OAPE OF GOOD HOPE．

DEPARTMENT OF AGRICULTURE．

MARINE INVESTIGATIONS

IN

SOUTH AFRICA．

VOLUME 11 ．
WITM F゙いたTY ILATEN．

CAPE TOWN：
THE CAPE TMMES，LIMITED，GOVERNMENT PRINTERS．

CONTENTS.

South African Crustacea. Part 11. By the Rev. Thomats R. R. Stebbing, M.A., F.R.S., F.L.S., F.Z.S. I'ith Plates V.-XVI. I-92

Mollusca of South Africa. By G. B. Sowerby, F.L.S. W'itll Plate II. 93-100

South African Fishes. By J. D. F. Gilchrist, M.A., B.Sc., Ph.D. IVith Plates V.-X. IoI-113

South African Corals of the Genus Flabellum, with an account of their Anatomy and Development. By I. Stanley Gardiner, M.A. With Plates I.-IV. II5-154

Currents on the South African Coast, as indicated by the course of drift bottles. IVitly a Churt \therefore

155-165
Descriptions of two new Deep-Sea Fishes from South Africa. By G. A. Boulenger, F.R.S. It ith Plates XI. and X 11.
... $167-169$
Descriptions of South African Sponges. Part II. By
R. Kirkpatrick, F.Z.S. With Plate IV. ... 175-i8o

The Development of South African Fishes. Part I. By J. D. F. Gilchrist, M.A., B.Sc., Ph.D. I' ith Plutes I.-IV. 181-20I

Descriptions of New South African Fishes. By I. D. F. Gilchrist, M.A., B.Se., Ph.D. I'ith Plates XIII.-XVII. 203-211

Mollusca of South Africa. By G. B. Sowerby, F.L.S. I'ith Plates III.-V. 213-232

Descriptions of South African Sponges. Part III. By R. Kirkpatrick, F.Z.S. II'ith Plate V. ... 233-26+

SOUTH AFRICAN CRLSTACEA.

PAR'II.

BY THF

Rev. THOMAS R. R. STEBBING,
M.A., F.R.S., F.L.S., F.Z.S.

During the last two or three years Dr. Gilchrist's " Marine Investigations" have produced a very copious supply of crustaceans, and for the very highly satisfactory state in which the specimens have reached England he wishes me to recognize the valuable assistance he has received from Captain Turbyne. In this second instalment of my report several species are figured and described which claim the interest of being new to science. Others have been treated with more or less fithess of detail in order to establish or discuss their identity with forms already named by earlier authorities. This treatnent seems especially requisite whenever a species is assigned to a locality distant from its previonsly known range. It certainly involves much repetition in the literature of natural history, but without it questions of distribution may be completely confused by the list of a local fanna. All depends on the sometimes shadowy guarantee of the compiler's credit. In the present report the point which has the best right to engage attention is. I venture to think, the rapidis accumnlating evidence that, at least in regard to Crustacea, the marine fauna of South Africa stretches forth its liands both to the east and to the west, or rather, swings them round to ail points of the compass. Those species which it claims for its own make often a very close approach to oriental and occidental forms which in some cases have hitherto been known only from distant localities. In some instances a Sonth African form is to all appearance quite indistinguishable from a European or other far-off species, but future research may show that the interval is bridged by many intermediate stations. That some forms vary considerably in the captures of a single dredging. while others seem to remain constant over a vast range, adds considerably to the responsibility of specific determination. This difference of conditions, however, may be explained as more apparent than real. Species that are gregarious and so get taken in large family groups. display conspictously the variations of A 1847.
sex and age, which conrt little attention in others that from their great size or their habits of life are, as a rule, taken one by one-

CRUSTACEA MLALACOSIRACA.

bRACHYURA GENUINA.

18, 8_{1}. Brachy'ura, de Haan, Crustacea Japonica, decas quinta, p. II2.
1880. Brachyura grmuina, Boas, Studier over Decapodernes Slaegtskabforhold, p. is 3 .
1899. Brachyura gemina, A. Milne-Edwards and Bouvier, Crust. Décap. Hirondelle et Princesse-Alice, Monaco, iasc. I3. pp. 3, 15 .
IS99. Brachyura z'cra, Alcock, Deep-sea Brachyura R.I.M.S.S. Investigator, p. $3 y$.
1900. Brachyura gemuina, A. Milne-Edwards and Bouvier, Crust. Déc. du Travailleur et du Talisman, p. 21.
The genuine Brachyura as distinguished from the Brachyura Anomala include four divisions-the Oxyrrhyncha, Cyclometopa, Catometopa, and Oxystomata--the family Raninidac being included in the last of the four.

Oxyrrhyncha.

Fam.: Matidae.

1895. Maiillac, Alcock, Journ. Asiat. Soc. Bengal, vol. 64, pt. 2, p. 160.
1896. Maiidac, Alcock, Deep-sea Brachyura Investigator, p. 39. 1900. Maiidxe, M. J. Rathbun, The American Naturalist, vol. 34, p. 504.
This family is sometimes sub-divided into the Inachidac, the Maidac, and the Periceridae. Of the two genera here noticed, Alcock places Platymaia in a sub-family Inachinae, and Scyramathia in a sub-family Pisinae. Since Pisn, Leach, is a synonym of the satne author's Blastus, Pisinae, if upheld, would become Blastinae, or, as a family, Blastidae.

Gen.: Platymaia, Miers.
1880. Platyشaia, Miers, Challenger Brachyura, Reports, vol. 17, p. 12.
1803. Platymaia, Stebbing, History of Crustacca, Internat. Sci. Ser., vol. 74, p. ifo.
1895. Platymaia, Alcock, Journ. Asiat. Soc. Bengal, vol. 64. pt2, p. 180.
1899. Platymaia, Alcock, Deep-sea Brachyura of R.I.M.S.S. Investigator, 1. 45 .
Carapace suborbicular. Rostrum tridentate. No preocular spine, but a post-ocular spine against which the eye is retractile, but which affords no concealment to the eye. Eyes large, with short eye-stalks. Epitome small, transverse. Basal antennal joint short, cylindrical, free: the flagellum and part of the peduncle visible from above. Third maxillipeds with the fourth joint narrow, and bearing the next joint at its summit. Chelipeds in the adult male long, with a long inflated club-shaped palm: in the female, short and slender. Ambulatory legs long, some of them spiny, fingers of the hinder pairs compressed. Pleon in both sexes with all the segments separate.

The above definition is borrowed from Alcock, with some modifications to suit the new species here described. The account of the chelipeds in the adult male still, however, rests only on the type species. Platymaia curvillethomsoni, Miers, of which a magnificent male specimen is figured by Alcock and Anderson, in the Illustrations of the Zoology of the R.I.M.S.S. Investigator, Crustacea, pl. 16, 1896. In that species both sexes have the penultimate joint in the last three pairs of legs somewhat dilated and compressed, but there is no dilatation worthy of remark in the corresponding part of the new species.

> Platymali turbiteei, in. sp.

$$
\text { Plate: } 5 .
$$

The type species of the genus was dredged by the "Challenger" north of the Admiralty Islands, and by the "Investigator" in the Andaman Sea. More recently the " I aldivia" procured it rather plentifully at the Nicobar Islands (Chun, Aus den Tiefen des Weltmeeres. pp. 396, 370, fig. in text). Accordingly, notwithstanding the differences between the sexes and between the younger and older stages pointed out by Major Alcock, the figures by several mdependent observers show that its general configuration is fairly constant. The new African species agrees with it in too many points to admit of generic separation, though specifically it is raty obviously distinct.

The distinguishing marks are the prolongation of the central spine of the depressed and then upward turned ostrum much in advance of the two lateral spines; the shape of the carapace, which has the hind margin much more broadly rounded: the proportion of the ambulatory legs to one another, the proportions of their joints, and the shape of the penultimate ?oint in the ininder limbs.

The middle spine of the rustrum forms a considerable angie below with the inter-antennulary septum. The most conspicuons spincs of the carapace in dorsal riew, beside those of the rostrum and the pair that flank the eses are three spaced about the middle of each side and two longitudinally placed at about the middle of the back. These hare a pair transversely placed behind them and three pairs strongly diverging from before backward on either side of them. Behind the rostrum six small spines stretch across the carapace in a shallow curve. There are others round the hind margin, and a few minnte prickles occur in various parts. The sternal plastron has rather conspicuots prickles across the centre in the three middle divisions. The first segment of the pleon is square, with concave sides, the next two are the widest, the fourth narrows to the fifth, which is the same width as the longer sixth and almost semi-circular seventh. From the shape of the narrow pleon and the small size of the chelipects it may be surmised that the specimens at present at command are young males.

The eyes in formalin are reddish brown.
The second antennae readily fold back. The slender flagellum is longer than the peduncle.

The third maxillipeds agree with Alcock's description of those in the other species. The third joint is greatly broader than the fourth, the seventh is longer than either the fifth or the sixth. All these joints are spinose, the third and fourth laving on the surface and at the onter margin rows of denticles in addition to their numerous slender spines.

The chelipeds are much shorter, but not (as in female and young male of P. wyillcthomsoni) more slender than the other legs. They are very spinose, having the fifth joint short, the sixth rather long, with the trunk subequal in length to the finger, which fits closely over the thumb, their fincly denticulate margins fitting one into the other. The second legs are between two and three times as long as the chelipeds, with the spinose finger which should perhaps be included among the characters of the gentus. The pentultimate joint has the long spines on the inner margin. which are also characteristic in both species. This joint is compressed and somewhat dilated, though not at the two extremities. Like the two preceding joints, it is spiny on both margins. It is about three-fourths of the length of the fourth joint, which is about twice as long as the finger. The third pair of legs are much longer but far less spiny, with similar proportions between the joints, except that the sixth, which widens a little distally, rather more nearly approaches the length of the fourth. The fourth pair have the spiny armature inconspicuons, but are furnished with two rows of long plumose scte on the inner margin of the fifth and sixth joints, and for some way along the finger. They
are longer than the third pair by reason of having their fifth joint as long as the fourth. The fifth pair are scarcely at all spiny, but setose like the fourth, and in length subequal to the third, having their fourth and fifth joints slightly shorter and the sixth a little longer than the corresponding joints in that pair.

The limbs, as preserved, are pale, with broad orange bands.
Size: The specimen figured in dorsal view measures 31 mm . from tip of rostrum to hind margin, with a breadth of 26.5 mm . just below the lowest of the three lateral spines. The second specimen figured was rather smaller. A third is a little larger.

Locality: Cape Natal N. by E. (approx.) 24 miles. Depth, 440 fathoms. Bottom, mud.

The specific name is given in token of regard for Captain Turbyne, whose valuable services, first on board the "Medusa," then at the Marine Station, Granton, Edinburgh, subsequently at the Millport Marine Station, and of late years at the Cape, have been highly appreciated by all concerned with marine zoology.

Gen. : Scirdmilthia, A. Milne-Edwards.

