of forms A and B of var. typica, and also in some of the others, remarkable gramule cells have been observed in large numbers. These cells appear to be situated in spherical, oval, or irregular cavities of the ground substance, $15 \cdot 20 \mu$ in diameter, which in some places lie very close together. The granule cells themselves are more or less spherical, measure $S-12 \mu$ in diameter, appear hyaline, and stain slightly with hacmatoxylin and anilinc-blue. They are either simple and structureless, or composed of a number, from ten to twenty or so, of polyedric parts 24μ in diameter. The spaces between these parts appear to be empty. Rarely a more strongly stained, superficial layer and a body, which may be a nucleus, have been observed in the simple, undivided cells; and occasionally minute pigment granules are attached to, or contained in, the ones
composed of phlyedric parts. It is possible that the spaces between these cells and the walls of the cavities, within which they lie, and which appear to be empty, are in reality thick, hyaline, cell walls. But as these spaces are not stainable with any of the stains (eosin, malachite-green, magenta, aniline-blue, methylriolet, azure, hamatoxylin, aurantia, Bismarek-brown), I think this improbable. The cells composed of parts are much more numerous than the simple, undivided omes. The latter are seattered quite irregularly between the former and do not increase in number either towards the surface or towards the interior. Athough convinced that the undivided ones and the ones composed of polyedric parts are merrely different stages in the development of the same kind of cell, I am unable to say whether the simple ones arise from the composed ones or vice rerse.

In the sections of var. typica, form B, groups of broad, irregularly oval cells, $25: 30 \mathrm{long}$, were observed in the distal part of the choanosome. The plasm of these eells is gramular and each one contains a large meleus, about $\delta \mu$ in diameter. These cells appear to be ova.

In the sections of var. cidaris young larvae were observed. Some of these lay free on the canals, others appeared to be just on the point of emerging from the c:avities of the ground substance in which they were bred. These larvae are spherical, measure $50-60 \mu$ in diameter, and appear to consist of a central gramular mass, surrounded by a single layer of roundish, not elongate cells about $8 / \mu$ in diameter.

In the choanosome of var. typica, form D, large numbers of monocellular symbiotic Algate wre observed. These are spherical or oval, measure $15-20 \mu$ in maximum diancter, and have a stout cell wall about 4μ thick.

Canul-system. The uniporal entrances to the canal-system are usually cirmlar, and, when quite open, $100-250 \mu$ wide. Dilated pores of this width are however not frequent, most of the pores heing more or less contracted and :maller, or closed altogether. The flagellate chambers are more or less spherical and measure $1+23 \mu$ in diameter. Those of var. ciduris are smaller (diameter 1417μ than those of the others. The collar cells efothing them are not numerous, distant, rather slemer, and $4-6 \mu$ long. The larger eanals are surrounded by stont mantles of tissue free from megascleres and flagellate chambers. Some of them are traversed by sphincter-membranes. Sueh have been particularly whererel in var. lypica, form B. In the forms C and D of var. lypice and in var. cidur is no ancrines much larger than the pores described above, were observed on the surface. In these sponges the efferent openings (oscules) do not seem
to be of much greater width than the afferents. In both forms of var. meyurhabde and in some specimens of the forms A and B of var. typiea on the other land, larger oscules, up to 1.4 mm . wide in the former, and up to 2 mm . wide in the latter variety, have been observed. These larger oscules usually lie on or near the summit of protruding parts of the sponge. In some cases, as for instance in megurhabdu, form B, large oseular tubes, up to 2.4 mm . in diameter, lead up to the oscules. In other cases, as for instance in var. cidaris, a tract of transparent tissue, about 1.7 mm . Droud, free from megascleres and flagellate chambers, extends from each of the here strongly contracted or cerenly closed oscules, down into the interior of the sponge. In the axis of this tract a row of smatl eavities is observed. These cavities, which in the radial sections appear to be isolated, are $100-150 \mu$ broad, up to $350 \mu \mathrm{long}$, and situated close together. Distally, towards the contracted oseule, they beeome smaller and searcer. I consider these rows of cavities as the remnants of the lumen of the strongly contracted oseular tubes.

The skeleton consists of rhabd megascleres, microrhabols, triaenes, large aeanthtylasters with not very numerous rays, small oxyasters with numerous rays, and aspidasters. In several forms also asters, resembling the acanthtyasters in size and ray-number, but with conical rays, which become very slender distally, have been observed. These spieules, which are particularly numerous in var. megarhabda, form A, are in all probability merely young stages of the ordinary acanthtylasters. I shall not therefore deal with them as a special spicule form. In var. cidaris aster-like rhabd-clusters have been olserved.

Some of the rhabed megaseleres are isolated, others form more or less undirlating bundles (Plate 6, fig. 25a), which traverse the internal parts of the chomosome in a radial or, in the digitate and lobose processes, longitudinal direction, and, on nearing the cortex, tend to assume a position vertical to the surface. These bundles are in var. megarhabda, form A, up to 100μ broad. In the other forms most of the bundles are 1040μ thick. The broad bundles of var. megarhabda, form A, appear to be flattened, band shaped; the narrow ones are cylindrical. The isolated rhabds are, in the interior, quite irregularly scattered; near the surface, just below the cortex, most of them usually assume a position more or less vertical to the surface. This radial arrangement of the subcortical rhabels is particularly well marked in var. megurhabdu, form A.

The asterose rhabd-clusters of var. cideris are seattered in the choanosome.
In var. megarhabida the armour is composed chiefly of obliquely or radially situated microrhabels, aspidasters being relatively scarce and confined to its
superficial part. In this variety numerous microrhabds also oceur seattered in the choanosome. In vars typica and cidaris, on the other hand, the armour is chiefly composed of aspidasters, and here the microrhabds are confined to its superficial part, except in the vicinity of the pores, around which they form mantles, extending right through the whole armour. Sometimes the superficial microrhabd-bearing part of the armour-layer is stout and well developed, and then it consists of an outer zone composed of paratangial microrhabds and an inner zone of oblique and vertical (radial) microrhabds, lying above and between the outermost aspidasters. Often, however, this mierorhabd-bearing outer armour-layer is insignificant, and then eomposed only of relatively few, mostly oblique mierorhabds. It is possible that the superficial parts of the sponges presenting this appearance have been rubbed off. The majority of the mierorhabds in the pore-eanal mantles are situated so that one of their ends points obliquely upward towards the centre of the pore. In some forms of var. typica, particularly in form B, a farr number of mierorhabds were also found seattered in the choanosome.

The cladomes of the triaenes extend paratangentially just below the cortex or within its lower, fibrous layer; their rhabromes are directed radially inward. The triaenes oceupy the interporal spaces and in some forms, as for instance in var. typica, form A (llate 6, fig. 27a), form well-defined groups, in which a number of triaenes lie close together at the points of intersection of the interporal zones.

The acanthtylasters and their oxyaster-like young are seattered throughout the choanosome. They are most abundant in one of the specimens of var. megarhabdr, form A. In some forms, as for instance in var. typica, form B, they are very much searecr in the subcortical region than in the interior of the choanosome. I great many acanthtylasters lie in the walls of the choanosomal canals. Some of the rays of these usually protrude into the canal-hmen. In the walls of the remnants of the contracted oseular tubes of var. ciduris, above referred to, the acanthtylasters stand particularly close together and here form a veritable pavement. This local acanthtylaster-density is doubtless due to the contraction of the surface on which, when normally extended, they are probably distributed in the ordinary, not particularly dense manner.

The small oxyasters with numerous rays are confined to the roofs of the subcortical cavities and the walls of the pore-canals. In the choanosome they appear to be entirely absent. In the walls of the pore-eanals, where they are most numerous and sometimes form quite a dense layer, they extend right up
to within a short distance of the outer surface. In one of the specimens of var. megarhabda, form A, I failed to find any of these asters in situ in the sections.

The aspidasters take part in the formation of the cortical armour and are also found scattered in the choanosome. In vars. typica and cidaris the greater part of the armour is composed of these spicules, which are here absent only in the mantles surrounding the pore-canals. Apart from these mantles, the proximal (internal) part of the armour in these varieties consists entirely of aspidasters. In the distal (external) part of the armour microrhabds are usually added to the aspidasters, and sometimes the outermost part of the armour consists entirely of microrhabeds. Most of the aspidasters of the armour are situated paratangentially. Under exposed tracts of the surface they form many layers, under the sheltered parts of it which limit the cavities, extending into the interior, only few layers or only a single layer. In var. meyarhabda the aspidasters form only a small part of the armour and are liere confined to its distal (external) part. Young and also adult aspidasters are usually found seattered in the chomosome. Here they generally lie in cavities of the ground-substance, as long and broad but much wider (thicker) than the aspidasters, so that the margins of the aspidasters are in contact with the ground-substance, while their faces are separated from it by apparently empty spaces. Seen en face the aspidasters consequently appear to fill these cavities completely, seen in profile they appear as narrow bars occupying the long axis of the oval cavities. The empty spaces at their sides may of course have been produced by the shrinkage of the tissue, during the preservation of the sponges in alcohol, but they may also be natural, and in this case oecupied possibly by some liquid, rich in silica secreted from the surrounding tissue, from which the cell or cells building the aspidaster draw their supply.

The rhabd megaseleres (Plate 5, figs. 11-23, 26-28a) are for the most part simple amphioxes or amphistrongyles, curved uniformly, or in the middle more strongly than near the ends. Occasionally style (Plate 5, fig. 17c) and angularly bent or branched derivates of these rhabds have been observed. The ordinary amphioxes and amphistrongyles are $310-650 \mu$ long, and $6-15 \mu$ thick. Of the amphioxes and amphistrongyles occurring together in the same specimen, the former are on the whole longer than the latter. In the vars. megarhabda and cidaris nearly all the rhabls are sharp-pointed amphioxes (Plate 5, figs. 19-23, 26-28a), blunt amphioxes and amphistrongyles (Plate 5, fig. 18) being rare. In the forms B and C of var. typica, sharp-pointed amphioxes (Plate 5, figs. 14, 15, 17a) also preponderate; in the forms A and D of this variety, on the other hand, the blunt rhabds (amphistrongyles) (Plate 5, figs.
$11-13,16 h$) are more numerous than the sharp-pointed amphioxes. Some of the amphoses, this was particularly observed in form B of var. typict, appear as amphistrongyles, the blunt ends of which are surmounted by small conical tips. 'These tips may be simple or terraced, telescope-like. Angularly bent or hrancheel rhabrderivates have chiefly heen observed in form A of var. megarhabde and in var. cideris. The spicules of this kind in the last-named variety appear as transitional forms connecting its aster-like rhabd-clusters with the ordinary rhabds.

The dimensions of the rhabl megascleres and the relative frequency of the sharp-pointed and blunt amphioxes and amphistrongyles in the different forms and varieties are tabulated below.

The aster-like rhabd-chusters (Plate 7, figs 4 10), whieh have been fomm only in var. cidaris, are, in my opinion, to be considered as derivates of ordinary rhabds. They appear as smooth oxyasters, compused of from about fifteen to thirty eoncentrie, straight rays fairly uniform in thickness, but differing exceedingly in length, and distributed very irregularly. From four to ten of the rays appear properly developed; these are eonieal, more rapidly attenuated distally than proximally, and pointed. The other rays are rudimentary, very short, cytindrical, and terminally rounded. These rudimentary rays together form a kind of lobose centrum, from whieh the longer, pointed rays arise. The rhabdelusters are $125-180 \mu$ in total diameter. Their rays are $5-8 \mu$ thick and the longest one of the whole eluster is $70-100 \mu$ long.

The branched amphioxes (Plate 7, figs. 1-3) also occurring in this variety, which I eonsider as transitions between the elusters and the ordinary rhabds, are $410-520 \mu$ long and $9-13 \mu$ thick. They bear from one to fur straight branch-rays.

The microrhabds (Plate 5, fig. 27e: Plate 6, figs. 30-3.5; Plate 7, figs. 46-51, $53 \mathrm{a}, 5 \mathrm{a}, 55,56 \mathrm{a}, 57 \mathrm{a}, 60 \mathrm{a}, 61-73,75 a, 79$) are for the most part simple, isoactine, gradually or rather abruptly pointed or, more rarely blunt, uniformly curved, and usually slightly rentrotyle amphioxes. The tyle, never large, is often so insignificant as to be hardly visible, and many of these spieules seem to have no central thickening at all. In the forms A, B, and C of var. typica (Plate 6, figs. 30-32; Plate 7, figs. 46, 48-51,53a, 54a, 55, 56a) nearly all the mierorhabls have a distinet eentral tyle. In the mierorhabls of var. cidaris (Plate 7, figs. 75a, 79) the tyle is not so well developed, and in most of the mierorhabls of var. megnrhabda (Plate 6, figs. 33-35, Plate 7, figs. 57a, 66-73) and var. typict, form D) (Plate 7, fig. 47), the tyle is hardly perceptible or absent altogether. Besides these regular, simple, and isoaetine mierorhabds a few anisoactine ones, with one aetine redueed in length and rounded at the end, and a few with small branehrays near one end, have been observed in var. ciduris, in both forms of var. megarhabda, and in form C of var. typica. The mierorhabds are $30-98 \mu$ long and 1.5-7.5 μ thick. Those of var. megarhabda are considerably larger (maximum averages of three $S^{2} .395 .7$ by 5.36 .7 ft) than those of the other two varieties (maximum averages of three $54-61.7$ by $3-3.8$ and 66.1 by 4.2μ respectively).

DMENSIONS AND SHAPES OF MCRORH.ABDE.

Most of the triaenes (Plate 5, figs. 1-5; Plate 6, fig. 27a) are orthotriaenes, some plagiotriacnes. The rhabdome is conical and generally slightly and irregularly curved in an undulating manner. It is $170-370 \mu$ long and, at the cladomal end, 6-12 μ thick. The clades of the same cladome are fairly equal in length. They are usually slightly curved and $80-270 \mu$ long. The breadth of the cladome is $155-440 \mu$. The triaenes of var. cidaris have the broadest, those of var. megarhabda the narrowest cladomes. The angle enclosed between the clades and the rhabdome is $90-107^{\circ}$. In form A of var. megarhabda I have found a few triaenes with clades either bearing a small branch-ray or abruptly bent down near the end.

DIMENSIONS OF TR1AENES

The acanthtylasters (Plate 6, figs. 14b, 15, 16; Plate 7, figs. 52 54b, 56b, $57 \mathrm{~b}, 58,59,75 \mathrm{~b}, 76 \mathrm{~b}$) have from two to fourteen concentric, regularly distributed rays. Two-rayed acanthtylasters are rare and have been observed only in var. cidaris. Also the threc-rayed, which have been found in var. typica, form B, var. megarhabda, form A, and in var. cidaris, are not frequent. Four- to eight-rayed acanthtylasters are abundant in all the forms. Aeanthtylasters with more than eight rays appear to be most frequent in var. typica, form B , and in var. megarhabda, form A . The acanthtylasters measure $1231 / 1$ in total diameter. Those of var. cidaris are somewhat smaller than those of the other two varieties. The size of the acanthtylasters is on the whole in inverse proportion to the number of their rays, those with from two to six rays being 16-31, those with from seven to nine rays 14-24, and those with from ten to
fourten rays $12-19 \mu$ in diameter. The rays are, at the base, $0.52 .4 \mu$ thick and taper distally. At their ends they are usually thickened to an acanthtye, rarely simply rounded off. The transverse diameter of the aeanthtyle (rounded end) is, inclusive of its spines, $0.5-4 \mu$. The basal part of the rays is always quite smooth. This smooth part may be quite short, or it may extend right up to the acanthtyle (the rounded, spiny end). Acanthtylasters with rays smooth right up to the acanthtyle have been observed chiefly in var. typica, form A. Usually the proximal one to two thirds of the rays are spineless, the remaining distal part loeing either rough or provided with smaller or larger spines. The larger the spines, the fewer their number. Frequently an increase in the size of the spines towards the end of the ray is noticeable. The acanthtyle is covered with numerous, faily large spines. Most of the spines appear to be conieal and puinted, but in var. megarhubda, form A, acanthtylasters with cylindrical spines, roumded at the end, have also been observed. The spines of the acanthtyle are usually somewhat recurved. The proximal spines are usually direeted more or less obliquely backward, the distal obliquely upward and outward. On the whole the acanthtyle-spines have the appearance of short hair combed down in all dircetions from the apex. The spines on the other parts of the rays are vertical or, more rarely, directed obliquely outward.

DHMENSIONS OF ACANTHTYLANTERS.

DIMENSIONS OF ACANTHTYLASTERS (contimued).

						ytus	otund	us			
		var.	megarha	bda			ar. typic				
		A	B		A	B	c	D			
Acant	tylasters										
			䭴	$\stackrel{\stackrel{\infty}{5}}{\stackrel{\rightharpoonup}{0}}$					$\frac{\sum_{\overline{3}}^{E}}{\bar{E}}$		(1)
	total diameter, μ	23		23		23-29			23-29	$25-28$	23-29
with three	basal thickness of rays, "	1.4		1.1		$\begin{aligned} & 1.2- \\ & 1.1 \end{aligned}$			$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.1- \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.9 \end{aligned}$
	diameter of acanthtyle (rounded end), μ	2.7		2.7		2-2.1			22.1	$\begin{aligned} & 1.1 ; \\ & 2.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.7 \end{aligned}$
	total diameter, μ	1627	16-26	16-27	19-30	17.31	17.23	15.26	17.31	16.26	16-31
with four to six	basal thickness of rays, μ	0.8-2	0.81	H.S 2	0.7-2	$\begin{aligned} & 0.8 \\ & 1.7 \end{aligned}$	(1.5-2	$\begin{aligned} & 1.2- \\ & 1.5 \end{aligned}$	0.5-2	12.1	$\begin{aligned} & 0.5- \\ & 2.4 \end{aligned}$
	diameter of acanthtyle (rounded end),	$\begin{aligned} & 1.3- \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.3- \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.5- \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.4 \end{aligned}$	14	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	14	2-3	1-1
	total diameter, "	16-21	11-23	14-23	15-19	16-21	15-24	17-1.5	15-24	16-21	11-24
with seven to mine	basal thickness of rays, ${ }^{\prime \prime}$	$\begin{aligned} & 0.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.7- \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$	1.2	$\begin{aligned} & 0.9- \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.6- \\ & 1.2 \end{aligned}$	1.2	$\begin{gathered} 0.6 \\ 1.3 \end{gathered}$	1-1.7	$\begin{aligned} & 0.6- \\ & 1.7 \end{aligned}$
	diameter of acanthtyle (rounded end), ${ }^{\prime}$	$1-2.3$	1.32	1-2.3	1.5	1.3-2	0.5-2	1.5	$0.5 \geq$	$\begin{aligned} & 1.5- \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 2.3 \end{aligned}$
	total diameter,	13-19	12-17	12-19	12-17	15-19	13-16	16	1519	13	$121!$
with ten to fourteen	basal thickness of rays, /"	$\begin{aligned} & 0.6- \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.5- \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.5- \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$	0.7	$\begin{aligned} & 0.5- \\ & 1.3 \end{aligned}$	1	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$
	diameter of acanthtyle (rounded end).	$\begin{aligned} & 1.2- \\ & 2.1 \end{aligned}$	1-1.8	1-2.1	1-1.6	0.7-2	$\begin{aligned} & 1.2- \\ & 1.8 \end{aligned}$	1.2	0.2-2	1.2	$\begin{aligned} & 0.7- \\ & 2.1 \end{aligned}$

It has been stated above, that oxyaster-like spicules similar in size and ray-ummber to the acanthtylasters, which I consider a young form of the latter, atso oceur in these sponges. These spicules are rather numerous in var. megathabdu, form Λ, and met with in smaller numbers in var. meyorhabda, form B, and in the forms I and C of var. typica. The (listal parts of the rays of these asters are exceedingly slender. Proximally the rays thieken considerably and abruptly, so that their basal part appears bulbous. Besides these spicules, which I consider as the carliest known stages, others similar to them, but with thicker and distally rough rays, representing a later developmental stage, are ohserved. linally various asters of this kind oceur, in which a more or less pronomend spiny thickening crowns the end of each ray. These asters connect the slender-rayed oxyasters with the true aunthtylasters.

The small many-rayed oryasters (Plate 6, fig. 14e; Plate 7, figs. 52e, 60c, 76e) are without centrm or have a slight central thickening, in var. typica, form A, up to 4μ in diameter. There are from eight to twenty-two, or more, usually from fourteen to twenty, equal, concentric, and regularly distributed rays. The rays are, at the base, $0.4-0.9 \mu$ thick and eonical, either throughout or only at the end, and then nearly cylindrical in their basal part. They are abways sharp pointed and more or less spiny. Sometimes the spines are too small to be discerned as such and their presence is indicated only by a certain roughness of the rays. Nore often, however, particularly in the larger oxyasters, the spines are large enough to be clearly made out. The larger the spines, the fewer their number. Some of the spines frequently form a verticil some distance below the end of the ray. Oxyasters of this kind were chiefly observed in var. typica, form A. The total diameter of the oxyasters is $7-17 \mu$. Those of var. typica are a little smaller than those of the other two varieties. A few asters were olserved which appeared as transitions between these oxyasters and the acanthtylasters.

DIAMETERS OF KMALL OXVANTERS.

The aspidasters (Plate 5, figs. 27f, 28f; Plate 6, figs. 17, 18; Plate 7, figs. 16 30, 42-45; Plate 8, figs. 13, 14) are broad-oval or circular dises, often with a somewhat irregular outline. This irregularity of outline generally does not exceed that of the aspidasters represented in figs. 18, 19, and 25 on Plate 7 ; occasionally, however, quite irregular aspidasters, with one or more deep ineisions reaching far into the interior, have been observed in all varieties. The aspidasters are $50-77 \mu$ long, $46-70 \mu$ broad, and $4.48 .8 \mu$ thick. Those of var. megarhabda (50-66 by 46-59 by 4.6-S.8 μ) are smaller than those of the other two varieties. The general average proportion of length to breadth to thickness of the aspidasters of all the forms (rarieties) is $100: 93.3: 10.2$. The aspidaster-dise is either of uniform thickness throughout, or slightly thickened in the middle. Its margin is simply rounded off. An umbiticus could not be detected. All parts of the surface, the margin as well as the two faces, are covered with protuberances. The largest protuberances are 0.7-2 μ thick and about as high. Nost of them bear a terminal rerticil of usually from three to seven exceedingly small lateral spines. The large protuberances are usually seattered rather irregularly over the surface. Oceasionally some of the protuberances of the central part of the aspidaster lie in straight lines, radiating from the centre of the dise. Between the larger protuberances small ones, just perceptible with the strongest lenses, lie singly or in small groups on the otherwise smooth surface of the dise.