I880. Scyramathia, A. Milne-Edwards, Bull. Mus. Comp. Zoöl. Harvard, vol. 8. p. 3 II.
188ı. Scyramuthiu, A. Milne-Edwards, C. I. Acad. Sci, 5 déc. 188 I .
1885. Scwamalliu. Sars, Nornegian North-Atlantic Exp., Crustacea, pt. 1, p. 6.
1887. Anamalhia, (part) S. I. Smith, Rep. U.S. Fish. Comm. for 1885 , p. 625 (21).
1889. Anamalhia, Pocock, Ann. Nat. Hist., Ser. 6, vol. 4. p. 425.
1893. Scyramatiia, Stebbing, History of Crustacea, Internat. Sci. Ser., vol. 74, P. I Ig.
1894. Scyramathia, Nilne-Edwards and Bowvier, Camp. Sci. Prince de Mlonaco, fasc. 7, p. 12.
189)t. Anamathia (part), M. J. Rathbun, Proc. U.S. Mus., rol. 17, p. 61.
1895. Alamathia (part), Faxon, Mem. Mus. Comp Zoöl. Harvard, vol. i\&, p. 8.
1895. Scyramathia, Alcock, Tourn. Asiat. Sec. Deingal, vol. 64, pt. 2, p. 200.
18y9. Scyramathia, M.-Edwards and Bonvier, Camp. Sci., Prince de Monaco, fasc. I3, p. 43.
1809. Scyramalihia, Alcock, Deep-sea Brachyura of Investigator, p. 51.
1900. Scyramathia, M.-Edwards and Bouvier, Exp. du Travailleur et du 'T'alisman, Crust. Déc., pt. 1, p. I.3 I.
In their latest work, Milne-Edwards and Bouvier define the genus as follows:-
"As in Anamathin the rostral hornsaretwo; they are long and divergent, but at their base there is a supra-orbital spine which in Anamathia is wanting, and the orbital region offers special characters. The orbit is more complete than in the Crustacea of the neighbouring groups, and the eye is retractile hiding in a groove left between the carapace and a flattened projection behind the orbit. The basal joint of the external antennae is unammed, and juts out a little so as to form a sort of orbital platform; it is fiattened below: the movable portion of the antennac at its inscrtion is partially concealed under the rostrum, of which, being short, it does not reach the apex. The carapace is piriform, and its salient parts generally form flatened protuberances, which are somewhat analogous to the fungiform productions of the body in the genus Eurnome. The external maxillipeds are remarkable for the rounded form of the antero-cxternal angle of the fourth joint, the opposite angle being truncate to receive the articulation of the palp.* The feet are long and strong, the fingers of the chela are sharp. The first ambulatory foot reaches beyond the others: its joints are cylindrical, and end in a finger slightly curved and apicaliy acute. The pleon has seven segments, and is without spines; in the male the seventh segment is narrow and attenuate at the end; in the female it is very broad. The branchice and the appendages are of the normal oxyrrhynchal type.

The authors of this definition assign to the genus only Scyramathia carpenteri (Ñorman) and Scyramathiu nicidentalis (Faxon). They do not agree with Faxon in placing these species in Anamathia, because the type of the latter, A. rissoana (Roux), 'is well cliatacterized by its small orbits, with upper margin entire, and without pre-orbital and post-orbital spines. They remark that the American species of Anamathix. A. Instrin (Stimpson), A. crassa, A. M.-Edw: (including . 1. agassizi, S. I. Smith): A. tameri, Snith, and A. modesta (Stimpson), all have orbital spines, and might thus be distinguished from .1 rissoana forming a gradual transition to Scyramathia. But at all events, they conclude, the latter is distinguished from the former ' be the external widening which the basal joint of the second antenne forms under the orbit, by the absence of spines upon that joint. and, lastly, by the transformation of certain dorsal spincs of Anamathia into low tubercles, ordinarily truncate at the extremity.' Scyra umbonata, Stimpson, which A. Minne-Edwards had transferred to Scyramathia, is indirctely withdrawn from it be the joint authors. After alluding to the suspicion entertaned hy Sars that Stimpson's species might even prove to be identical with Scyramathio carpentcri, they say, " it is easy to determine the profound differences which scparate these two crustaceans, not only in

[^0]regard to the ornamentation of the carapace and to the form of the rostrum, but also to the relative lengtin of the feet, thick and short in the American species, long and slender in the European."

It is unfortunate that Milne-Edwards and Bonvier seem to be unaware, not only of Alcock's work in 1899, but also of his carlier work in 1895 and 1898 , so that they give no direct opinion with respect to the species which he includes in the genus Scyramathia. These are S. pulchra (Miers), of which Anamalitia livermorii, Wood-Mason, is made a -ynonym; S ritirs-tmdersomi, Alcock; S. beauchampi (Alcock \& Anderson); S. globulifcra (WoodMason); S. velutina (Miers). It may, however, be inferred that the French authors would not accept these species, for the reception of which Alcock's definition of the genus is framed at various points differently from theirs. He speaks of the carapace as " armed either with tubercles, or with long spines much like those of Anamathia in their uniform size and definite arrangement," but the French definition is explained to require that some of the spines should be low tubercles, generally truncate at their extremity, as a matter of fact the low tubercles belonging to S. occidentalis (Faxon) and the flattened protuberances to S. carpentcri (Norman). That the palms of the chelipeds in the adult male are "broadened" is applicable to some of Alcock's species, but not to S. carpenteri, and whereas, according to Alcock, the mobile portion of the second antenne is "freely exposed on either side of the rostrum," in the French definition, as we have seen, it is partially concealed.

The species about to be described is so closely allied to S. carpenteri that there can be no hesitation about placing it in the same genus.

Scyramithia hertwigi, Dofeir.
1g00. Scyramathia Hertzeigi, Dolflein, in Chun's Aus den 'fiefen des Weltmeeres, fig. on p. 497.

$$
\text { Plate } 6 .
$$

The rostral horns are only one-fourth of the total length of the carapace, being therefore much shorter than in S. carpcutcri, with which the dorsal ornamentation shows much in common. Down the centre are placed at intervals a minute spine, a long, narrow tabular elevation, connected by a very faint carina with a longer and much broader table, widest in front, and lastly a rugosity on the peak of the dorsal margin. The minute spine is flanked by a pair of ridge-like tubercles, the narrow table by two broad earshaped tables, the broad tables by two small oval tables, a strong
curved forward-pointing tabular tooth projecting on either side of the carapace from between the large and small sub-lateral tables. The sternal plastron has deep triangular pits opposite the insertions of the legs. Of the pleon the second and third segments are much wider than the others: the third narrows distally, the sixth distally widening a little.
The second antemer do not reach the ends of the rostral horns.
The chelipeds are very nearly as long as the first ambulatory legs, cxcecding in size those of any other species attributed to this genus. The arm has three tuberculate ridges; the short wrist also has three crests; the hand is as long as the carapace rostrum included, by these proportions differing from other species, the ends of the thmmb and finger fit closely together, the imner margin of each being divided into six small teeth; the basal half of the finger has a small and a large prominence, the cavity between them being filled by a tooth on the thimbs. but the cavity beyond the large prominence leaving a gap. In the ambulatory feet the arm is longer than the hand, and the finger is more than half as long as the hand, with a little smooth nail, but otherwise thickly coated with spines: the rest of the limb, though smoother in appearance, is clocelv invested with the tuberculiform apically pointed cutancous vesicles described by Sars, which also occur on the pleon, the mouth organs, and varions parts of the body: The presence of these remarkable objects is expressly noted for S. carpcnteri and for S. occidentalis, and is perhaps intended by the "short felty pubescence " which Xiers describes as investing Pugettia zelutina. It is not specified by Alcock cither for that species or for the others which he refers to Scyramathia.
Length of carapace, 55 mm ., 1, readth, 33 mm ., length of rostrum, 14 mm .; first ambulatory leg more than twice as long as the carapace.

Habitat. A single specimen, male, taken 28 miles off Lion's Head, from a depth of 140 fathoms.

The discussion of the genus, and the description of the present species with the figure of it were completed before I had had an opportunity of consulting Professor Chun's volume, but on seeing there Doflein's figure of S. hertacigi, though it is unaccompanied by any description, I could not resist the conviction that it represented the very species I had been studying.

Cyclometopa.

> Fam. : Portinidaf.

18yy. Portunidac, Mcock, Journ Asiat. Soc. Bengal, vol. 6S, pt. 2, p. 4.

Of the three gemera lere noticed, Charybdis and LIffa are assigned by Alcock to a sub-family Lupinae, and Ovalipes to a sub-family Portuninae.

Gen. : Cilarybdis, de Haan.

1833. Charybdis, de Haan, Crustacea Japonica, decas prima, p. 10.
18.3. Thulamita (part), II. Nilne-Edwards, Hist. Nat. Crustacés, vol. 1, p. 462.
1834. Charybdis, M'Leay, Illustrations Zool. South Africa (Simith), livertel)rates, p. 61.
1843 Charybdis. Kranss, Die Sutlafrik. Crustaceen, p. 24.
1835. Charyodis, Dana, L..S. Expl. Exp., vol. 13. p. 285.
1836. Goniosoma (prcoce.), A. Mihne-Edwards, Ann. Sci. Nat., ser. 4, vol. 14, p. 263.
1837. Goniosoma, Miers, Challenger Brachyura, Reports, vol. 17, p. 189.
1838. Charybdis, Stebbing, History of Crustacea, p. Gog.
1839. Charybdis, Rathbun, Proe. Biol. Soc., Washington, vol. I I, p. 161.
1840. Charyblis (Goniosoma), Alcosk, Jour. Asiat. Soc. Bengal, vol. 68, pt. 2, p. 47.
The genus Portumus was divided by de Haan into many subgenera. To one of these he gave the preocerpied name Occanus, assigning to it the ingle species Cancor cruciatus Herbat. This has been transferred to de Haan's next subgenns Charybdis. Fault was found with this nante beeause of its resemblance to the earlier Charybdea or Carybdca of Péron and Lesueur. On this inadequatc ground Goniosoina was substituted, which by the irony of fate was itself really preoccupied.

> Cilirybdis crechitcos (Herbst).

159+. Cancer crucialus, llerbst, Krablen and Krebse, vol. 2, pt5, p. 155 , pl. S, fig. 53, pl. 38, fig. i.
1798. Portumus crucifor, Fabricius, Suppl. Ent. Syst., p. 3G4.
1833. Portunus (Occamus) crucifcr, de Haan, Crustacea Japonica, decas prima, p. 10.
1834. Thalamita crucifcra, H. Milne-Edwards, Hist. Nat. Crustacés, vol. 1. p. 462.
1835. Portumus (Occanus) crucifcr, de Haan, Crustacea Japonica, decas seemida, p. 40.
IS52. Charlodis crucifcra, Dana. U.S. Expl. Exp., vol. 13, p. 286̆, pl. 17, fig. II.

186t. Goniosoma crucifcrm, A. Milne-Edwards, Arch. Mus. Hist. \at., vol. 10. p. 371.
1886. Goniosoma cruciferum, Miers, Challenger Brachyura, Rcports. vol. 17. p. 191.
1887. Goniosoma cruciferum, de Man, Journ. Linn. Soc. London, vol. 22, p. 79, pl. 5, fig I.
1893. Charybdis cruciatus, Stebbing, History of Crustacea, p. jo.