DIMENSIONS OF ADULT ASPIDASTERS.

The youngest aspidasters observed were oval or circular dises, about half the size of the adult, and composed of numerous, long, exceedingly slender, prefectly straight rays, lying nearly in the same plane, and radiating from an irregular, lobose structure $2-4 \mu$ in diameter. 'This lobose centrum is apparently romposed of short, terminally rounded concentrie rays, arising obliquely to the plane occupied by the long rays. The rays, which in this young stage appear to be isolated throughout, grow in length and in thickness. Their longitudinal growth leads to an inerease in the size of the aspidaster, their transverse growth (thickening) to a coalescence of the rays themselves, which, as the growth continues, progresses from the centre towards the margin of the dise. Thus the aggregations of isolated, radial rays become larger, solid dises with serrated margins. This goes on until the spicule has attained nearly its full size. Then the longitudinal growth of the rays ceases, while their lateral growth continues. This leads to a filling up of the serrations and to the forma-
tion of smooth dises with more or less continuous margin (Plate 7, figs. 22, 23). On the whole of the surface, the margin as well as the faces, of the dise, small exerescenees then make their appearance, and these grow out to form the protuberances above described.

LOCALITIES AND NATIRE OF ENVIRONMENT.

VAR. MEGARHABDA LENDENFELD.

$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \cdot \bar{x} \\ & \hline \underline{x} \end{aligned}$	Locality	Wate	Depith		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3 S 49	S. coast of Molokai, Lae-o Ǩa Laau Light. N. 71°, W. 2I.9'.	Aprils, 19\%2	$\begin{aligned} & 13 .-75 \mathrm{~m} . \\ & (73-13 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 19.5^{\circ} \\ \left(67.6^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse sand Droken shellis, and corals	$\stackrel{2}{\text { Form }}$
3982	Vicinity of Kauai Island, Nawiliwili Light. N. 685, IV. 1.6'.	June 10, 1902	$\begin{aligned} & 126-73 \mathrm{~m} \\ & (333-10 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 9.2^{\circ} \\ \left(48.5^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse hrown eorals, sanul. shells.	$\stackrel{1}{\text { Form B }}$

VAR. TYPHCA LENDENFELD.

	Locality	Date	Depth		Bottom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3819	\therefore coast of Molokai, Lae-o Ka Laau Light. N. 71°, W. 21.9'.	April S, I902	$\begin{aligned} & 133 \text { is m. } \\ & \text { (73 4:3 f.) } \end{aligned}$	$\begin{aligned} & 19.5^{\circ} \\ & \left(67.6^{\circ} \mathrm{F} .\right) \end{aligned}$	Coarse sand, broken shells, corals	$\stackrel{1}{\text { Form A }}$
4024	Vicinity of Kanai Island, Mokuaeae Islet. S. $\mathrm{B} 3^{\circ}$, E. 7.6^{\prime}.	June -3, 1902	$\begin{gathered} 14-79 \mathrm{~m} . \\ (24-43 \mathrm{f} .) \end{gathered}$	$\stackrel{23.2^{\circ}}{\left(73.7^{\circ} \mathrm{F} .\right)}$	Coarse coral, sand, and Foraminifera	$\stackrel{3}{\text { Form B }}$
4061	N. E. coast of Hawaii, Kauhola Light. \& 79°, E. 6.7'.	July 18, 1902	$\begin{gathered} 14-1.52 \mathrm{~m} . \\ (24-3 \mathrm{f} .) \end{gathered}$	-	'orals, saml, coralline norlules, and fooraminifera	$\stackrel{1}{\text { Form I) }}$
4128	Vicinity of Kauai 1slaud. Itanamaulu Warehouse. N. $14^{\circ} 30^{\prime}$, W. 2.6^{\prime}.	Angust 1, 1902	$\begin{gathered} 16.5-3: 27 \mathrm{~m} \\ (253-\mathrm{fi}-90 \\ 179 \mathrm{f.}) \end{gathered}$	$\begin{gathered} 8.5^{\circ} \\ \left(17.5^{\circ} \mathrm{F} .\right) \end{gathered}$	Coarse brown coral, sand, and Foraminifera.	$\begin{gathered} 1 \\ \text { Form } \\ (2) \end{gathered}$

	Lowality	Hate	Depth	绻品	Buttom	$\begin{aligned} & \text { No. of } \\ & \text { specimens } \end{aligned}$
3819	S. coast of Molokai, Lae-o Ka Lazu Light. N. 71°, W. 21.9^{\prime}.	Ipril S, 1602	$\begin{aligned} & 133-7 \mathrm{~m} \\ & (7.3-43 \mathrm{f} .) \end{aligned}$	$\begin{gathered} 19.5^{\circ} \\ \left(676^{\circ} \mathrm{F} .\right) \end{gathered}$	'oarse sand. broken sholls. and corals.	1

The thirtecn sponges described above obviously form a systematic, though far from a homogencous, group, the specimens comprising it differing not inconsiderably from each other in several respects. In three specimens the cortical armour is chiefly composed of microrhabds, the aspidasters in it being but few and confined to its external part. In the other ten the cortical armour is composed chiefly of aspidasters, and the mierorhabds which take part in its formation are confined to the external part. In the three specimens the microrhabds are considerably larger and the aeanthtylasters and aspidasters smatler than in the ten. Among these ten there is one which has smaller oxyasters and relatively thimer aspidasters than the others, and which possesses aster-like rhabd-clusters, a kind of spicule not observed in any of the others. Thus three secondary groups, megarhabda (armour chiefly composed of microrhabls, microrhabds large, aspidasters small), typica (armour chiefly composed of aspidasters, microrhabds small, aspidasters large, without rhabdclusters), and cidaris (armour chiefly composed of aspidasters, mierorhabds small, aspidasters large, with rhabdeclusters) can be distinguished.

Two of the specimens of group megarhabda, which come from the south eoast of Molokai, are fairly identical, while the third, which comes from the coast of Kanai, has a more grayish colour, smaller rhabd megascleres and mierorhabols, comsiderably larger triaenes, larger oxyasters, and thinner aspidasters. Thus two somewhat different forms (1 and B) are eontained in the group megarhabde.

In five of the nine specimens of group typica most of the rhabd megascleres are amphistrongyles or very blunt amphioxes; in the other four most of these spicules are sharp-pointed amphioxes. Four of the five specimens with chiefly amphistrongyle thalyl megascleres, which come from the south coast of Molokai, are fairly identical with each other; the fifth, which comes from the northcast coast of Hawaii, is not like these, massive, lobose, but elongate, digitate in shape, having a much lighter colour, thicker rhabd megaseleres, less centrotyle, for the most part simple amphiox microrhabds, somewhat larger euasters and relatively thimer aspidasters. Of the four specimens with chiefly sharppointed rhabel megascleres, which all come from the coast of Kauai, three (from Station 4(024) are fairly identical, while the fourth (from Station 4128) has a lighter colour, slightly larger microrhabds, much smaller acanthtylasters and longer, considerably broader and thinner aspidasters. Thus four forms (A, B, C, and I) are contained in the group typica.

The surroundings of all the different forms of the same group must have
been different to a certain extent, since they were found at different stations. For this reason, and because the differences between them are not great and their peculiarities more in the character of individual (somatic) adaptations than of germinal qualities, I think that no greater systematic value than that of local forms, two, A and B, in the group megarhabda, and four, A, B, C, and D, in the group typica, ean be attached to them.

The differences between the groups are much greater, and can hardly be directly due to differences in the surroundings, since specimens belonging to different groups were repeatedly captured together, at one and the same station. This and their general nature lead me to eonsider the peenliarities, by which these groups differ, not as mere sumatic adaptations but as germinal characters. Although most probably germinal in nature and certainly not inconsiderable, these differences are, in my opinion, nevertheless insufficient for more than varietal distinction.

The characters of the three varieties are the following:-

> Var. megarhabda.

Cortical armour composed chiefly of microrhabds. Phabd megaseleres mostly sharp pointed, blunt forms rare; 330-650 by $6-13 \mu$. Rhabd-chasters absent. Mierorhabds gradually and sharply pointed, central tyle small or absent; 43-98 by 3-7.5 μ. Triaenes; rhabdome 170370μ long; eladome $160-$ 350μ broad. Aeanthtylasters with three or more rays; 12-27 μ in diameter. Oxyasters $7.5-17 \mu$ in diameter. Aspidasters $55-66$ by $46-59$ by $4.6-8.8 \mu$; average proportion of length to breadth to thickness 100:90.5:10.3.

South coast of Molokai; coast of Kauai.

Var. typica.

Cortical armour eomposed chiefly of aspidasters. Rhabd megaseleres sharp pointed or blunt amphioxes, or amphistrongyles; 310-570 by 6-15 μ. Rhabd-clusters absent. Mierorhabds variously pointed or blunt, with or without central tyle; $30-66$ by $1.5-4 \mu$. Triaenes; rhabdome $200-220 \mu$ long; cladome $150-400 \mu$ broad. Acanthtylasters with three or more rays; $15-31 \mu$ in diameter. Oxyasters $7-16 \mu$ in diameter. Aspidasters $50-77$ by $48-70$ by 4.t-7.S μ; average proportion of length to breadth to thickness 100:94:10.5.

South coast of Molokai; coast of Kauai; northeast coast of Hawaii.

Viar. cidaris.
Cortical armour compsed chiefly of aspidasters. Rhabd megascleres chiefly sharp-pointed amphioxes; f(0)-650 by \& 12 f. Rhabl-clusters 1201SO μ long. Alicrorhablels gradually and sharply pointed, more or less centrotyle; 32-50 by 2 4.5 μ. Triaenes; rhablome $180-190 \mu \mathrm{long}$; dadome 300 440μ broad. Acanthtylasters with two or more rays; $12-31 \mu$ in diameter. ()xyasters 814μ in diameter. Aspidasters 6575 by 6269 by $5-7 \mu$; average propertion of length to brealth to thickness 100:96:9:2.
south conast of Molokai.
The structure of the eamal-system and spiculation of these sponges elearly show that they belong to Erylus. They differ considerably from all the species of this gembs previonsly described, loy the nearly circular shape and the small size of their aspidasters and other characters. Their nearest ally is the speeies here described as Erylus caliculatus. By its shape being ealiculate, by its mierorhabols being amphistrongyle insteal of amphiox, by its aspidasters being larger, relatively much thicker, and partly reniform in shape, and by its spicules generally being larger and much stouter, this sponge differs from E. rotundus to such an extent, that it must be considered specifieally distinet from it.

Erylus caliculatus, sp. nov.

Plate 5, firs (6-10, 24, 25 29; Plate f, figs. 1-13, 19-23, 26, 24, 29; Plate 7, figs. 11-15, 31-41, 74, 77, Ts, so; Plate S , figs. 1-12, 15-20.

I establish this speeies for a specimen obtained on the northeast eoast of Hawail (Nation 4062). The name refers to its caliculate shape.

Shape and size. The sponge (1'late 5, fig. 29) appears as a broad, low, truncate, inverted cone. It is 33 mm . high. The base of the cone, which forms the upper side of the sjonge, is irregularly oval in outline, depressed in the midelle, 47 mm . 10 ng , and 36 mm . broad. Its elevated margin is rounded, about 6 num. thick, and partly divided into lobes. The base of attachment, which corresponds to the trumeate summit of the cone, measures 30 by 18 mm . The surface is uneven and covered with shallow grooves, $0.5-1 \mathrm{~mm}$. broad. These grooves are particularly well marked on the protruding marginal lobes. Numerons small cincular pores, up to 0.3 mm . in diameter, are seattered over the sides of the sponge. Apertures occur also on its depressed upper face, but these are not so numerous and less uniform in size than those on the sides. The largest of these apical apertures, which I am inclined to consider as oseules, mostsure 1 mm . in diameter. The margin is free from pores.

The colour of the sponge (in spirit) is dirty white.
The superficial part of the body is differentiated to form a cortex which contains an aspidaster-armour and is about 65μ thick.

Canal-system. The, probably efferent, apertures on the depressed, terminal face of the sponge are surrounded by sphincter-membranes. The flagellate chambers (Plate 6, figs. 28, 29) are more or less spherical and $1.5-22 \boldsymbol{2}$ in diameter.

The skeleton consists of thabd megascleres, microrhabds, triaenes, acanthtylasters, slender-rayed oxyasters, small oxysphaerasters, and aspidasters. Some of the rhabd megascleres form bundles (Plate 6, fig. 26a), others are isolated and seattered. The bundles extend from the base upward and ontward; on nearing the surface they curve, where necessary, so as to abut steeply or vertically on the cortex. The cladomes of the triaenes extend paratangentially just below the cortical armour, their rhabdomes being directed radially inwards. The triaenes occupy the interporal spaces (Plate 6, fig. 23) and often form welldefined groups at the intersections of the interporal zones. The microrhabets form a thin superfieial layer overlying the aspidaster-armour and oceupy the mantles surrounding the cortical canals, chiefly their outer parts farthest from the lumen. A few microrhabds are also found seattered in the choanosome. The acanthtylasters and the slender-rayed oxyasters, which latter I consider as young acanthtylasters, are numerous in all parts of the choanosome and extend right up to the cortex and even into the mantles of the cortical canals. The small oxysphacrasters are confined to the subcortical region and the mantles of the cortical canals, on the inner surface of which they are often quite numerous. The aspidasters occupy the proximal and middle parts of the cortical armour in dense masses, leaving only the mantles of the cortical canals free. Some aspidasters also occur scattered in the choanosome. The aspidasters in the armour are mostly situated paratangentially. Next the mantles of the cortical canals, however, they often assume other positions.

Most of the rhabd megaseleres (Plate 5, figs. 24, 25) are very blunt amphioxes (Plate 5, figs. 24a, 25a), many indeed so blunt that they can be considered as amphistrongyles. A few blunt styles (Plate 5, fig. 24c) and branched rhabel, derivates have also been observed. Most of the rhabds are more or less curved, usually more strongly in their central part than at their ends. The rhabds are $410-850 \mu$ long and $10-19 \mu$ thick, the average measurements of the three longest and thickest being 723 by 18μ.

The microrhabds (Plate 6, figs. 1, 2, 4a, 5a; Plate 7, figs. 74a, 77a, 78, 80)
are centrotyle amphistrongyles, usually more or less attenuated towards the rounded ends. They are generally slightly curved, the eurvature being uniform or, rarely, greater near the ends than in the middle. Nost of these spicules are isoactine, anisoactine forms with one actine reduced in length being met with only exceptionally. The mierorhabds are $39-52 \mu$ long and, near the middle, close to the tyle, $3-5 \mu$ thick, the average measurements of the three longest and thiekest being 51 by 4.8μ. The tyle is $0.3-1 \mu$ more in transwerse diameter than the adjacent parts of the spicule.

Besides these regular mierorhabds, branched mierorhabd-derivates have been observed in small numbers. In these spieules two or, rarely, more, short, terminally rounded or, exeeptionally, pointed branch-rays arise from a point a little below one end of the spicule. In one of these spicules such branch-rays were observed at both ends. When there are two branch-rays they usually stand opposite each other in a straight line which intersects the axis of the spicule at an angle of 40 to 60°.

The triaenes (Plate 5, figs. 6-10; Plate 6, fig. 23) are orthotriaenes. Their rhabdome is straight, conical, $200-300 \mu$ long, and, at the cladomal end, $13-20 \mu$ thick. The clades are $125-220 \mu$ long, usually simple, and slightly and irregularly curved. Rarely one clade bears a short branch-ray. The clades enclose angles of $87-98^{\circ}$ with the rhablome. The breadth of the cladome is $210-380 \mu$.

The acanthtylasters (Plate 6, figs. 4b, 5b, 6-13, 29; Plate 7, figs. 74, 77b; Plate 8, figs. 2-12) usually have from four to eight, rarely only two or three, concentric and regularly or, more rarely, irregularly distributed rays. The rays are equal or one or more of them reduced in length. The properly developed rays are, at the base, $1.5-4.5 \mu$ thick and taper towards the distal end, which is usually erowned by an acanthtyle, rarely simply rounded off. The acanthtyle or rounded end is $1-5 \mu$ in transverse diameter. The basal part of the rays is either quite smooth or bears a few spines; from their central and distal parts a good many spines arise. The acanthtyle (rounded end) is densely eovered with spines. The spines are usually conical, sharp pointed, and of considerable size. The largest one observed was 1.5μ long. The spines arising from the acanthtyle (rounded end) are generally very markedly recurved and in their position resemble short flexible hair combed down in all directions from the apex of the acanthtyle (rounded end). Those arising from the rays farther down are either vertical or directed obliquely outward or inward. The total diameter of the acanthtylasters is $17-50 \mu$. This dimension and also the size of the rays and acanthtyles are, on the whole, in inverse proportion to the ray-
number. This proportional corrclation is, however, not a uniformly regular one, for while the three- to five-rayed acanthtylasters and their parts are nearly equal in size, and the same applies to the seven- and eight-rayed ones, there are considerable dimensional differences between the two- and three-rayed, the fiveand six-rayed, and six- and seven-rayed ones. In a curve representing this correlation two steep, step-like falls would interrupt the general descent. The dimensions of the two-rayed, three- to five-rayed, six-rayed, and seven- to eightrayed acanthtylasters are tabulated below.

ACANTHTYLASTERS.

Ray-number	2	35	6	7-8
Total diameter, /	50	$23-39$	19-34	17-23
Basal thickness of rays, "	3	$2-1.5$	1.5-3.5	$1.5-2.5$
Transverse diameter of acanthtyle (rounded end), "	4.5	$2-5$	1-1.3	1-2.5

Many oxyasters, similar in diameter and ray-number to the acanthtylasters, occur in the choanosome. The rays of these spicules are quite slender in their distal part but usually thickened in a very marked manner at their base. Similar spicules with slightly thicker, rough rays, and others with still thicker and rougher rays and a slight terminal thickening, connect the oxyasters with the acanthtylasters. I consider the former as young stages of the latter.

The small oxysphaerusters (Plate 6, fig. 3; Plate 7, figs. 11-15, 7tc) have a spherical centrum, $4-5.5 \mu$ in diameter, from which from ten to twenty or more equal, concentric, regularly distributed, conical, blunt or sharp-pointed rays arise. The rays are, at the base, $0.7-1.4 \mu$ thick, and smooth. Their middle and distal parts are covered with small spines. Occasionally a few spines, larger than the rest, form a loose verticil some distance from the end of the ray. The whole aster is $9-18 \mu$ in diameter. A correlation (inverse proportion) between size and ray-number is not discernible.

The aspidasters (Plate 6, figs. 19-22; Plate 7, figs. 31-41; Plate 8, figs. 1, 15-20) are discs varying from broad-oval to circular or reniform. Very rarely aspidasters quite irregular in outline, with several deep incisions, have been observed. The broad-oval to circular aspidasters (Plate 6, figs. 19, 20; Plate 7, figs. 31-37), which are much more numerous than the reniform ones, are fairly regular in outline, $72-88 \mu$ long, $67-77 \mu$ broad, and $10.6-12.8 \mu$ thick. The
arerage proportion of length to breadth to thickness is 100:95: 15. In the reniform aspidasten (Plate 6 , figs. $21,22:$ Plate 7 , figs. 3841), which are otherwise similar to the broad-oval to circular ones, the margin is ineised at a point nsually lying on one of the broader sides. This incision may be quite insignificunt (Plate 7, fig. 39) or it may extend far into the interior of the spicule (Plate 6, fig. 21). The reniform aspidasters have similar dimensions to the broad-oval or circular ones, but are somewhat narrower, some not more than 63μ broad. The surface of the adult aspidaster is eovered with short, truncate, protruling rays, $1.8-4 \mu$ thick. These rays bear terminal verticils of lateral spines, and usually also some spines arise from their apical faces. The number of protruling rays is very variable. On some aspidasters (Plate 6, fig. 20 ; Plate 7, figs. 32-35, $38-40$; Plate 8 , figs. 15,16) they are few and far between, in others (llate 6, fig. 19; Plate 7, figs. 36, 37, 41; Plate 8, figs. 17-20) very numerous and, although usually distributed rather irregularly, nowhere very far apart.

The youngest stages of the aspidasters (Plate 7, fig. 31; Plate 8, fig. 1) appear ats dises composed of slender rays radiating from a eommon centre. The great majority of these rays are as long as the radius of the dise, lie nearly in one plane, and extend from the centre to the margin of the disc. A few are much shorter, and these are situated obliquely to the phane of the dise occupied by the long rays (I'late 8, fig. 1). These ray-aggregations grow in the same Way ats in Erylus rotundus, deseribed in detail, p. 306, and become smooth dises (Ilate 6 , fig. 22), on the surface of which protruding rays later make their appearance. It seems, a priori, probable that the aspilasters with few protuberances (Plate 6, fig. 20 ; Plate 7, figs. 32 35, $38-40$; Plate 8 , figs. 15,16) are young forms which tater, by the accession of further protuberances, we converted into the aspidasters with numerous protruding rays (Plate 6, fig. 19; Plate 7, figs , $3(6,37,41$; Plate 8 , figs. 17-20). Since, however, the protruding rays of the aspidasters with but few of them seem to be on the whole larger than those of the aspidasters with many of them, this is somewhat doubtful.

This sponge was eanght with the tangles on the northeast coast of Hawaii, Station 4062 , Kamhola Light, S. $69^{\circ} 15^{\prime}$, E. 6.9^{\prime} on July 18, 1902; depth 152206 m . ($83-113 \mathrm{f}$.); it grew on a bottom of coral, voleanic sand, shells, and Foraminifera.

The structure of the canal-system and the spiculation of this sponge elearly show that it belongs to Erylus. From all the species of this genus previonsly described it differs considerably by the partly broad-oval to cireular, partly
reniform shape, and the small size of its aspidasters. It is nearest allied to Erylus rotundus. From this E. caliculatus is distinguished by the shape, which is massive lobose to digitate in E. rotundus and caliculate in E. caliculatus; by the microrhabels, which are amphiox in the former and amphistrongyle in the latter; by the aspidasters which are absolutely smaller, relatively thinner, and oval or circular in E. rotundus and absolutely larger, relatively thicker, and in part also reniform in E. caliculatus; and by the spicules generally which are smaller and much less robust in E. rotundus than in E. caliculatus.

[1. (iENERIL SISTEMATIC ACCOUNT OF THE GENER. SPECIES, AND V: \RIETIES FROM TIIE PACIFIC OCEAN.

Erylidae.

Tetraxonida with rhabd and teloclade megaseleres, and a superficial armour composed of aspidasters and microrhabds. Euasters are always present in the choanosome.