I S99. Charvodis (Goniosoma) crucifcra, Alcock, Journ. Asiat. Soc. Pengal, vol. 68, pt. 2, p. 5 r .
1902. Goniosoma crucifcrum, Lonchester, Proc. Zool. Soc. London, P. $5+5$.

In 1783 , Herbst, Krabben und Krebse, pts. 2-5, p. 153, pl. 7, fig. 52, pl. 8, fig. 53, described a species under the name Cancer sexdentatus. In $179+$ he recognised that the carapace represented on pl. 7. fig. 52 , belonged to a distinct species from that represented on pl. 8, fig. 53, and pl. 38, fig i. Milne-Edwards, Hist. Nat. Crust., vol. i, p. 462, 1834 , introduces some confusion into the symony my by reterring to Herbst's C.sexdentouts, pl. 7, fig. 52 , as a possible synonym of his C.cruciatus, without noticing pl. 8, fig. 53, which rcally belongs to that specics. On p. 463 he gives "Cancor scrdentatus. Forsk" as a synonym of Thalamita ammlata (Fabricius), thus leading to the supposition that Herbst's C. sexdentatus was a name preoccupied by Forskäl in 1775. But I camot find that Forskäl ever used the name in question, though he described a species Cancor scrratus, with "fronte sexdentatur" Cancer firiatus, Linn., 1758, is based on fig. P. of pl. 6 in Rumph's Amboinsche Rariteitkamer, 1705, and Herbst identifies his C. sexdentutus with the: ametigure. But heclaims, on the ground of the description given by Linnaeus, that C. feriatus cannot be the same species. There can, however, be little doubt that Linnacus drew up his description in a rough and ready and inadequate fashion from the figure in Rumph's volume, and it is rather difficult to avoid the conclusion that this figure represthts C.. cructatus. It what were admited, the Linnean name would have to be restored But the matter is too vague for such a decision.

A dried female specimen of this beautiful species from the Cape shows the characteristic cross on the carapace, pale on a maroon ground. The carapace measured between the tips of the lowest lateral spines was 122 mm ., or nearly 5 inches broad; the length from the apex of a submedian tooth to the hind margin is So mm ., or 3 inches and a fifth. The filth segment of the pleon is 55 mm . across, the triangular seventh sesment is 17 mmm . broad at the base.

Locality:-Port Mlifed.

Gen. : Lupd, Leacli.
1813. Lupa. Leach, Edinburgin Encyclopædia, vol. 7. p. 390, Art. Crustaceology.
1825. Lupa, Dcamarest. Consid. gén. Crustacés, p. 97.
1833. Neptumus, de Haan, Crustacea Japonica, decas I, p. 7.
1834. Lupca, Milne-Edwards, Hist. Nat. Crust., vol. I, p. 445.

Date: Lupa, Milne-Edwards, Règne Animal Cuvier, Ed. Fortin and Masson, Crustacés, p. 46.
1886. Neptunus, Miers, Challenger Brachyura, Reports, vol. i7, p. 172.
1897. Portunus, Rathbun, Proc. Biol. Soc. Washington, vol. ir, p. 155 .
1900. Portunus, Rathbun. The American Naturalist, vol. 34, p. $1 \nless 0$.

N'cptimus, de Haan, is a subgenus of Forthius, Fabricius. Neptumus, Miers, is a stubgenus of Neptunus, de Haan. Portlitus, Rathbun, is a subgenus of Portunus, Latreille. Niss Rathbun points out that those who do not accept what she supposes to be Latreille's restriction of Portumus, Fabricius, must use Lupa in place of de Faan's Neptunus, the latter being clearly a synonym of the former. In the raluable key which Miss Rathbun supplies in 1900 to the families, genera, and species of the Cyclometopa, the character shown for distingushing Callinectes. Stinpson, from the genns Lupa of Leacli is that in the former the pleon of the male is 1 -shaped, but in the latter triangular.

Leph shaguifolents, lierbst.

1-83. Cancer sanguinolchtus, Herbst, vol. r, pts. 2-5, p. I6 1, pl. 8, figs. 56. 57.
1798. Portunus sang minolcutus, Fabricius, Supplementum Ent. Syrst., p. 367.
1833. Portumus (Noptutus) sangiunoicntus, de Haan, Crust. Japonica, diecas I, p. 8.
18,24. Llupca sanguinolenta, Milne-Edwards, Hist. Nat. Crust., vol. i, p. 451.
Date? Lupa sanguinolenta, Milne-Edwards. Règne Animal Cuvier, pl. io, fig. I, i a-c.
1861. Ňctumus sanguinolontus, A. Milne-Edwards, Arch. Mus. Hist. Nat., vol. 1o, p. 319.
1886. Neftumus (Xeptumus) sanguinolcitus, Niers, Challenger Brachyura. Reports, vol. I万, p. IF4.
1899. Neptums sanguinolcnius, Alcock. Journ. Asiat. SocBengal, vol. 68, pt. 2, p. 32.
As Miers observes the three large brightly-coloured, equidistant and irregularly oral spots on the linder part of the carapace
are pory constant and characteristic of this species. There is also to be noticed a cherry red spot on the hand of the chelipeds, close to the base of the movable finger. This is shown in Herbst's figure, and in the South African specinen (preserved in formalin) this spot still retains its colour, while the three on the carapace have so faded as to require close inspection before they can be discernce. The pentiltimate segment of the pleon is not very broad, and widens a little from the base before narrowing to its distal extremity, so that the shape of the pleon makes some approach to that of Callinectes.

Locality:-Two-and-a-half miles off Cape St. Blaize.

Gen.: Oralipes, Rathbun.

1825. Platyomilus preocc. Latreille, Encycl. Méth Entom., vol. $10, \mathrm{P} .151$.
1826. Anisopts (procec.) de Haan, Crustacea Japonica, decas I, p. 12.
1827. Platyonichus, Milne-Edwards, Hist. Nat. Crust., vol. I, p. 435.
 Invertebrates, p. 62.
I843. Anisopus, Krauss, Die südafrik. Crustaccen, p. 27.
1828. Platyonychus, Micrs, Challenger Brachyura, Reports, vol. I7, p. 201.
1829. Xaiza, Rathbun, Proc. Biol. Soc. Washington, vol. in, p. I58.
ISg8. Otalipes, Rathbun, Proc. U.S. Mus., vol. 21 , p. 597.
Platyonichus, Latreille, i8i8, as explained by Hell and Miss M. J. Rathbun, is a synonym of Portummus, Leach, i $_{13} 3$, and is distinct from Platyonichus, Latreille, i825, which must, therefore, lapse as preoceupicd. The same fate befalls Inisopus, de Haan, the name having been already used in i8oz. M['Leay retains de Haan's Anisopus, and bcside it establishes a new subgenus Xaioa, not easily distinguishable from it, so that the latter name seemed available for the species previously known as Platyonichus occllatus (Herbst) and its allies. These allies. in the Challenger Brachyura by Miers, are named "Platyonychus bifustulatus, Milne-Edwards, and I. iridescens, n. sp." In 1898 Miss Rathbun withdrew the suggestion that Trria could be used as their generic name, and writes:-"It has since been brought to my attention that the type of Xaira, X. pulcholla, MacLeav, is more nearly related to Portmmums than it is to the species occllatus and bipustulutus." For these last, therefore, I am obliged to propose a new name. Oialipes differs fronn Portummus and Xaiz'd in having the
last joint of the fifth pair of feet broadly oval, romeded at the extremity, instead of lanceolate and acute; the basal joint of the antennulx advanced and visible in a dorsal riew between the frontal teeth: the chelipeds clongate: the abrlomen of the male oblong instead of nariow triangular.

Oヘidipes trimactlates (dc Haan).

1833. Anisopus trimaculata, de Hatan, Crust. Japonica, decas 1 , p. 13
1834. Platyonichus bipustulatus, Milne-Edwards, Mist. Nat, Crust., vol. 1, p. 437, pl. 17, fig. 7-10.
1835. Anisopus trimaculatus, M‘Leay, Illustrations Zool. South Africa, p. 62.
1836. Anisopus trimaculatus, Krauss, die südafrik. Crustaceeri, p. 27.

The Anisopus of de Haan was instituted as a subgenus of Corystes, and to it he assigned in i833 his own species punctatu and trimaculata. with the addition of occllata, Herbst, doubtfully. To the name trimuculatansp. he subjoined " Seba Γ. xviii, fig. 9. Dr. Horstok a littore Promontorii Bonae Spei." That the specimen forwarded to me from the Cape belongs to de Haan's species trimaculata is beyond question, but the proper name for it may be debated. In i 834 Milne-Edwards described his Platyonichus bipustulatus, from the Indian Ocean, and the figure of this in hir (unclated) It'as shows it to be identical with de Haan's tri-
 Corystcs (Anisopus) punctata, n. sp., and adds a note that Platyonichus bipustulatus, Milne-Edwards, appears to agree with the other species of this subgenus, which Horstok had procured at the Cape, and which was distinguished from C. punctata by shorter frontal and blinter lateral teeth, by having the thorax marked behind with two blood-red spots, the hands reddening on the inner side, the thorax and chelae yellow scarcely rubro-punctate or granulate. That he speaks of only two spots on the carapace of his trimaculate species is due to the fact that the arcuate middie spot is common both to this and punctata. In his index, p. 233, he mentions punctata alone, not naming either trimaculata or bupustulatus. Miersin 1876 and 1886 gives as synonyms of P.bypustulatus, Anisopus punctatus, de Haan, Platyonychus purpurcus, Dana, and Portumus catharus. White. Haswell, in his Catalogute of Australian Malacostraca, 1882, (loes the same, except that he does not give the reference to ilhite. It may be questioned whether the distinctions drawn bỵ de Haan, depeinding chichy on colour markings, are of specific value. It may also be questioned whether the character implicel in the specific name, apart from
the reference to Seba. would give his specific name priority orer that used by Minne-idwards. The description by the latter anthor does not suffice to distinguish bein een the two forms recorded by de Haan. Mine-Eduards says nothing about the colour, and ins coioured figure was probably not published till sonne vears later. On the other hand, Seba's pl. 18, f. 9, shows three frontal teeth instead of four, is devoid of the three spots which are not alluded to in the description, vol. 3. 1. 44. "Color ab ommi parte idem dilute flavus, splendens." But if bipustulatus is identified with punclatus, the priority cannot rasonably be refuscd to the latter name, since in 1833 it was assigned to a welldefined genus, quite as good for its identification as the specific description given by Milne-Edwards in the following year. In the generic definition de Haan calls attention to the peculiar structure of the seventh joint in the second pair of trunk legs. This finger in the adult male is falciform, dilated, and on the hind margin deeply grooved. The fissuring begms a little way from the base, and then the edges spread out, so as to give a somewhat flattened appearance to the back of the finger viewed from above. In the specific account he mentions that the fenora of these same feet have a transverse membranaceous crest on the superior apex, which Micrs also notices, saying, "above the articulation the margin of the thigh is raised, and forms a crest." All that I can perceive is a transverse ridge on the distal margin of the fourth joint, which is commonly called the arm, not the thigh. Krauss, who remarks the three spots on the carapace, says that frmachlatus is searcely distinct from punclatus, though he upholds its name and reduces bipustulalus to a synonym. He says it is very common in Table Bay, and prefers sandy, sheltered wastes, suitable to its thin, brittle shell, and in harmony with its colouring, which in the ground work is yellow, though sprinkled with bloodred dots, in adclition to the half-moon shaped median and the two postero-lateral spots.