For the present I place only one genus, Erylus, in this family.

ERyLUS Gray.

With uniporal afferents and uniporal efferents or larger oseules. Without ama- or protriaenes.

Twenty-two species are known. Eight of these ocemr in the Pacific Ocean.

SCMMIRY ()F THE SPECTES FOUND IN THE PACIFIC OCEIN.
λ_{1} The large chomosomal euasters are oxyasters.
λ_{2} The teloclades are orthophagiotrianes.
A_{3} The micromabls have pointed ends.
E. placenta Thiele. E. monticularis Kirkpatrick.
B_{3} The microrhabds are amphistrongyle centrotyles.
E. decumbens Lindgren.
B_{2} The telochades are ehiefly diehotriaenes.
E. oxyaster Lendenfeld.
B_{1} The large choanosomal euasters are acanthtylasters.
Λ_{2} The aspidasters are about twice as long as broad.
E. nobilis Thicle. E. sollasii Lendenfeld.
B_{2} The anpidasters are nearly as broad as long.
E. rotundus Lendenfeld, var. megarhabda Lendenfeld, var. typica Lendenfeld, var. cidaris Lendenfeld. E. caliculatus Lendenfeld.

Erylus placenta Thiele.
Zoologica, 1898, 24, p. 5, plate 1, fig. 1; plate 6, fig. 1 a-h. Lendenfeld, Tierreich, 1903, 19, p. st.
Incrusting, 2-3 mm. thick. In spirit: reddish gray.
Amphioxes: mostly $700-800$ by about 15μ; sometimes much shorter, only half as long. Orthotriaenes: rhabdome 500 , clades 270μ long.

Microrhabds: slightly curved, abruptly pointed centrotyle amphioxes; $25-50 \mu$ long. Oxyasters: three to six, most frequently four rays; each ray 20 30μ long. Oxysphaerasters: centrum about 5 , whole aster 10μ in diameter. Aspidasters: oval, very frequently with incised margin, irregular; 170-200 by $80-90$ by 18μ.

Northwestern Pacific. Japan: Kagoshima Bay.

Erylus monticularis Kirkpatrick.

Ann. mag. nat. hist., 1900, ser. 7, 6, p. 351, plate 14, fig. 3 a-h.
Thin, incrusting. Pale brown.
Amphioxes: 210 by 10μ. Orthotriaenes, rhabdome 6μ thick; clades 186μ long.

Microrhabds: amphiox; 40 S0 by 1-3 \%. Oxyasters: about 6 rays; total diameter 18 - 30μ. Small tylasters (chiasters, Kirkpatrick): with small centrum; about 12 rays; total diameter 10μ. Aspidusters: 150μ long, 114μ broad.

Central Pacific. Funafuti Islet.

Erylus decumbens Lindgren.
Zool. anz. 1897, 20. p. 485. Zonl. jahrl. Syst., 1898, 11, p. 338, plate 20, fig. 1.
Erylus euasirum (Schmidt) Lendenfeld, Tierreich, 1903, 19. p. 86.
Incrusting, 3 mm . high. Surface black, interior gray.
Amphioxes: one end often blunt, 0.8 mm . by 24% Orthoplayiotriaenes: rhabdome 420 by 28μ; clades curvel, concave to rhablome, 250μ long; cladeangles nearly 90° (according to text), 104° (according to figure).

Microrhabds: curved, centrotyle amphistrongyles, 60 by 6μ. Oxyasters: two to five smooth rays; each ray 24μ long. Sphaerusters: numerous rays; total diameter 10μ. Aspidasters: oval, some with incisions; 182 by 120 by 28μ.

Formerly I was inelined (loc. cit.) to consider this species as identical with Stelletta euastrum Schmilt (1868) and Erylus cylindrigerus Ridley (1884), but the reexamination has made me doubtful on this point, so that I now revert to Lindgren's name.

Western Pacific: Java.

Erylus oxyaster Levinenfeld.

 Ante, p. 26s.Massive with lobose or digitate protuberances. In spirit: brown, part of the surface lighter than the rest.

Amphioxes: pointed, rarely blunt: 1.82 .9 mm . by $60-85 \mu$. Styles: rare; 1.9-2.3 min. by 60-105 1. Angularly bent and branched rhabd-derivates: in dimensions similar to the amphioxes, rare. Plagiotriaenes: rare; rhabdome 0.9 mun. by 7590μ; clades 0.7 mm . long; clade-angles $109-112^{\circ}$. Dichotriaenes: rhabdome ($0.6-1.6 \mathrm{~mm}$. by $70-105 \mu$; main clades $250-400$, end clades $40-450 \mu$ long: clade-angles $109-120^{\circ}$. Irregular dichotrinene-derirates: with the elades reduced in number or the rhabdome reduced in length; rare.

Microrhabds: more or less curved, centrotyle, generally isoactine amphistrongyles; $31-47$, rarely up to 93μ long, $3.5-4.5 \mu$ thick. Oxyasters: usually with a slight central thickening; one to twenty or more perfeetly smooth, coni(eal rays; total diameter $10-90 \mu$. Aspidasters: oval, rarely roundish or irregular; the ordinary oval ones 208-243 by $125-150$ by $30-40 \mu$

Eastern Pacific. Galapagos Islands: $0^{\circ} 50^{\prime} \mathrm{S} ., 89^{\circ} 36^{\prime} \mathrm{W}$. "Albatross" Station 2su9.

Erylus nobilis Thele.

 1. 5

Irregularly eylindrical. White; in the interior brownish.
Amphiores: rather abruptly pointed; nearly 1 mm . by 30μ. Orthotriaenes: Thabdome 600 by $40 / c$; clades 250μ long, slightly curved.

Microrluluds: controtyle amphistrongyles: about 48 by 6 f. Aconthtylasters: most frequently seven rays; each my 20 plong. Aspidusters: oval, ontline sometimes irregular; 190 by ! $90-100$ by 40 fe

Western Pacific. 'Temate.

Erylus sollasii Lennenfeld.

$$
\text { Ante, p. } 272
$$

Irregulaty massive, with lobose, gyriform, or short digitate processes. In spirit: whitish to chestnut-brown or purplish brown; one part of the surface sometimes darker than the rest.

Blunt amphioxes: 425-980 by S-24 \%. Sharp-pointed amphioxes, amphistrongyles, and styles of similar dimension; rare. Orthoplagiotriaenes: rhabdome
$140-520$ by $8-22$, rarely reduced in length and thickened; cladomes very polymorphic; clades simple or bifureate; simple clades 120-300 μ long; hifureate clades, main elades $70-270$, end clades $10-160 \mu$ long; clade-angles $86-116^{\circ}$; in some specimens all the triaene-clades are simple, in some the majority are simple, the minority bifureate, in some the majority are bifurcate.

Microrhabds: curved, centrotyle, pointed; 30-78 by 2.5-5 μ. Anisoactine and branched microrhabd-derivates: of similar dimensions; rare. Aconthtylasters: two to fourteen or more rays; total diameter $10-38 \mu$. Aspidastcrs: oval, rounded rhomboidal, or irregular with lobose marginal protuberances; 95156 by $55-82$ by $7.4-14 \mu$.

Central Pacific. Hawaiian Islands: sonth coast of Molokai. "Albatross" Stations 3847, 3848, 3849; northeast coast of Hawaii. "Albatross" Stations $4055,4062$.

Erylus rotundus Lendenfeld.

$$
\text { Ante, p. } 290 \text {. }
$$

Massive, oval or somewhat irregular, with lobose, gyriform, or cligitate protuberances. Surface usually more or less rugose. In spirit: dirty white to light brown in the interior; surface dirty white to purplish brown or purplish gray or purplish black, one part of the surface often much darker than the rest. Sometimes with whitish spots, marking the position of the pores, on the darker parts of the surface.

Rhabd meguselcres: sharp-pointed amphioxes, blunt amphioxes, or amphistrongyles, variously combined, 310-6.50 by 6-15 f. Styles, angularly bent and branch-bearing rhabd-derixates: of similar dimensions; rare. Aster-like rhabd-clusters: four to ten conical, irregularly distributed, longer, and a number of very short rudimentary, cylindrical, terminally rounded rays; total diameter 125-180 μ; only in variety ciduris. Othoplagiotriacnes: rhabdome 170-370 by $6-12 \mu$; clades often slightly, irregularly curved; $80-270 \mu$ long; clade-angles 90-107 ${ }^{\circ}$.

Microrhabds: slightly curved, variously but generally sharply pointed; $30-98$ by $1.5-7.5 \mu$; with or without central tyle, the latter when present small. Acanthtylasters: two to fourteen rays; total diameter 12-31 μ. Simall oxyasters: eight to twenty-two or more, conical, spined rays; total diameter $7-17 \mu$. Aspidasters: broad oval to cireular; $50-75$ by $46-70$ by $4.48 .8 \mu$.

Central Pacific. Hawaiian Islands: south coast of Molokai. "Albatross" Station 3849; cuast of Kauai. "Albatross" Stations 3982, 4024, 4128; nortlıeast coast of Hawaii. "Albatross" Station 4061.

Inte, p. 309.
Cortical armour composed chiefly of microrhabds. Rhabd megaseleres: mostly sharp pointed; blunt forms rare; 330-650 by 6-13 μ. Rhabd-clusters absent. Orthoplagiotriaenes: rhabdome $170-370 \mu$ long; cladome $160-350 \mu$ broad. Microrhabds: gradually and sharply pointed; $43-98$ by $3-7.5 \mu$; central tyle small or absent. Acanthtylasters with three or more rays; 12-27 μ in diameter. Small oxyasters: 7.5-17 μ in diameter. Aspidusters: $55-66$ by $46-$ 59 by 4.6-8.8 μ

Central Pacific. Hawaiian Islands: south coast of Molokai. "Albatross" Station 3849 ; coast of Kauni. "Albatross" Station 3982.

Erylus rotundus var. typica Lendenfeld. Ante, p. 399.

Cortical armour composed chiefly of aspidasters. Rhabd meguscleres: sharp pointed or blunt amphioxes, or amphistrongyles; 310-570 by 6-15 μ. Rhubd-clusters: absent. Triaenes: rhabdome $200-200$ long, eladome $150-$ 400μ broad. Microrhabels: variously pointed or blunt, with or without central tyle; 30 66 by $1.5-4 \mu$. Acanthtylasters: with three or more rays; 15-31 μ in diameter. Oxyasters: $7-16$ / in diameter. Aspidasters: $50-77$ by 4870 by $4.47 .8 \mu$

Central Pacific. LLawaiian Islands: south coast of Molokai. "Albat tross" Station 3849 ; coast of Kiauai. "Albatross" Stations 4024, 4128 ; northeast const of Hawaii. "Albatross" Station 4061.

Erylus rotundus var. cidaris Lendenfeld.
Ante, 1 . 310.
Cortical amour composed chiefly of aspidasters. Rhabd megascleres: chiefly sharp-pointed amphioxes; 440-650 by S-12 \%. Rhabd-elusters: 125-180 μ long. Triaenes: rhabdome $180-190 \mu$ long, clatome 300-440 μ broad. Microrhabds: gradually and sharply pointed, more or less eentrotyle; 32-50 by 2-4.5 μ Acanthtylasters: with two or more rays; $12-31 \mu$ in diameter. Small oxyasters: S-14 μ in diameter. Aspidusters: $65-75$ by $62-69$ by $5-7 \mu$.

Central Pacific. Hawaiian lslands: south coast of Molokai. "Albatross" station 3849 .

Erylus caliculatus Lendenfeld.

 Ante, p. 310.Inverted conical, caliculate. In spirit: dirty white.
Blunt amphioxes and amphistrongyles: 410-850 by 10-19 μ. Orthotriaenes: rhabdome 200-300 by 13-20 μ; clades $125-220 \mu$ long; clade-angles $57-98^{\circ}$.

Microrhabds: centrotyle amphistrongyles, usually attenuated towards the ends; 39-52 by $3-5 \mu$. Acanthtylasters: usually four to eight, rarely only two or three rays; total diameter $17-50 \mu$. Small oxysphaerasters: ten to twenty or more rays; centrum 4-5.5, whole aster $9-18 \mu$ in diameter. Aspidasters: broad-oval to circular, or, not so frequently, reniform; the broad-oval to circular ones $72-88$ by $67-77$ by $10.6-12.8 \mu$; the reniform ones often narrower.

Central Pacific. Hawaiian Islands: northeast coast of Hawaii. "Albatross" Station 4062.

III. DISTRIBUTION.

If the fauna of the Pacific so far as it relates to the Erylidae is compared with that of other regions, it is seen that its single genus Erylus oecurs in both. Fone of the Pacifie species are similar to species found outside the Pacifie, but not a single one appears to be really identieal with any ultra-Pacifie one.

Bight of the twentr-two known species, that is 36%, oceur in the Pacific.
The range of the Pacifie species is, so far as at present known, not great. With the exeeption of Erylus rotundus and E. sollasii, which have been obtained at various points on the coasts of the Hawaian Islands, all the Pacific species are recorded from one locality only.

The majority of species, the Pacific as well as those of other regions, are tropical (n' subtropical. It is remarkable that no specimen of Erylus has hitherto been found on the west eonast of the Ameriean contiment.

The horizontal distribution of the Pacifie species is:-
Eastern Pacific Islands.
Erylus oxyaster.
Galapagos.
Central Pacific Islands.

Lirylus monticularis.	Funafuti.
" sollasii.	Hawaiian Islands.
" rotundus.	"
" caliculatus.	"

Southeastern Asiatic Islands.
Erylus decumbens.
" nobilis.
Java.
Ternate.
Northcastern Asiatic Islands.
Erylus placenta.
All the Pacifie species have been found in rather shallow water.

IV. LIST OF STATIONS.

Station	Locality	Lat.	Long.	Diate	$\begin{aligned} & \text { E } \\ & \text { 号 } \\ & \text { 品 } \end{aligned}$			Bottom	Instruments used
2809	Galapagos 1s-	$\begin{gathered} \circ \quad \text { " } \\ \text { S. } 005000 \end{gathered}$	$\text { W. } 893600$	April 4, 18s8	45	79°	7.1.1 ${ }^{\circ}$	Gray sand	Small beam trawl
38.47	S. coast of Molokai, Lae-o Kía Laau Light	N. 643000	W. 230000	April s, 1902	23-24	76		Sand and stones	Hand lead, 6 foot hemp tangles
3848	S. coast of Moltrkai, Lae-o Kia Laau Light	N. 681500	W. 22400	* "	44-73	76	71.1	Sand and gravel	Sigsbere sounding matchine, surface tow net, 5! foot Blake beam trawl, fte.
3849	S. coast of Molokai, Laeo Kia Laau Light	N. 710000	W. 210900	" " "	73-43	76	67.6	Coarse sand, broken shells, and corals	Tanner sounding machine, 10 foot Blake bram trawl, surface tow net
3982	Vicinit y of Kauai lsland, Nawiliwili Light	N. 680000	W. 010600	June 10, 1902	233-40	78	48.5	Coarse brown corals, sand, shells	Sigsbee sounding machine, 9 foot hemp tangles
4024	Vicinity of Kauai Island, Mokuaeae Islet	S. 830000	E. 070600	June 23, 1902	24-43	75	73.7	Coarse coral, sand, and Foraminifera	Sigshee sounding machine, 9 foot hemp tangles
4055	N. E. coast of Hawaii, Alia Point Light, Hilo Bay	N. 200000	W. 030500	July 16, 1902	50-62	76		Fine gray sand, and Foraminifera	Tanner sounding machine, 8 foot hemp tangles
4061	N. E. coast of Hawaii, Kauhola Light	S. 790000	E. 060700	July 18, 1902	24-83	77		Corals, sand, corallioe nodules, and Foraminifera	Tanner sounding machine, 8 foot hemp tangles
4062	N. E. coast of Hawaii, Kauhola Light	S. 691500	E. 060900	* " ${ }^{\text {\% }}$	83-113	77		Coral, volcanic sand, shells, and Foraminifera	Tanner sounding machine, 8 foot hemp tangles
4128	Vicinity of Kauai Island, Hanamaulu Warehonse	N. 443000	W. 020600	Altg. 1, 1902	$\begin{gathered} 253-65- \\ 90-179 \end{gathered}$	77	47.8	Cuarse brown coral, sand, and Foraminifera	Sigsbee sounding machine, 8 foot Albat ross pattern Blake beasn trawl

1×4

EXPLANATION OF THE PLATES.

PLATE 1.

Erylus sollasii Lendenfeld.

Figures 1-4S.

1.- Transverse section of a lamellar part of a large dark specimen from South Molokai (race II); magnified 7.5 ; phot. Zeiss, planar 50 mm.:
a, cortex; b, choanosome; c. monaxonid symbiont attached to one side of the Erylus.
2.- Part of the surface of a large whitish specimen from South Molokai (race I, form C); magnified 7.5: phot. Zeiss, planar 50 mm .
3.-Subcortical portion of a radial section oecupied by numerous large spherical granular cells, of a large dark specimen from South Molokai (race 1I); haematoxylin; meqnified 209; phot. Zeiss, apochr. 8, compens. of. 6.
4.- Part of a radial section through the choanosome of a large dark specimen from South Molokai (race 1I); haematoxylin; maynified 200; phot. Zeiss. apochr. S, compens. oc. 6 .
5-12.- Apical views of cladomes of triaenes; magnified 100; phot. Zeiss, apoehr. 16, compens. oc. 6:
5, of a triaene with one simple and two bifurcate clatles of a large dark specimen from south Molokai (race I1);
6 , of a regular dichotriaene with very short end elades of a large dark specimen from South Molokai (race II);
7, of a regular plagiotriaene of a large dark specimen from South Molokai (race II);
8 , of an irregular dichotriaene-derivate in which one end clade of each of the three pairs is retheed, of a middle-sized light-coloured speeimen from northeast Hawaii (race I, form D);
9 , of a regular dichotriaene with long end clates of a middle-sized light-colourel specimen from northeast Hawaii (race 1, form D);
10 , of a triaene with one trifurcate and two bifurate clades of a middle-sized light-coloured speeimen from northeast Hawaii (race I, form D);
11, of a regular plagiotriaene of a large whitish specimen from South Molokai (race I, form C);
12, of a regular plagiotriaene of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D).
13-26. -Side views of triaenes; maynified 100 ; phot. Zeiss, apochr. 16, compens. oc. 6:
13, of a regular plagiotriaene with a rhabdome reduced to a short, conical protuberance, of a large dark specimen from South Molokai (race II);
14, of a triaene with one bifurate and two simple clades, and a rhabdome reduced to a short, conical protuberance, of a large dark speeimen from South Molokai (race IL);
15, of a plagiotriaene with simple, unequal, stout, blunt clades and a regular blunt rhabdome, of a large whitish specimen from South Molokai (race 1, form C);
16, of a plagiotriaene with equal, cylindrieal, terminally roumled clades and a rhabitome bearing small rounded protuberances near the end, of a large whitish specimen from South Molokai (race 1 , form C);
17, of a plagiotriaene with slightly unequal, slender, blunt clades and a regular pointed rhabdome, of a large whitish specimen from South Molokai (race [, form C);
IS, of an irregular orthotriaene with unequal stout clades partly rounded at the end, and a reduced eylindrical, terminally rounded rhabdome, of a middle-sized light-eoloured specimen from mortheast Hawaii (race I, form D);
19, of a plagiotriaene with fairly equal, slender, pointesl, regular clades and a fairly pointed rhabitome, of a midille-sized light-coloureld specimen from northeast Hawaii (race I, form D);
20, of a plagiotriaene with slender, regular clates, one of which is strongly curved at the eml, of a middle-sized light-coloured specimen from northeast Hawaii (race I, from D);
21, of a fairly regular plagiotriaene with short pointed clades, of a large dark speeimen from south Molokai (rafe II);
22, of a triaene with one bifureate clade, of a large dark specimen from South Molnkai (race 11);
23 , of a protriaene with unequal, cylindrical clades, reduced in length and terminally roumded, of a large dark specimen from South Molokai (race II);
24, of a plagiotriaene with one clade terminally recurved and a rhablome bearing slight protuberances near thre end, of a large dark specimen from south Molokai (race 11);
25, of a rather stout plagiotriaene with relatively long clasles, of a large dark specimen from sonth Molokai (race II);

26, of a slender plagiotriaene with relatively tong clades of a large dark specimen from South Molokai (race 1I).
27.- A large whitish specimen from South Molokai (race I, form C); natural size; phot. Zeiss, anastig. $4 \mathrm{~s} 0 / 412 \mathrm{~mm}$.
25.-A large dark specimen from South Molokai (race II); natural size; phot. Zeiss, anastig. 4.50/121 mm .
29-35.- Rhabd megaseleres; magnified 100; phot. Zciss, apochr. 16, compens. oc. 6:
29-31, more or less amphios-rhabds tapering towards both ends, of a large whitish specimen from South Molokai (race I, form C);
32 , stont and short, somewhat irregularly cylindrieal amphistrongyle, of a large whitish specimen from South Molokai (race I, form C);
33,31 , sharp-pointed amphioves, of a small dark speeimen from South Molokai (race I, form B);
35, pointed ampliox of a large dark specimen from South Molokai (race II).
36-11.- (iroups of mieroseleres from centrifuge-spicule preparations; magnified 300; phot. Zeiss, apochir. 4, compens. oe. 6:
a, isoactine centrotyle microrhabds; b, anisonetine microrhabds; c, acanthtylasters; d, young aspidaster;
$36,39,+t$, of a large whitish specimen from South Molokai (race I, form C);
37 , of a small dark speeimen from South Nolokai (race 1, form B);
35, of a large dark specimen from South Molokai (race II);
40, of a middle-sized light-coloured specimen from northeast IIawaii (race 1, form D).
42-45.- Rhabd megsacleres; magnificel 100; phot. Zeiss, apoehr. 16, compens. oe. 6:
42,43 , large, more or less pointed amphioxes, of a middle-sized light-coloured specimen from northcast Hawaii (race I, form D);
44 , style. abruptly bent close to the blunt end, of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D);
45. amphistrongyle, of a middle-sized light-coloured specimen from northeast Hawaii (raee I, form 1):
46, small blunt amphiox, of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D);
47. 48, small, sharp-pointed amphiox. of a small, partly light, partly dark, specimen from South Molukai (race I, form A).

18

36

37
27
20
\qquad
-
19

PLiTE 2.

Erylus sollasii Lendenfeld.

Figures 1-26.