Localitỵ:- False Bay.

CATOMETOPA.

Ijoo. Catometofu, Meock, Journ. Isiat. Soc. licngal, vol. 69. pt. 2, p. 281.
Alcock says. ${ }^{\text {. }}$ The Catometopa may be divided into 9 families. One of thesc, the Gonoplacidac, so closely approaches the Cyclometope fanily Xintlidae that such Xanthoid forms as Geryon and Camptoplar have by some authors been included in it, while, on the other hand, some of its constituent genera, such as Gonopla. and Carcinopla.r, have been ranged among the Cyelometopes."

Fim. : Goneplacidae.

1900. Gonoplacidae, Alcock, Journ. Asiat, Soc. Bengal, vol. 69, pt, 2, pp. 283. 297.
The following definition is given by Alcock:-" Marine Catometopes closely resembling Cyclometopes. The palp of the external maxillipeds articulates at or near the antero-internal angle of the merus [fourth joint], never at the antero-external angle or at the middle of the anterior border ; the exognath of the external maxillipeds is of normal size and is not concealed. The interantennular septum is a thin plate. The division of the orbit into two fossae is not accented."

Gen. : Goneplax, Leach.

18i3-I8i4. Goneplax, Jeach, Edin1). Encyl., vol. 7, p. 4j0. Art. Crustaceology.
I8i5. Goneplax, Leach, Trans. Linn. Soc. London, vol. if, p. 323.
1816. Gonotlax, Leach, Encycl. Brit., p. +13, Art. Annulosa. 1837. Gonoplax, NIilne-Edwards, Hist. Nat. Crust. vol. 2, p. 60.
1853. Gonoplar, Bell, British Stalk-eyed Crustacea, p. Iz9.
1886. Gonoplax, Miers, Challenger Brachyura, Reports, vol. 17, p. 245 .
1873. Gonoplax, Stebbing, Histery of Crustacea, p. 91.
1900. Gonoplax, Alcock, Journ. Asiat. Soc. Bengal, vol. 69, pt. 2, p. 316.

Several other references might be given, but they can be easily traced Thenamefirstappears in the form Goncput at page 393 of Leach's Crustaceology, but he then gives Ocypode angulata as the sixth species of Ocypode, though appending the following paragraph:-" Cancer angulatus of Linné, Fabricius, and Pennant; Ocy'pode bisponosa of Lamarck; Gone plat bisponosa, Leach, MSS. ITde Goneplat in Index."

I cannot regard this as an institution of the genus Goncplat, while its only species is retained under Ocypode. In the Index the name given is not Goilcplat, but Gonepla.r, with a reference to page 432, although it is on page 430 that Goncplax is in fact defined. The reference to Linné is also misleading, since Cancer, angulatus is a species dating from Pennant in 1777. and is subsequently mentioned, not by Linnæus, but in Gmelin's edition of the Systema Naturae.

Goseplai anculat. (Pennant).

1777. Cancer angulutus, Pennant, British Zoology, vol. 4, p. 7, pl. 5, fig. 10.
1778. Cancor ansilatus. Herbst, Krabben uial K゙rebse, vol. I, p. $85 . \mathrm{pl} .1$ fig. 13.
1779. Cancor angulatus, Gmelin's Syst. Nat., vol. I, p. 297 I.
1780. Cancer angulatus, Fabricius, Ent. Syst., vol. 2. p. 449.
1781. Ocypoda angulala, Bosc, Hist. Aat. Crust., vol. i, p. ig8.
1782. Ocyfode angulata. Leach, Lidinb. Encycl., vol. 7, p 393.

1813-14. Goncplaii angulata, Leach. Edinb. Encycl. vol. 7. p. +30.
ISI 5. Gonchla.i bispinosa, Leach, Trans. Linn. Soc. London, vol. II. p. 323.

1S16. Gonoplar bisponosa, Leach Encycl. Brit., p. +13, Art. Anmulosa.
1817. Gomoplax bisponost, Leach, Malacostraca Podophthaimata Britanniae. text to pl. 13
1829. Gonoplax angulatus, Latreille, Règne \nimal, vol. 4, p. 43.
1837. Gonoplav angulata, Milne-Edwards, Hist. Nat. Crust., vol. 2, p. 6I.
1853. Gonoplar anguiata, Bell. Brit. Stalk-eyed Crust., p. I3I, fig. in text.
1393. Gonoplax riomóvides, Stebbing. History of Crustacea, p. 92.

The South African specinen completely agrees with liell's description of this well-known species. It has the two pairs of lateral spines of the carapace well developed and rery acute; the arm or fourth joint of the cheliped has the sulall spine near the middle of its upper side, and a similar spine on the imner margin of the fifth joint ; the chelipeds are nearly alike, but that on the right side shows a cavity between the fingers in their proximal half, while that on the left side has the fingers close together in their whole length. The coionring, as in English specimens, is more reddened across the mpper half of the carapace, and paler, ycllowish on the lower half. Latreille and Milne-Eifwards were disposed to unite this species with the eariier Cancor rhomboides, Linn., which is distinguished from it by having no lower lateral spine on the carapace, or at most, a little tubercle in its place. It must be admitted that the distinction, though marked, is not by itself highly important. Yet there is some convenience in retaining both specific names, as is done by Milne-Edwaids. Carus, and others.

Locality:-Trawled I I miles off Cape St. Blaize.
F"

Oxystomilas.

1806. Orivstamir or Leucosoidae, Alcock, Journ. Asiat, Soc: Bengai, vol 6.5. pt. 2, p. 135.
1807. Oxystomafu, M. J. Rathbun. The Inserican Naturalist, vol. 34, p. 515.
An account of this tribe as now including the Raninidac, with
the principal references to de Haan, Miers, Ortmann, etc., will be found in Alcock's work above cited.

Fani: Letcosiddae.

For an account of this family, and several sulb-divisions of it or " alliances," the same work (p. 164) may be consulted.

> Gen.: Philyra, Leach.
1817. Phiiyra, Leach, Zool. Miscell.. vol. 3. p. 18.
1837. Philyra, Milne-Edwards, Hist. Nat. Crust., vol. 2, p. 131.
1855. Philyra, Bell, Trans. Linn. Soc. London, vol. 21, p. 299.
1877. Philyra, Targioni Tozzetti, Crost. Brachyuri e Anomouri, Magenta, p. 196.
1886. Philyra, Miers, Challenger Brachyura, Reports, vol. I7, p. 320.
1892. Philyra, Ortmann, Zool. Jahrb., yol. 6, p. 582.
1896. Philyra, Alcock, Journ. Asiat. Soc. Rengal, vol. 65, pt. 2, p. 237.
1900. Philyra, M. J. Rathbun, The American Naturalist, vol. 34, p. 517.

Alcock observes that Philyra can be at once distinguished from Leucosia by the absence of a thoracic sinus, and under Lewiosia explains that the lateral epibranchial angles of the carapace form on either side a distinct lobe, which is bent downwards towards the base of the chellipeds to form the eave of a dcep sinuous depression in the side wall of the carapace, known as the thoracic sinus. Bell points out that the extraordinary dilatation of the exopod in the third maxillipeds, which had been regarded as the essential characteristic of Philyra, varies greatly in degree in the sereral species.

Philya punctita, Bell.
1855. Philyra punchata, Bell, Trans. Linn. Soc. London, vol. 21, p. 291, pl. 33. fig. 2.

In agreement wuth Bell's description, the carapace is nearly orbicular, smooth, punctate in every part. Except for a small interval in front, the carapace is entirely surrounded by a beaded line, the little beads or projections showng in most part of the circumference considerable inequality. Similar ornaments fringe the fourth joint of the third maxillipeds and the hind margin or a transverse ridge of the first and second pleon-segments. The third maxilliperls in this species have the fo!ntly joint very much A194i.
shorter than the third, the exopod moderately expanded. In the chelipeds the finger and thumb have three or four teeth at the distal part of each inner margin, not large, but more decidedly developed than any on the earlier part of the margins. In the male the third, fourth, and fifth segments of the pleon are coalesced, in the female, these, together with the sixth.

Length of carapace in the male specimen, if.25 mm. by a breadth of 10 mm .

Locality:-Mossel Bay.
Bell's specimen, half an inch in length of carapace, was dredged in Simon's Bay, between four and seven fathoms, on sand.

BRACHYURA ANOMALA.

1839. Dromacea de Haan, Crustacea Japonica, decas quarta, p. 102.
1840. Dromiaccue, Boas, Studier over Decapodernes Slaegtskabforhold, p. 138.
1841. Brachyura anomala (part), Stebbing. History of Crustacea, p. 133 .
1842. Dromiaccac, A. Milne-Edwards and Bouvier, Crust. Dé cap. de l'Hirondelle et de la Princesse Alice, Monaco, fasc. 13, p. 8.
18y9. Brachyura anomala, Alcock, Deep-sea Brachyura R.I.M.S.S. Investigator, p. 6.
1843. Dromiaceae, A. Milne-Edwards and Bouvier, Crust. Dée. du Travailleur et du Talisman, p. 5.
1gor. Dromides or Dromiacca, Alcock, Catalogue of the Indian Decapod Crustacea, fasc. 1, p. 28.
The French authors above cited divide the Brachyura into Dromiacae or Brachyures primitifs and Brachyura genuina. The Dromiacea or Brachyura anomala comprise three legions or thrce families, Dromidæ, Homolidæ, and Dynomenidæ, in acrordance with Ortmann's arrangement of the Dromiidea in 1892. The authors who have taken the lead in re-establishing this classification have fully recognized the claim of de Haan to its origination. He included in his Dromiacea the four genera Dynomene, Homola, Dromia, Latrcillia, remarking that " the Dromiacea, with exclusion of Lithodidæ, seem to be far removed from the Anomoura, and especially from the Raninoidea and Paguridea." So circumscribed, he concludes that they ought not to be separated from the Brachyura. Alcock, whose classification is at once the most recent and the most fully and clearly explained. divides the Rrachyura anomala into two tribes, the Dromiidea and Homolidea. the former including the three
families Homoldromiidæ, Dromiidæ, and Dynomenidæ, the latter embracing the Homolidæ and Latreilliidæ.

Fam.: Dromildae.

1899. Dromiidac, Alcock, Journ. Asiat. Soc. Bengal, vol. 68, pt. 2, p. I35.
1900. Dromiidac, Alcock, Jatal. Indian Decapod Crustacea Brachyura primigenia, p. 37.
The family, as recently restristed by Alcock, contains the genera Dromia, Eudromia, Sphaerodromia, Conchoecetes, Hypoconcha, Cryptodromia, Petalomera, Pseudodromia, and Lasiodromia. Dromidia, Stimpson, including Dromidiopsis, Borradaile, is regarded as a sub-genus of Dromia. Lasiodromia is a new name not unreasonably substituted for Homalodromia, Miers, which is distinct from the earlier Homolodromia, A. Milne-Edwards, in a dufferent family; but Alcock remains uncertain whether Lasiodromia should be separated from Stimpson's Pseudodromia. He is also doubtful whether Ascidiophints, Richters, should be allotted to this family.

Gen.: Conchoecetes, Stimpson.

1858. Conchoecetes, Stimpson, Proc. Acad. Phinlad., p. 226 (64).
1859. Conchoecetes, A. O. Walker, Journ. Linn. Soc. London, vol. 20, pp. 108, III.
Conchoecetes, Henderson, Challenger Anomura, Reports, vol. 27, p. 17.
1860. Conchoecetes, Stebbing, History of Crustacea, p. 135.
1861. Conchoccetes, Alcock, Journ. Asiat. Soc. Bengal, vol. 68, p. 150.
1862. Conchoecetes, Alcock, Catal. Indian Decap. Crust., Brachyura primigenia, p. 40.
In this genus the carapace is depressed, subpentagonal; the fifth pair of legs, which are turned forwards along the sides of the carapace, are short and slender, not subchelate, with the finger minute; the preceding pair are not elongate, but robust, with a strong hooked finger, folding rou:ad the edge of the mollasc-valve, its grip upon which is aided by the obtuse process of the preceding joint.

Conchoecetes artifictosus (Fabricins).
1798. Dromia artificiosa, Fabricius, Supplementum Ent. Syst., p. 360.
1803. Cancer artificiosa, Herbst, Krabben und Krebse, vol. 3, pt. 3, p. 54, pl. 58, fig. 7.
1837. Dromia artificiosa, Milne-Edwards, Hist. Nat. Crust., vol. 2, p. 176, foot-note to account of D. fallu.r, Lamarck.
1858. Conchoccetcs artificiosus, Stimpson, Proc. Acad. Philad., p. 240 (73).
1882. Dromia conchifcra, Haswell, Catal, Austral. Crust., p. I4I, pl. 3. fig. 4. (and Proc. Linn. Soc. N.S. Wales, vol. 6, p). 757).
1887. Conchocites conchifora, A. O. Walker, Journ. Linn. Soc. London, vol. 20, pp. Io8, II I.
IS99. Conchoccetcs artificiosus, Alcock, Journ. Asiat. Soc. Bengal, vol. 68, p. 15 I.
1901. Conchoecetcs artificiosus, Alcock, Catal. Indian Decap. Crust., Brachyura primgenia, p. 41, pl. 3, fig. 16.
The short close pubescence which covers this species is said by Haswell to be green. In formalin it is brown, with perhaps a greenish shade in it. I do not find the dimensions given by any author except Haswell, who reports it from Port Dienison and Port Molle, and gives length $\frac{21}{32} \mathrm{in}$.; breadth, $\frac{5}{8} \mathrm{in}$. The specimen from South Africa has the carapace in the medium line 21.25 mm. long, and its greatest breadth 22.25 mm ., the breadth, therefore, being a little greater than the length, instead of the reverse as in the Australian specimen. But it must be remembered that the median line is measured from the central tooth of the front, which is smaller and less advanced than its two companions. A line from cither of these to the hind margin gives the carapace of the African specimen a length of 22-50. The dorsal length in the median line, including the three protruded segments of the pleon, is 30 mm .

In forwarding the specimen from Cape Town, Dr. Gilchrist informed me that the animal had been tied into its valve when procured, in order to show how the shell is held, otherwise these creatures, when brought on deck, speedily leave their covert. The fourth pair of legs are, in fact, still grasping the shell valve in a defiant manner, though they appear to have shaken off the rest of the animal as a useless incumbrance, and by this detachment facility of examination was considerably increased.

Locality :-Amatikulu"River N.W., distant $7 \frac{1}{2}$ miles (coast of Zululand), from 26 fathoms.

Fam.: Homolidae.

1888. Homlidae, Henderson, Challenger Anomura, Reports, vol. 27, p. 18.
1889. Homolidac, Ortmann, Zool. Jahrb., vol. 6, p. 540.
1890. Homolidac, Stebbing, History of Crustacea, p. 137.
1891. Homolinat. M.-Edw: and Bouvier, Crust. Hirondelle et Princesse Alice, pp. 9, IO.
1892. Homolıdac, Alcock, Deep-sea Brachyura Investigator, p. 6.

1S99. Homolidae (restrictcd), Alcock, Journ. Asiat. Soc. Bengal, vol. 68, pt. 2, p. I 54.
1900. Homolinac, M.-Edwards and Bouvier, Crust. Travailleur et Talisman, p. Io.
rgor. Homolidac (restricted), Alcock, Catal. Indian Decapod Crustacea, p. 59.
In I899 the French authors recognised in this family seven gencra, Paromola, Paromolopsis, and Hypsophry's, instituted by Wood-Mason; Homologenus and Latreillopsis, by Henderson; Homola, Leach; and Latreillia, Roux. They remark that the species of Paromola are the primitive forms of the group, and that Latreillia is linked to it by the intravention of Latrcillopsis. Alcock distinguishes three sub-genera of Homola, namely, Homolu. Homolar. and Paromola. This writer also. in the Journ. Asiat. Soc. Bengal vol. 68, p. I55, i899, separates Latreillopsis and Latreillia from the Homolidæ, placing them in a new family Latreillidæ, in this respect following the lead of S. I. Smitlı, who in 1883 distinguished the Latreillidea from the Homolidea, although with Alcock Homolidea is an over-groupembracing the two families, the Latreillidæ (or rather Latreilliidæ) being distinguished by very elongate eye-stalks, by having eight pairs of gill plumes, and no epipods on the trunk legs, while in the Homolidæ the eve-stalks are not so elongate, the gill plumes are in thirteen or fourteen pairs, and there are epipods on the chelipeds and often on the two following pairs of legs.

Gen.: Homola, Leach.

ISI5. Homola, Leach, Trans. Linn. Soc. London, vol. in., p. 324. I863. Hiomola, Heller, Crust. des südlichen Eıropa, p. I48.
1896. Homola, Bouvier, Bulletin Soc. Philomathique de Paris, vol. 8, p. 70 (37), etc.
1901. Homúla, Alcock: Indian Decapod Crustacea, fasc. I. p. 60.

The very numerous references to this genus can be traced from those here given for the family and the typical species. For Homola as a subgenus, Alcock names H. barbata as the type, for min (1. H. Mcgalops, Alcock, and for Paromola, Wood-Nason, H. curicri (Risso). For the sub genus Homola he gives the following character:-

Carapace quadrate, its broadest part being in front, across the middle of the gastric region: the lincac anomuricac keep close to the lateral borders, and are rather inconspicuous. Rostrum a
lificl tooth，with a small spine or tooth on cither side of its base． The last pair of legs reach to the end［of the carpus，i．e．，fifth joint］＊of the preceding pair．＂
The species allotted to th is subgenus are H．barbata（Fabricius）， H．rigil，A．Nilne－Elwards；H ．orientalis，Henderson；and H ． andamanica．Alcock；but the last is regarded as possibly a synonym of Henderson＇s species，and probably only a variety of H．barbata．

Homola barbata（Fabricius）．

ェフリ3．Cancir barbutus，Fabricius，Ent．Syst．，vol．2，p．460，No． 76.

1796．Cancer barbatus，Herbst，Krabben und Krebse；vol．2，pt． $6, \mathrm{p} .166, \mathrm{pl} .42$ ，fig． 3 ．
I＇s r 5．Homola spinifrons，Leach，Trans．Linn．Soc．London，vol． 11，p． 324.
1837．Homola spinifrons，Milne－Edwards，Hist．Nat．Crust．，vol． 2，11 183，p1．22，tig．1－4，and in the undated Règne Animal（Ed．Fortin，Masson et Cie），pl．39，fig． 2.
1847．íomioia barbala，White，Crustacea in British Museun！，p． 55°
1863．Homola spinifrons，Heller，Crust．des südlichen Europa，p． 149，pl．4，figs．12， 13.
1884．Homola barbata，S．I．Smith，Fishery Report for 1882，p． 351 （7）．
1888．Homola barbata，Henderson，Challenger Anomura， Reports，vol．27，p． 18.
1899．Homola barbata，Alcock，Journ．Asiatic Soc．Bengal，vol． 68, pt．2，p．${ }^{5} 5$.
1900．Homola barbata，Milne－Edwards and Bouvier，Crust． Décap．Travailleur et Talisman，p．ıo．
1901．Homola barbata，Alcock，Indian Decapod Crustacea，fasc． 1，p． 79.
Many more references are given in Alcock＇s last－mentioned work，including，doubtfully，H ．spinipes，Guilding，Trans．Linn． Soc．，vol．14，p．334．1825．In 1818 Lamarck assigned the species as named by Leach to Dorippe．White，probably following Desmarest，suggests that it may be a representative of Rafinesque＇s genus Thelxiope．＇I he specific name given by Fabricius was by many authors ignored in favour of Leach＇s spinifrous．H．Xilne－Edwards，Heller．Henderson，A．Milne－ Fdwards and Bouvier，agree in assigning the name barbatus to Herbst，thongh Herbst himself gives the reference for it to Fabricius．White refers both to Fabricius and Herbst，but in－ verts the order．Alonck puts the whole matter rightly，except

[^1]that the reference to Fabricius is unfortunatey printed as p. 450 instead of 460 . Fabricius himsclis has a species Cancer spinifrons, which was instituted by Herbst in 1785, Krabben und Krabben, vol. I, pt. 6, p. 185, pl. i1, fig. 65. This species has nothing; whatever to do with Leach's Homola spinifrons, but for those who may wish to verify this by the original authorities it should be mentioned that Fabricius twice gives a misleading reference to Herbst. In the Ent. Syst., vol. 2, p. 455, he refers to "Cancer spinifrons, Herbst. Cancr. tab. 9. fig 58.," and in the Supplementum he repeats this reference after one to his own work, as though he himself were the author of the species.
The South African specimen has the carapace ornamented as figured by Milne-Edwards and described by Heller, and likewise in agreement with the account given by Alcock of his Homola andamanica. There are 13 spines between the short, slightly depressed bifid rostrum and the cervical groove, and down each side there is a row, beginning with a large tooth-like spine. followed by a smaller one, and then by diminishing denticles in the number of a dozen. The epistome has a central upturned spine. The fourth joint of the third maxilliped being abruptly narrowed in the distal half, looks as if a piece had been cut ont of its outer margin. The fourth joint in the four pairs of ambulatory legs is setose or spinulose on the inner margin, but seems devoid of the tooth spines which are characteristic of H. andonmanica.
Length, 29 mm .
Locality:-False Bay, from 32 fathoms.

Fam: Latreillifidae.

1899. Latreillidae, Alcock, Journ. Asiat. Soc. Bengal, vol. 68, pt. 2, pp. 130, 165.
190ı. Latreillidae, Alcock, Catal. Indian Decapod Crustacea, p. 70.