1, 2. - A large acanthtylaster of a large dark specimen from Nouth Molokai (race II); magnified 1s00; u. r. phot. Zeiss, !. monochr. 1.7, q. oc. 10:

1, foensed higher; ¿2, focused lower.
B, 1.- Ciroup of acanthtylasters from a eentrifuge-spicule preparation; magnified 540 ; u. v. phot. Zeiss, q. monochr. 6. q. oc. 10:

3, of a large whitish specimen from South Nowokai (race I, form C);
1, of a large dark specimen from South Molokai (race II).
is- 7 . - The central part of an aspidaster of a large dark specimen from south Molokai (race II); magnified 1s00); u. v. phot. Zeiss, (f. monochr. 1.7, q. oc. 10:
5, focused high (on the upper surlace); 6 , focused intermediate; 7 , focused low (on the centrum).
S, 9.- A large acanthtytaster of a large dark specimen from south Molokai (race 1I); magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:

8 , foeused higher; 9 , focused lower.
10, 11.- A small acanthtylaster of a large dark specimen from South Molokai (race II); magnified 1800; u. v. phot. Zoiss, q. monochr. 1.7, q. oc. 10:

10, focused lower; 11, foeused higher.
12 15.-Aspidasters; magnifeed 510 ; u. v. phot. Zeiss, q. monochr. 1.7, q. of. 10:
12. somewhat irregular alult aspidaster, of a large whitish specimen from south Molokai (race 1, form (${ }^{1}$;
13, regular, oval adult aspidaster, of a large dark specimen from South Molokai (rare II);
11, very young aspidaster composed of radiating rays, of a large dark specimen from south Molokai (raw II);
15. elongate, young, perfectly smooth aspidaster, of a large dark specimen from Nouth Molokai (race 11).
16.- Group of isoactine microrhabds, of a large dark speeimen from South Molokai (race 11); magnified 540 ; u. ソ. phot. Zeiss, q. monerlir. 6, ¢. oc. 10.
17. Isoactine mierorhald, of a large whitish specimen from south Molokai (race I, form ('); magnified 5 t0; ~1. r. phot. Zeiss, q. monochr. 6, q. oc. 10.
1s. - lsoactine microrhatad, of at large dark specimen from South Molokai (race 11); magnified 1800; u. i. phot. Z.jiss, q. monochr. 1.7, 4. oc. 10.

19-2(i.- Aspidasters; magnified 300; phot. Zciss, apochr. A, compens. oc. f:
19. young aspidaster, of a small, partly light, partly dark, specimen from south Holokai (race I, form A);
20, young aspidaster, of a large whitish specimen from south Molokai (race 1, form C);
21, young aspidaster, of a middle-sized light-coloured specimen from northeast Hawaii (race I, form D);
22, adult, lozenge-shaped aspidaster, of a small, partly light, partly dark, speemen from South Molokai (raee I, form A);
23, adult, oval aspidaster, of a middle-sized light-coluured specimen from northeast Ilawaii (race I, form 1);
24, adult, irregular aspidaster, of a small, partly light, partly dark, specimen from South Molokai (race I, form I);
25, adult, irregular aspidaster, of a large whitish specimen from South Molokai (race I, form () ;
26, adult, browd oval asjudaster, of a middle-sized light-coloured specimen from northeast Ilawaii (race I, form D).

PLATE 3.

Erylus sollasii Lendenfeld.

Figures 1-2x. Race 111. Large dark specimen from northeast Hawaii.

1. -Side view of a triaene with branched clades, and a redueed, eylindrical, terminally rounded rhabdome; magnified 100; phot. Zeiss, apochr, 16, compens. oc. 6.
2-6.-Apical views of cladomes of triaenes; magnified 100; phot. Zeiss, apochr. 16, compens. oe. 6:
2-4, with all clades bramehed dictotomously or in a more complicated mamer;
2. 6, with only two clades thus branched and the third simple.
3. s.- Parts of large acanthylasters; magnified 1800; u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10.

9-11.-Aspidasters; magnified 3.00; phot. Zeiss, apochr. 4, compens. oc. 6:
9. a perfeetly adult one;

10, a nearly adult one;
11, a young, still smooth one.
12.-. Side view of a triacne with branched clades; magnified 100; phot. Zeiss, apochr. 16, compene. oc. 6 .
13.- Two isoactine microrhabels; maynified 300; phot. Zeiss, apochr. 1, compens. oc. 6.

14, 15.-Two isoactine microrhabels; magnified 5 to; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10 .
16, 17.-Akpidasters; magnified 540 ; u. v. phot. Zeiss, q. monochr. 6, q. oe. 10:
16, a young one;
17 , an adult sne.
18.- Promonaene-like style, abruptly bent near the pointed emd; magnified 100 ; phot. Zeiss, apochr. 16, comperis. oc. 6.
19 2.2.- Rhabd megaseleres; magnified 100; phot. Zeiss, apochr. 16, compens. oe. 6:
19. 20, large amphioxes;
21. style:

22, small amphiox.
23, 24. - Nide views of triaenes; magnified J00; phot. Zeiss, apochr. 16, compens. oe. 6:
23. with three-branched clades;

24, with simple and two-branched clades.
$25,26$. Groups of microseleres from centrifuge-spicule preparations; magnified 540 ; u. v. phot. Zeiss, 4. monochr. 6, q. oc. 10:
a, microrlabd; b, small, most probably forcign, sphaeraster; e, large acanthtylasters; d, very young aspillasters.
27.- View of the largest specimen; natural size; phot. Zeiss, anastig. $180 / 112 \mathrm{~mm}$.
2.- Part of the surface of an adult aspidaster; magnified 1800; u. r. phot. Zciss, q. monochr. 1.7, q. oe. 10 .

Erylus oxyaster Lendenfeld.

Fighures 29-35.

29-35.- Microscleres and groups of such from centrifuge-spicule preparations: magnified 600; u.v. phot. Zeiss, q. monochr. 6, q. oc. 10:
a, (Figs. 29-32, 35) microrlabds;
b, (Fig. 35) large diactine oxyaster;
c, (Fig. 3.4) large triactine oxyaster with one ray reduced:
d, (Figs. 32, 33, 35) large oxyastens with three or more fully developed rays;
e, (Fig. 32) small oxyaster with numerous rays.

PLATE 4.

PLATE 4.

Erylus oxyaster Lendenfeld.

Figures 1-43.

1-23.-. Megaseleres; magnified 30; phot. Zeiss, planar 20 mm .:
1, apical view of the cladone of a dichotetracne;
$2-5$, apical views of cladomes of dichotriaenes:
6, 7. pointel, straight, or slightly curved amphioxes;
\& pointed, angularly bent amphiox;
9, blunt, slightly curved amphiox (amphistrongyte);
10,11 , styles;
1.-14, amphiox-derivates, strongly angularly bent near one end, like monaenes;
1.5, 16, amphiox-derivate with a vertically arising braneh-ray, like mesomonaenes;

17-19, amphiox-derivates with two or three branch-rays, like meso- or amphiclades;
20 , side view of a plagiotriaenc;
21, side view of a triacne with one simple and two bifurcate clades;
22, 23. side views of dichotriaenes.
24.-. View of the sponge; natural size; phot. Zeiss, anastig. $480 / 412 \mathrm{~mm}$.
25.- P'art of a superficial, paratangential section showing a pore; magnified 200; phot. Zeiss, apochr. \&, compens. ox. 6.
26-34.- Microscleres and groups of such from centrifuge-spicule preparations; magnified 300 ; phot. Zeiss, apredir. 1. compens. oc. 6.:
a. (Figs. 2(6, 2S-33) microrhabds;
1), (Fig. 27) large monactine oxyaster;
c, (Fig. 2s) large diactine oxyaster;
d, (1 igs. 26, 30) large triactine oxyasters;
c, (Figs. 30, 32-34) large oxyasters with four or more rays;
f. (Figs, 29, 30) small onyasters with numerous rays.
3.5.-The umbilical face of an aspidaster; magnified 300; phot. Zeiss, apochr. 1, cor -ns. oe. 6.

36,37 . - Part of the surface of the umbilical face of an aspidaster; magnified 2000°.. . . phot. Zeiss, q. monochr. 1.7. (1. oc. 10:

36, focused lower; 37, focused higher.
3s.- A ray of a large oxyaster; magnified 2000; u. v. phot. Zciss, q. monochr. 1.7, q. oc. 10 .
39, 70.-A small oxyaster with numerous rays; magnified 2000; u. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10 :
39, focused lower; 10, focused higher.
41-43.- Aspidasters; magnified 150; phot. Zeiss, apochr. 8; compens. oc. 6:
41, rare, nearly circular aspidaster;
42,43 , ordinary, clongate aspidasters.

SPONGES OF THE PACIFIC, II. ERYLIDAE.

PLATE 5.

PLATE 5.

Erylus rotundus Lendenfeld.

Figs. 1, 3, 11-13. - var. typica Lendenfeld. Form D. Northeast Hawaii.
Figs. 2, 4, 17 . var. typica Lendenfelo. Form B. Kauai.
Figs. 5, 26-28, 31. - var. cidaris Lendenfeld.
Figs. 14, 15. - var. typica Lendenfeld. Form C. Kauai.
Figs. 16, 30. - var. typica Lendenfelo. Form A. South Molokai.
Figs. 18-22, 32. - var. megarhabda Lenoenfelo. Form A. South Molokai.
lïg. 23. - var. megarhabda Lendenfeld. Form B. Kauai.

Erylus caliculatus Lenoenfelo.

Figures 6-10, 21, 25, 29.

```
    1-7.- Apical views of triacne-cladomes; magnified 101); phot. Zeiss, apochr. 16, compens oc. 6:
    1,3, of Erylns rofundus var. typica from northeast IIawaii (form D);
    2, 1, of a dark specimen of Erylus rotundus var. lypica from Lauai (form B);
    5, of Erylus rotumdus var. cidaris;
    6, 7, of Erylus caliculatus.
S-10. -Side views of triaenes of Erylus caliculatus; magnified 100; phot. Zeiss, apochr. 16, compens.
        oc. 6.
    11 15.- Amphioxes of Erylus rotundus var. typica; magrificd 100; photo. Zeiss, apochr. 16, compens.
        oc. 6:
    11-13, of a specimen from northeast Hawaii (form D);
    14,15 , of a light specimen from Kauai (form (').
16, 17.- (iroups of megascleres from spicule-preparations of Erylus rotundus var. typica; magnified
        100; phot. Zeiss, apoelsr. I6, eompens. oc. 6:
    16, of a speeimen from Nouth Molokai (form A);
    17 , of a dark specimen from hauai (form B);
            a, sharp-pointed amphioxes; b, blunt amphiox (amphistrongyle); c, style.
    15-23.- Rhabd megascleres of Erylus rotundus var. megarhabla; magnified 100: phot. Zeiss, apochr.
            16. comprens. oc. 6:
    1s, an amphist rongyle of a speeimen from South Molokai (form A);
    19-22, amphioxes of a specimen from South Molokai (form A);
    23, an amphios of a specimen from Kauai (form B).
\(21-28 .-\) firoups of spicutes from spicule-preparations; magnified 100; phot. Zeiss, apochr. 16, com-
        pens. oc. 6:
    2.1, 205, of Erylus caliculatus;
    26-2s, of Erylus rotumbus var. cilaris;
            a. (Figs. 21-2s) amphioxes;
            c, (Fig. 2 V) style;
            d, (F゙ig. 26) triaene:
            c, (Fig. 27) microrhabs;
            f, (Figs. 24, 27, 2s) aspidasturs;
                g, (Figs. 24, 27) acanthtylasters.
29-32.- Views of whole specimens; phot. Zeiss, anastig. 480/412 mm.:
    29, Erylus caliculatus; natural size;
    30, Erylus rotundus var. hypica from South Molokai (form A); magnified 1: 1.08.
    31. Erylus rotundus var. cideris; magnified 1:1.13;
    32, Erylus rotundus var. megarhabrla from South Molokai (form A); magnified 1: 1.08 .
```


PLATE 6.