For the distinction of this family from the Homolidæ see page 21 .

Gen.: Latreillia, Roux.

1828. Latreillia, Roux, Crustacés de la Méditerranée, livıaison 5, pl. 22.
1829. Latrcillia, H. Milne-Edwards, Hist. Nat. Crust., vol. I, p. 277.
1830. Latreillia, de Haan, Crustacea Japonica, decas quarta, p. IO5.
1831. Latreillia. Heller, Crust. siidl. Europa, p. 146.
1832. Latreillia, Hendurson, Challenger Anomura, Kẹorts, vol. 27, p. 23.
1833. Latrillia. Stebbing, History of Crustacea, p. 137.

1S94. Latreillia, A. Milne-Edwards and Bouvier, Cimst. Déz Hirondelle, fasc. 7, p. 59 -
1897. Latreillia, Bouvier, Bull. Soc. Philom. Paris, Ser. 8, yol. 8. pp. 30, etc.
ISyg. Latrillia, M.-Edwards and Bouvier, Crust. Hirondelie et Princesse-Alice, fasc. 13, p. 13.
ı899. Latreillia, Alcock, Journ. Isiatic Soc. Bengal, vol. 68. pt. 2, p. 167.
1601. Latreillia, Alcock, Indian Dec. Crust., fasc. I, p. 70.

To this genus have been assigned five species- L. elegans, Koux ; L. valida, de Haan; L. pemifera, Alcock; L. phalangitm, de Haan; L. australicnsis, Henderson. The latter two are set apart from the first three by having the fifth trunk legs of much less considerable length. The resemblances and differences in the first three are cliscussed under the following specific description :-

Latreillia eleg.ins, Koux.
1828. Latrcillia clegans, Koux, Crust. Médit., pl. 22.
1834. Latreillia clegans, Milne-Edwards, Hist. Nat. Crust., vol. I, p. 277.
1839. Latrcillia clegans, de Haan, Crust. Jape nica, decas quarta, p. 108.
1849. Latreillia clegans, Lucas, Crust. Algérie, p. 3, pl. i, fig. 1.
1863. Latreillia clegans, Heller, Crust. (les südlichen Europa, p. I47, pl. 4, fig. 14.
1883. Latreillia clegans, Smith, Proc. U.S. Mus., vol. 6, No. r, P. 23 .
1884. Latreillia clegans, Smith, Annual Fishery Report U.S. for 1882, p. $35^{1}(7), \mathrm{pl} .2$, fig. $2,2 \mathrm{a}, \mathrm{pl} .3$, fig. I.
1886. Latreillia clegans. Smith, Ann. Fishery Report for 1885. p. 33.
1894. Latreillca clegans, A. M.-Edwards and Bouvier, Crust. Décap. Hirondellc. Monaco. fasc. 7, p. 59, pl. 6, figs. I3-15.
1899. Latreillea elegans, A. M.-Edwards and Bouvier. Crust. Princesse-Alice, Monaco, fasc. 13. p. I3.
1900. Latreillea clegans, A. M.-Edwards and Bouvier, Crust. Décap. Travailleur ot Talisman, p.13.
190ı. Latreillia clcgans, Alcock, Indian Decapod Crustacea, P. 80 (Synonymy).
To the above should perhaps be added :-
1839. Latrcillia ralida, de Haan, Crust. Japonica. decas quarta, p. 107 pl. 30. fig. I.
1888. Latreillia zalidu, Hendersun, Chailenger, Macrura, Reports, vol. 27, p. 24.
1893. Latreillia valida, Stebbing, History of Crustacea, p. I37, pl. 5 (from de Haan).
1899. Latreillia penmiferu, Alcock, Journ. Asiat. Soc. Bengal, vol. 68, p. 168.
1901. Latreillia pinnifera, Alcock, Indian Decapod Crustacea, p. 7 I, pl. 7, fig. 27.

It should be observed that Major Alcock himself introduces his species with the remark that it is "very closely related to L. elegans, Roux." The specific name which he gives to the Indian form is highly appropriate to the penultimate joint in the last pair of legs, it being, as he says, "plumed on both sides so as to exactly resemble the vane of a feather." This character is equally conspicuous in the specimen forwarded to me from the Cape, but when originally describing this form before I had seen Major Alcock's figure and description, I persuaded myself that it was identical with de Haan's L. valida, and that the remarkable feathering had not attracted that author's attention in a dried example or had been by some accidental circumstance removed. In point of fact, de Haan's artist does give a fringe of setules to the joint in question. But the same joint is drawn by S. I. Smith very distinctly feathered on both sides in a United States specimen of L. clegans, and the feathering at least for one margin is shown with equal clearness in the figures given by Lucas for a Mediterranean example of the same species. De Haan distinguishes L. cicgans from the Japanese form by its not having a dorsal spine on the gastric region, by the greater length of the eye-stalks and frontal spines, by the fourth segment of the pleon being bispinose in the middle, and by the thinner legs. Roux only had female specimens, and de Haan does not claim to have examined any but one from Roux' own collection, so that Heller's statement that de Haan observed the male also seems to be a mistake. But de Haan's statement that the composite fourth segment of the pleon in the female of $/$..cleginns sis bispinose in the middle must also be mistaken. Minne-Edwards. Lucas. Hel'er, agree in stating that the two pairs of spines on this segment are lateral or sublateral. The lower pair seem to be minute. A distinction depending on the comparative lengths of eye-stalks and frontal spines cannot well be trusted. since they are apparently not a little variable. In a detail figure Simith represents the spines as quite unsymmetrical. Any difference in the thickness of the legs between the forms here compared seems mappreciable, so that for specific distinction nothing remains but the presence or absence of two or three insignificant-looking spines and the greater or less length of the setæ on a particular joint.
The South African specimen has the frontal spines extending along the basal joint of the eye-stalk just to the thicker terminal
joint; they have a denticle on the outer side at the base and anuther a little liggher, and near the apex two with an inward direction. Aleuck speaks of them in L. pennifora as occasionally bearing some tiny secondary spinules, and Heller says in regard to L. clegans that they have one or two little denticles below on the outer side, and generally another denticle outward at the base over the inscrtion of the first peduncular joint of the inner antenne. The first antemice, straightened out, would reach the end of the frontal spines. The chelipeds agree with Alcock's and Heller's descriptions, in having spines along the fourth joint, the following joints smooth, but the slender finger which just matches the thumb is not half as long as the carpus or fifth joint; Heller says that this finger is "only half as long as the carpus.", Alcock says "the fingers are not half the length of the palm." The long second and third legs agree also with the descriptions in the two authors just mentioned, the fourth joint being distinctly spinose, the fifth sparsely so, the sixth chiefly at the slightly dilated apical portion, and the finger on its outer margin. The fourth pair of limbs is missing. The fifth pair, though shorter than the preceding third pair, reach well beyond its fifth joint; they have the fourth and fifth joints spinose, the sixth feathered on both margins with plumose setæ, the finger, as in Alcock's description and Smith's figure "extremely short." The pleon has a median spine on the second and on the third segment, and one at each side of the base of the composite fourth; the terminal segment ends very acutely. The pleon is enormously distended by a multitude of small eggs. Milne-Edwards and Bouvier refer to the small and numerous eggs in this species, and S. I. Smith calculated that a specimen, of which the carapace without the rostral spines was 12 mm . long, was carrying $\mathrm{I}, 650$ eggs. The length mentionied by Professor Smith fairly corresponds with that of the specimen here described. Henri Milne-Edwards gives the length as about an inch, but the measurement does not convey much meaning, as it may or may not include the frontal spines and the three segments of the pleon which are visible in a dorsal view. The pleon of the male is said by Litcas and Heller to be entirely smooth. For L. valida de Haan says that the second segment in the male is " unispinosus." Alcock describes the pleon of the female in L. pennifera in agreement with that of the South African form, but does not say whether the male has the pleon free from spines or not.

Orange banding is perceptible on the limbs, eye-stalks, and frontal spines, but the carapace (in formalin) is colourless.
Locality:-Two miles N. by W. of Umbwalumi River, Natal, from 25 fathoms.

MACRURA ANOMALA.

By the most recent arrangement these are divided into F'aguridea, Galatheidea, and Hippidea. As Alcock explains in his Catalogue of Indian Deep-Sea Crustacea. p. 204, Igor, they are the Anomala of de Haan and Boas, and differ " from the Anomura of Milne-Edwards in the exclusion of the Dromidac, Homolidac, Raminidac, and Pactolus, and in the inclusion of the Galatheidae: from the Anomoura of Dana in the exclusion of the Anomoura superiora: from the Anomura of Henderson in the exclusion of the Dromider and Raminidea, and thev correspond with the Anomoura Schizosomi of Stimpson.'"* Of the five legions adopted for their classification in my History of Crustacea, I893, the Pagurinea and Lithodinea belong to the Paguridea, the Porcellaninea and Galatheinea to the Galatheidea. This last tribe is now divided by Ortmann and by Alcock into four sections or families-Aeglacidae, Porcellanidae, Galatheidae, and Uroptychidae. A. Milne-Edwards and Bouvier (1899) prefer to use a slightly different terminology, speaking of a fannily Galatheidæ, with three sub-families-Aegleinæ, Galatheinæ, Diptycinæ, the Galatheinæ comprising two tribes, the "Galatheinés and Porcellaniens."

Fan.: Porcellanidae.

Henderson, in his Keport on the Challenger Anomura, gives the Porcellanidæ without definition as the single family of the Porcellanodea, which is his Section A of the Galatheidea. He gives the following definition of the section, which will apply to the single family:-
" Carapace broadly ovate, smooth, with the regions but faintly defined; the front usually trilobed, and the processes never of great length. Chelipedes broad and often flattened, the ambulatory limbs robust and of moderate length. Antemnules concealed; the antennal peduncle directed backwards. Eyes always pigmented and partially concealed in orbits. External maxillipedes with the ischium [third joint] broad, and the merus [fourth joint] provided with a prominent internal lobe. Abdomen bent under the thorax: females with two (or three) pairs of slender uniramons appendages borne on the fourth, fifth, (and third) segnents: males lith a single gen'tal pair on the second segment.

[^2]
Geñ.: Porcellana, Lamarck.

1801. Porcellana, Lamarck, Syst. Anim. sans vertebres, p. 153.
${ }_{1} \mathbf{S} 5$. Porcellana (restricted), Stimpson, Proc. Acad. Sci. Philad., p. 228 (60).
1802. Porcellana, Henderson, Challenger Anomura, Reports, vol. 27, p. 10y.
Henderson, who gives a long list of references, supplies the following definition:-" Carapace suborbicular or subovate, the length usually greater than the breadth. Frontal region prominent and dentate, the teeth usually well developed. Eyes of moderate size, the orbits deep. Chelipeds moderately flattened, the carpus short and usually provided with a single projecting lobe near the proximal end of the internal margin; the digits frequently contorted. Ambulatory limbs with the dactyli sliort and robust, terminating in a single claw."

Porchllana bellanif, Krauss.