Erylus caliculatus Lendenfeld.

Figures 1-13, 19-23, 26, 2S, 29.

Eryius rotundus Lendenfeld.

Figs. 11, 1s, 21, 33 -35. - var. megarhabila Lendenfelo. From A. South Molokai. Figs. 15-17, 25, 30-32. - var. typica Lendenfeld. Form B. Kauai.
Fig. 27. --var. typica Lendenfeld. Form A. South Molokai.
1, 2.- Nicrorhabls of Ery/us ralimutus: magnified 600 ; u. v. phot. Zeiss, q. monochr. 6, q. oe. 10 .
3.-Small oxysphaeraster of Erylus caliculatus: magnifiel $6(6)$; 11. v. phot. Zeiss, q. monochr. 6, q. oc. 10 .

1,5.- (iroups of microseleres from a centrifuge-spicule preparation of Erylus caliculatus; magnified 600; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10: a, microrhabels; b, acanthtylasters.
6-13.- Leanthtytasters of Erylus caliculatus; Magnified GOO; 14. v. phot. Zeiss, q. monochr. 6, q. oe. 10.
11.- Ciroup of mieroscleres from a centrifuge-spieule preparation of Erylus rolundus var. megarhabda from houth . Hokokai (form . A) ; magnified 600; u. v. phot. Zeiss, q. monochr. 6, q. oc. 10:
b, acanthtylasters; c, small oxysphacraster.
15, 16. - Ieanthtylasters of a dark specimen of Erylus rofundus var. Pypica from Kauai (form B); magnified (th); u. v. phot. Zeiss, 4. monochr. 6, q. oc. J0.
17 22.- Ispidasters; magnified 6(M); u. v. phot. Zeiss, q. monorhr. 6, q. oc. 10:
17, nearly adult aspidaster of a dark speeimen of Erylus rotundus var. typica from Kanai (form B); IN, adult aspichaster of a specimen of Erylus rotundus var. megarhabla from South Molokai (form A); 19, adult, cirenlar aspidaster with numerous protruding rays of Erylus caliculutus;
20. young, circular aspidaster with few protruding rays of Erylus caliculatus;

21, adult, reniform aspidaster with numerous protruding rays of Erylus caliculatus;
22, young, smooth, reniform aspilaster of Erylus caliculatus.
23.- Superficial, paratangential section of Erylus culiculatus; magnified 30; phot. Zeiss, planar 20 mm .
21. Radial seetion through the superfieial part of Erylus rolundus var. megarhabda from South Molokai (form A); magnified 10; phot. Zeiss, planar 50 mm .
25.-- Radial section through the choanosome of a dark specimen of Erylus rotundus var. typrica from Kauai (form 13) ; magnified 20; phot. Zeiss, phanar 20 mm.: a, radial lundle of rhabol megaseleres.
26.-Radial section through the superficial part of Erylus caliculatus; magnified 30; phot. Zeiss, planar 20 mm .:
a, rackial bundle of rhabd megaseleres.
27.- Paratangential section, a small distance below the surface, of Erylus rotundus var. typica from South Molokai (form A) ; magnifiel 100) ; phot. Zeiss, apochr. 16, eompens. oe. 6: a. group of triame-cladomes.

25, 29.- Radial sections through the choanosome of Erylus caiculatus; aniline-blue:
28, magnified 200; phot. Zeiss, apochr. S. compens. of. 6 ;
29), uragnified 100; ; thot. Zaiss, apoelr. 16, compens. oc. 6 .

30-35. Microrhabek of Erylus rotundus; magnified 6en) ; 11. v. phot. Zeiss, q. monochr. 6, 1. oc. 10:
30-32, of a llark specimen of var. lypica from Kauai (form 13);
33-35, of a specimen of var. megarhabila from south Molokai (form A).

SPONGES OF THE PACIFIC, II. ERYLIDAE.

15

6

en

12
13

14

25

24

27

29

Erylus rotundus Lendenfeld.

Figs. 1-10, 12-45, 75, 76, 79.
Figs. 16, 16, IN, 54
Figs. 17, 14, 4! -51, 53.
Figs. 19 -2 1, in, 56.
Figs 2:-24, 26, 27, 30; $37-59,16 ;-3$
Fís. 25, 25, 29, 60-6.7.
Figs. 17, 52.

- var. cidaris Lendenfed.
- var. typica Lendenfeld. Form B. Dark specimen. Kauai.
- var. typiea Lendenfeld. Form A. South Molokai.
- var. typica Lendenfeld. Form (!. Light specimen. Kanai.
var. megarhabda Lendenfeld. Form 1. South Molokai
- var. megarhabda lendenfeld. Form B. Kauai. .
- var. typica Lendenfeld. Form D. Northeast Hawaii.

Erylus caliculatus Lexdenfeld.

Figures $11-15,31-41,74,77,7 \mathrm{~s}$, so.

1-10.- Branched amphiox-derivates and oxyastrose rhabd-clusters of Erylus rohudus var. vidaris; magnified 200; phot. Zeiss, apochr. S, compens. oc. 6:
$1-3$, long amphioses with two or three shorter branches;
1 10, onyastrose rhabed-clusters.
11-1.5.- ()xysphaerasters of Erylus caliculatus; magnified 2000; u. v. phot. Zeiss, q. monorhr. 1.7, q. oc. 10 :
11, an oxysphaeraster with thicker rays, focused higher;
12, the stme, focused lower;
13, an oxysplacraster with thinner rays, focused high;
14, the same. focused intermediate;
i.5, the same, focused low.

16-21.- Aspidasters of Eirylus rotundus var. typica; magnified 300; phot. Zeiss, apoehr. 4, compens. oc. 6:
16, of a dark speeimen from Kanai (form B);
17. IS, of a specimen from South Molokai (form 1);

19 21, of a light specim‘n from Kauai (form C).
22-30.- Aspidasters of Erylus rotundus var. megarhabila; magnified 300; phot. Zeiss, apochr. 4, compens, ос. 6:
22, 23, young aspidasters without protruding rays, of a specimen from South Holokai (form A);
$24,26,27,30$, adult aspidasters of a specimen from south . Molokai (form A);
$25,25,29$, adult aspidasters of a specimen from Кauai (form B).
31-41. - Apilasters of Erylus caliculatus; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
31, a wery young, eircular aspidaster showing the fine ratial rays forming the dise;
32--35, young, circular aspidasters with few protruding rays;
36, 37, attult, cireular aspilasters with numerous protruding rays;
$36-40$, young, reniform aspidasters with few protruding rays;
41, adult, reniform aspidaster with numerous protruding rays.
42-45.- Aspidasters of Erylus Totundus var. cilaris; magnified 300; phot. Zeiss, apachr. 4, compens. or. 6 :
46-80.- Microseleres and groups of such from centrifuge-spicule preparations; magnified 300; phot. Zeiss, apochr. 4, compens. oc. 6:
46. Is, 54, of a dark specimen of Erylus rolundus var. lypica irom Kauai (form B);

17, $\boldsymbol{5}_{2}$, of Erylus rotumlus var. typira from northeast Hawaii (form D);
49-51, 53, of Erylus rotundus var. typica from South Molokai (form A);
55, 56 , of a light specimen of Erylus rotundus var. typiaca from Kauai (form C);
57-59), 66-73, of Erylus roluedus var. megarhabd, from South Molokai (form A);
60)- ($5 \overline{5}$, of Erylus rolundus var. meyarhabda from Kauai (form B);

74, 77, 75, 80, of Erylus caliculatus;
7.5. 76, 79, of Erylus rotundus var. cilaris;
a, (Figs. 46-51, 53-57, 60-75, 77-s0) microrhabds; b, (Figs, 52-51, 56-60, 75-74) acanthtylasters; c, (Figs. 52, 60, 74, 76) small oxysphaerasters; d, (Figs. 56, 60) very young aspidasters; e, (Fig. 56) adult aspilasters.

PLATE S

Erylus caliculatus Lendenfeld.

Figures $1-12,15-20$

Erylus rotundus Lendenfeld.

Fig. 13. var. megarhabda Lendenfeld. Form A. South Molokai.
Fig. 11.-var. cidaris Lendenfeld.
1.- C'entral part of a young aspidaster of Erylus caliculatus, showing the rays which form the dise; magnified 200); u. v. phot. Zeiss, q. monochr. 1.7, q. oe. 10.
2-12.- Acanthtylasters and parts (rays) of such of Erylus caliculatus; magnified 2000; u. v. phot. Zeiss, \%. momocher. 1.7. ч. oc. 10:
2 , a ray of a sery large acanthtylaster;
3, a small, rather regutar acanthtylaster, focused high; 4 , the same, focused low;
5. a large regular acanthtybster, focused high; 6. the same, focused low:
7. : small acanthtyster, some of the rays of which are eonsiderabty shortened, foeused high; δ, the same, foeused tow:
!). 10, single rays of small acanthtylasters;
11. part of a small. particularly thin-rayed acanthtydaster:

12, part of a small, particularly thick-rayed acanthtylaster.
13-17.- Marginal parts of aspidasters; magnified 2000; 11. v. phot. Zeiss, q. monochr. 1.7, q. oc. 10:
13, of an adalt aspiclastre of Erylus rotundus var. megarhabed (form A) from South Molokai;
11. of an adult aspidaster of Erylus rotundus var. cidaris;

15a, of a young, still quite smooth aspidaster of Erylus caliculatus;
15 b , 16 of young aspidasters with only few protruding rays, of Erylus caliculatus;
17 , of an adult isppidaster with numerous protruding rays, of Erylus caliculatus.

1) 20.- Portions of the surface of the central parts of aspidasters of Erylus caliculatus; marnified 2000;
11. V. plot. Zeiss, q. monochr. 1.7. q. oc, 10:

1s, of an aspidastar not quite fully developed;
19, of a fully de veloped aspidaster, foeused high;
20 , the same, focused low.

QL Harvard University. Museum
1 of Comparative Zoology
H35 Memoirs
! 3

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

STORAGE

[^0]: ${ }^{1}$ The aspidasters are those spicules of the Erylidae which were previously termed sterrasters. They are distinguished from the sterrasters of the true Geodidae by passing, during their development, through a stage with perfectly smooth surface which does not occur in the development of the sterrasters of Geodia and its allies, and also by their flattened, dise-like shape.
 ${ }^{2}$ W.J. Sollas. Tetructinellida. Rept. voy. "Challenger," 1885,25 , p. exlvii.
 ${ }^{3}$ J. E. Gray. Notes on the arrangement of sponges.... Proc. Zool. soc. London, 1867, p. 192.
 ${ }^{4}$ R. v. Lenilenfeld. Tetraxonia. Tierreich, 1903, 19, p. $\$ 4$.

[^1]: ${ }^{1}$ H. J. Carter. Report on specimens dredged up from the Gulf of Manaar. Ann. mag. nat. hist., 1850, ser. 5, 6, p. 136.
 ${ }^{2}$ W. J. Sollas. Tetractinellida. Rept, voy. "Challenger," 1888, 25, p. 239.