18+3. Porccllana dchaanii, Kranss, Dic südafrik. Crustaceen, p. 59, pl. 4, fig. 2.
1858. Porcellana Dchanni, Stimpson, Proc. Acad. Sci I'hilad., p. 229 (67).
1858. Porcellana strcptochcles. Stimpson, I'roc. Acad. SciPhilad., pp. 229 (67), 243 (81).
1886. P'urcellana streplocheles, Henderson, Challenger Anomura, Reports, vol. 27, p. 1 Io.
Stimpson distinguishes his species from that of Krauss by its having the carapace bare, the front broader, the median tooth less prominent, and the super-antennary margin not denticulate. But according to Henderson " in the Challenger specimens short stout hairs arranged in tufts are noticeable on the gastric, cardiac, and bronchial areas." In our specimens there are two conspicuous tufts behind the front on the gastric area, but no others; the median tooth is with or without lairs, and a little more prominent than tine other two frontal teeth; below a noteh under the second antenna there is a sub-marginal ridge of four or five little lateral denticles, the lowest but one being slightly the argest. Ifenderson recognizes that P^{\prime}. streptocheles is closely allied to P. dehannii, but ()) serves that in the latter "the chelipedes are smooth and the carpi unarmed, the median frontal tooth is conical and prominent, and the antero-lateral nuargin of the carapace is denticulate over the insertion of the antennal peduncle." These differences, how ever, may in part be attributed to the state of individual specimens and in part to the observer's opimon of what was worth noting. Krauss speaks of the carpus as having the margin entire, "hile Stimpson speaks of it as smooth, obsoletely $2-3$ dentate on:
each side. Un the important cliaracter of the contorted smaller chela, with its gaping fingers, both of them strongly pilose on the inner margin, they are agreed. That Stimpson speaks of the fourth joint in the walking legs as "gracilis" may b: expla ned by supposing him to refer to the thickness of the joint, not to its breadth.

Locality:-False Bay. The Challenger specimens and Stimpson's were taken in Simon's Bay. Krauss describes his as very common in the sinnosities of Eschara foliacea, Linn., on the terraces of the Natal coast.

Fam.: Galatheidae.

I899. Galalheidue, Urtmann, Bronn's Thierrich, Malacostraca, p. I, I 50.
1901. Galatheidae, Alcock, Catal. Indian Deep-Sca Crust., Macrura, and Anomala, p. 236.
Though the family Galatheidae is not a new one, its present restriction is quite recent. Alcock distinguishes it from the companion family Uroptychidæ as follows:-
". The telson, which is not folded boneath the preceding abdominal somite, is distinctly made up of plates which suggest a tergum and a pair of appendages modified; the last thoracic sternum is narrow, but well formed; the antennal peduncle appears to be four-jointed, the second and third joints being united: the incisor edge of the mandible is entire ; a foliaceous epipodite is present on the first maxillipeds, and a flagelliform epipodite is almost always present on the external maxillipeds."

In Galathea and Mmida the exopod of the first maxillipeds terminates in a flagellum, and the eyes are facetted and wellpigmented, none of which characters belong to the genera Munidopsis and Galacantha.

Gen.: Munida, Leach.

1820. Mmida, Leach, Dict. Sci. Nat., vol. 18, p. 52.
1821. Munida, Bell, Brit. Stalk-cyed Crust., p. 206.
1822. Mimida, Henderson, Challenger Anomura, Reports, vol. 27, p. 123.
1823. Mumida, Bonnier, Bull. Sci. France-Relgique, ser. 3. vol. i, p. 78.
1824. Munida, A. Milne-Edwards and Bouvier. Crust. décap. Hirondelle, fasc. 7. Monaco. p. 83.
igor. Munida, Alcock, Catal. Indian Deep-Sea Crust., Xacrura and Anomala, p. 237.
Numerous other references can be traced from the above. and from the following account of a species. The characters used for
distinguishing this genus from Galathca are not of high importance. Henderson, with whom other authors are in substantial agreement, notes that the rostrum is slender and stiliform, with a well-developed supraorbital spine on either side of its base; that the carapace has the surface usually spinulose and the cardiac area as a rule distinctly circumscribed; that the chelipeds and ambulatory limbs are elongated and slender, and that one or more of the pleon segments usually has a serics of spinules on the anterior margin.

Munida sancti-pauli, Henderson.

1885. Munida militaris (?), Henderson, Ann. Nat. Hist., ser. 5, vol. 16, p. 410.
1886. MunidaSancti-Pauli, Henderson, Ann. Nat.Hist.ser.5, vol. 16, p. 41 I.
1887. Munida Sancti-Paulv, Henderson, Challenger Anomura, Reports, vol. 27, p. 142, pl. 3, fig. 6.
1888. Munida Sancti-Pauli, A. Milne-Edwards and Bouvier, Ann. Sci. Nat., ser. 7, vol. 16, pp. 229, 256.
1889. Munida Sancti-Pauli, A. Milne-Edwards and Bouvier, Crust. décap. Hirondelle, fasc. 7, p. 85 (M. Bourgeti on pl. 8, figs. 11-23).
1890. Munida Sancti-Paul, A. Milne-Edwards and Bouvier, Crust. Hirondelle et Princesse-Alice, fasc. I3, Monaco, p. 74 .
1891. Munida Sancti-Pauli, A. Minne-Edwa:ds and liowvier, Crust. décap. Travailleur et Talisman, p. 293, pl. 6, fig. 8, pl. 29, figs. 19-2 I.
On the gastric area the carapace has a transverse row of from six to eight spinules parallel to the frontal margin; there are seven teeth on the lateral margin, the largest in front; the hind margin is marmed. The second pleon segment has on its front margin eight to ten spinules; the remaining segments are glabrous. The third maxillipeds have on the fourth joint two prominent spines, the smaller of which is apical. The chelipeds are not so elongated as in Munida rugosa; their joints are strongly s;inose; there is little eavity and sometimes none between the closed fingers; the movable one has a tolerably conspicuous spine on its outer margin near the base, and near the base of its cutting edge one or two variably conspicuous teeth or tubercles. The sternal plastron is without the mumerous striated lines observable in Munida rugosa.
In their latest work Milne-Edwards and Bouvier say that M. heteracantha Ortmann (1892), M. militaris Henderson (i885), an. I M. propingua Faxon (1895) belong to the same group as M. sancti-panli, all with two spines on the fourth joint of the third
maxillipeds, but they recognize that in M. heteracantha the eyes are less dilated, and that there are some differences in the armature of M. propinqua, but they cannot find any distinction between M. militaris Henderson (1885) and his M. sancti-pauli. Henderson himself had already made his M. vitiensis a synonym and reduced his M. curvirostris to a variety of M. militaris. In M. propinqua there seem to be more differences of armature than those noticed by the French authors, and in M. militaris there are a few. But if, as those authors suggest, M. militaris and M. sancti-pauli should be regarded as one species, M. militaris, as the earlier name is the one that ought to stand, unless that also ought to be superseded by M. mules A. MilneEdwards (1880).

Locality:-Duffalo River north io miles. Depth, 3 Io fathoms. Bottom, coral and mud. The greatest depth recorded is that of a specimen taken by the Prince of Monaco at the Azores in 758 fathoms.

Fam.: Uroptychidae.
1892. (hirostylidae, Ortmann, Zool. Jahrb., vol. 6, p. 244.
1894. "Diptycinés," A. Milne-Edwards and Bouvier, Ann.Sci Nat., ser. 7, vol. 16, pp. 296, 312.
İýb. Chirostylidae, Ortmann, Zool. Jahrb., vol. 9, p. 433.
1896. Diptycinae, Bouvier, Bull. Soc. Eatom. France, vol. 65, p. 312.
icoo. Diptycinae, A. Milne-Edwards and Bouvier, Crust. décap. Travailleur et Talisman, p. 350.
1yoi. Uroptychidae, Alcock, Catal. Indian Deep-Sea Crust., Macrura and Anomala, p. 278.
The first name of the family was based on Chirostylus, a synonym of the earlier Ptychogastcr. The second claimant was derived from the pre-occupied name Diptychus, for which Henderson substituted Uroptychus, and that seems to form a proper foundation for the nane of the family, which has been detached from the Galatheidæ.
Diptychus and Ptychogaster were both instituted by A. MilneEdwards in 1880, but the former took precedence.
The characters distinguishing this family from the Galatheidr are given by Alcock as follows :-
"The telson, which is transversely fissured, is, along with the caudal swimmerets, folded beneath the preceding abdominal somites; the last thoracic sternum is more or less atrophied; the antemnal peduncle is five-jointed. the third joint being quite distinct from the second; the incisor edge of the mandible is serrated: no epipodites on any of the maxillipeds." It will be easily understond that the folding in of the telson suggested the
name Croptychus, tail-folding, and that the accession of this fold to the ordinary infolding of the pleon suggested the name Diptychus, double-folding.

Lien.: Ľrnptychus, Henderson.

1880. Liftirchus (pre-occ.), A. Milne-Edwards, Bull. Mus. Comp. Zoöl. Harvard, vol. S, p. 6ı.
1881. Uroptychus, Henderson, Challenger Anomura, Reports, rol. 27, p. 173.
1882. Diptychus, Bonnier, Bull, Sci. France-Belgique, ser. 3, vol. 1, p. 83.
1883. Uroptychus, Ortmann, Zool. Jahrb., vol. 6, p. 248.
1884. Uroptychus, Stebbing, History of Crustacea, p. 177.
1885. Diptychus, A. Milne-Edwards and Bouvier, Crust. décap. Hirondelle, Mionaco, fasc. 7, p. 87.
1886. Uroptychus, Faxon, Mem. Mus. Comp. Zö̈l, Harvard, vol. 18, p. 10 I.
1887. Diptychus, A. Milne-Edwards and Bouvier, Crust. décap., Monaco, fasc. 13, p. 87.
igon. Uroptychus, Alcock, Catal. Indian Deep-Sea Crust., Miacrura and Anomala, p. 28 I.
The strongly developed exopod or acicle of the second antennæ is a characteristic feature of the genus.

Uroptychus nitidus (A. Milne-Edwards).
ss88. Dipizchus nitidus, A. Milne-Edwards, Bull. Mus. Comp. Zoül. Harvard, vol. 8, p. 62.
1858. Uroptychus nitidus, Henderson, Challenger Anomura, Reports, vol. 27, p. 174, pl. 21, fig. 6.
1894. Uroptychus nitidus, Alcock and Anderson, Journ. Asiat. Soc. Bengal, vol. 63 . pt. 2, p. 33
1894. Liptyclus nitidus, var. concolor, A. Milne-Edwards and Bonvier, Ann. Sci. Nat., Zool. ser. 7, vol. 16, pp. 225, etc., figs. 16, 21.
18,6. Liropitchus midus, var. concolor, Caullery, Campagne Caudan, fasc. 2, p. 393.
T899. Niptichus nitidus, var. concolor, A. Milne-Fidwards and Bouvier, Crust. décap. Monaco, fasc. 13, p. 87, pl. 1, fig. 2.
quon. Diptychus nitidus, var. concolor, A. Milne-Edwards and Ponvier, Crust. décap. Travailleur et Talisman, p. 360, pl. 4. fig. 4. pl. 32. figs. 15-19.

Faxon, in lhis stalk-eyed crustacea of the Albatross (Mem. Mus. Comp. Zoöl.. vol. 18, p. 101, pl. 26, fig. 1, 1a, 1895), describes a war occidentalis. Milne-Edwards and Bonvier notice several variations of their var. concolor, the form with which the South African specimens should be identified, if a varietal name is necessary. The distinctions drawn by the French authors between the typical form and the var. concolor refer to the antennæ, the mandibles and the trunk legs. The variety has sharp denticles on the ventral surface of the third and fourth joints of the chelipeds, where the type is almost smooth. In the African specimens the third joint is almost smooth, the fourth and fifth joints have rows of rather sharp little tubercles: the fifth joint is almost cylindrical as in concolor rather than obtusely angled above as in the type. A dissected specimen has the cutting edge of the mandible divided into ten teeth, and the walking leg's have ten spines on the concave margin of the finger, characters which are used to distinguish concolor from the typical form, which has twelve teeth to the mandibular edge and twelve spines on the finger margin. The fingers of the chelipeds are hairy at the extremity, but in this respect not so densely and beautifully ornamented as the last two joints of the third maxillipeds.

Locality:-Cape Natal N. by E. (approx.) 24 miles. Depth, 440 fathoms. Bottom, mud.

MACRURA GENUINA.

Under the title of " Macrura Astacides," Alcock in his " Descriptive Catalogue of the Indian Deep-Sea Crustacea, Decapoda Nlacrura and Anomala," 190i, has recently given a synopsis of the families Nephropsidæ, Eryonidæ, Palinuridæ, Scyllaridae, Axiidæ, and Callianassidæ. As these include all the families of genuine Macrura with which we are here concerned, it will be sufficient to refer the reader to the work mentioned.

Fam: Nephrofsidae.

Gen.: Nephropsis, Mood-Nason

1873. Ňcheropsis, liood-Xlason, Journ, Asiat. Soc. Bengal, vol. 42, pt. 2, p. 39, and Amn. Nat. Hist., ser. 4, vol. 12, p. 50. 1874. Nephropsis, A. Milne-Edwards, Ann. Sci. Nat., ser. 5. vol. 19.
1N79. Nephropsis, Norman, Imn. Nat. Hist., ser. 5. vol. 4, p. I82. 1s81. Nephopsis, S. I. Smith. Proc. U.S. Mus. for 1880, p. 43 I-
1888 . Nephropsis, Bate, Challenger Mac ura, Reports, vol. 24. p. 165.
1874. Nicphopsis, Stebbing, Ilistory of Crustacea. p. 206.
 rol. IS, p. 127.
10) I. Nepturpsis, Nleock. Indian Decp Sea Crustacea, Nacrura
and Anomala, p. I57.

In this genus, which is distinguished from its nearest neighbours by having no scale to the sccond antenne, Nloock discrimnates five Indian species-stctarti Wrood-\iason. carpenteri WoodNlason, atlantica Norman, cusirostris Alcock, and suhmi Bate. Faxon describes occidomalis from the ntighbourhood of Acapulco, Mexico, and identifies acnlcatus Smith and rosca liate with the earlier agrassizii I. Milme-Vdwards. 1880 . Promessur timith described the species independently, only becoming acpuainted with the account given by Jilne-Edwards in time to arld a note recognizing the priority of the French author.

Nepiropsis Itlantic., Norman.

 p. 684.
1891. Nepiropsis ailantica, Mood-Mason, . Jnn. Nat. Hist., ser. © , vol. 7, p. 197, fig. 4 in text.
iesfo. Nophropsis allantict, (aullery, Campagne Caudan, Ann. Univ. Lyon, p. 384.
Bor. Nipluopsis atlantica. Nleock, Indian D(ep-Sea Crustacea, Macrura and Anomala. p. I61.

Fruis the other Indian specics N. atluntica is distinguished in IIajor Necock's key by combining lateral spines on the rostrunn, a spine on anterior margin of side-plate in second pleon-segment, with transperse suture of outer ramuts of uropods. This combinaion distinguishes it also from N. occidcntalis, since that is without the lateral spine on the second segment of the pleon. N. Gitantica is variable me the lateral spines of the rostrum, having usually fwo pairs, sometimes threc. occasionally one and a half. In accordance with this statement by Major Aleock, out of four specimens from South Africa, onc has threc pars, two have two pairs, and one has a pair and a half of these spines. Dr. Faxon describes Λ. occidcutalis as having only one pair, but adds that in onc young example the rostrum is armed with two spines on one side and with one on the other side. In arldition, however, to ather differences, a sharp median spine on the base of the telson scparates N^{*}. occidentalis from all the other species.
it female specimon, carrying a fow large eggs, has the left cheliped 56 mm . long, but that on the right only 23 1um., its last ine joints being a reproduction, quite hairless, slenrler and white, in contrast with the adjoining orange red. strongly setose thind t!axillipeds, which have the inner margin of the third joint toothed or nodulose.

Locaiity:-Cape Natal N.by E. (approx.) 24 miles. Depth, 440 iatilons. Bottom, mud.

Fame: Erionidae.

1837. "Tribu des Eryons," Milnc-Edwards, Liist. Nat. Crust., rol. 2, pp. 270, 278.
IS4i. Eryonidat, de Haan, Crust. Japonica. p. ILA., and Decas quinta, p. I49.
1838. Eryonidac, Dana, U.S. Expl. Exp., Crustacea, pi. r, p. 5 I 5. isio. Eryontidac, S. I. Snith, Proc. L.S. Mus for 1879, p. 345. 1 \&SO. Erjonidar, Boas, Vidensk-Selsk. Slir. ser. 6, vol. I, pp. 94, IS.
İ̊4. Eryunidac, Bate, Geological Magazine. Decade 3, vol. I, p. 307.
1839. Eryonidac, Bate, Challenger Macrura, Reports, vol. 24, p. IOO.

I893. Eryontidac, Stebbing, History of Crustacea, p. I99.
I895. Eryontidac, Faxon, Mem. Mus. Comp. Zoöl. Narvard, vol. IS, p. IOS.
ISg6. Eryonidae, Ortmann, Zool. Jahrb. vol. 9, pp. 427, 42 S.
1Sg9. Eryontidae, Alcock and Anderson, Ann. Nat. Mist., ser. 7, vol. 3, p. 289.
rour. Ervonidac, Alcock. Catal. Deep-Sea Crustacea, Macrura and Anomala, p. 164 .

Alcock stipplies a full account of the characters of the family. and gives a synopsis of the genera belonging to "the Indian N゙ecten and Benthos." These genera are Polvcheles Heller, 1862. Pentacheles Bate, 1878 , Ervoneicus Bate, 1882 , and Willemoesia Cirote, 1873.

Gen:: Polycheles, Heller.
: S62. Polyiluics, Heller, Sitzungsber. IN. Akad. Wiiss. Wien, rol. 45, p. 389.
1863. Polychicles. Heller, Crust. südlichen Europa. 1. 209.

1,i̇o. Poljchicies, Smith, Proc. U.S. Mus. for 1879, p. 346 .
I888. Policholis, Bate, Challenger Macrura, Reports, vol. 24. p. I26.
1888. Stercomastis, Bate, Challenger Macrura, Reports, vol. 24 , p. 154.
iS95. Polvidheles, Faxon, Mem. Mus. Comp. Zö̈l. Harvard, vol 18, p. 117.
1;oI. Folschelis, Alcock, Catal. Indian Deep-Sea Crustacea, Macrura and Anomala, p. 166.

Spence Bate separated Peniacheles from this genus on the ground that in the former all the five pairs of legs in both sexes were more or less perfectly chelate, whereas in Polychcles the fifth pair of the male was supposed to end in a simple finger. It subsequently appeared, however, that species evidently belonging. to Polychcles had the fifth pair imperfectly chelate in the nale, and that in all the species it was chelate in the female. Alcock now supplies a more important distinction, pointing out that in Pentachelcs "the epipodite of the external maxillipeds is of fair size; those of the thoracic legs are normal epipodites ascending into the branchial chamber," but that in Polychcles " the epipodite of the external maxillipeds is a mere papilla; those of the thoracic legs are merely membranous expansions of the base of their podobranchiæ." When Professor S. I. Smith described the Nova Scotian Polycheles sculptus he admitted that he could not distinguish it from the Figian Pcntachcles auriculatus, Bate, of which the characters had at that time been only briefly indicated. In his Challenger Report, Bate transferred the latter species to a genus Steremastis, which, he says," differs in nothing exterally from Pontachcles, but is established to receive those species in which the mastigobranchial lash does not exist." But that, as Alcock now explains, is the very character on which the separation between Folychcles and Pcntacheles must best be grounded. Faxon, however, unites both Pentacheles and Stercomastis with Polycheles, remarking that " an examination of a large number of species discloses a gradual transition in the development of the epipods, from large, well-developed organs through small, delicate and thin ones, to merest rudiments in the shape of small expansions at the base of the stem of the gill."

Policheles sculptus, S. I. Smith.

i880. Poiycheles sculptus, Smith, Proc. U.S. Mus.for 1879, p. $346, \mathrm{pl} .7$.
1899. F'cntacheles sculplus, Alcock and Anderson, Ann. NatHist., ser. 7, vol. 3, p. 239.
1901. Poljcheles sculptus, Alcock, Catal. Indian Deep-Sea Crustacea, Macrura and Anomala, p. I70.

Alcock gives the synonymy, which includes Polycheles spinosus A. Milne-Edwards, I880, and the name Pentachcles sculptus, which has been used both by Professor Smith himself and by Alcock and Anderson. The specimen from South Africa closely agrees in all external particulars with the minutely-detailed accomnt given by the original describer, except that between the rostral spines and the cervical grooye the medion carina of the carapace has not only $I+2+1$ spines, but an additional spine immediately behind the last of these. In Polycheles phosphorus, Alcock, the part in question carries $1+1+2+1$ spines, but
has at the outer angle of the basal joint of the first antennæ only one denticle instead of the two found in P. sculptus, the chelipeds also showing some differences. In Professor Smith's specimen of P. sclipitus the sublateral carina between the cervical groove and hind margin had also 5 small spines on one side and six on the other. The South African specimen has five on each side. Smith speaks of the longitudinally-furrowed carina of the sixth pieon segment as "inconspicuous," an epithet inapplicable to it in our specimen. In the fifth pair of legs the finger is notably longer than the thumb, which, though short, is quite distinct. The colouring (in formalin) shows on the carapace three rosecoloured areas, one central in the front of the cervical groove, and the other two behind it, lateral, of tong triangular shape; the ground is a paie dull orange.
Dimensions:--Carapace in median line, 56.25 minl.; lateral margin, 63.75 mm . long; greatest breadth in front of cervical groove, 43.75 nimı.; length of pleon, 70 mm .; of second antennæ, 70 mm . Total extension from apex of second antemæ to apex of telson, about 8 inches. Length of first chelipeds, nearly 140 mim., reaching, therefore, if fully extended considerably beyond the second antennæ, but as preserved they are strongly geniculate between the third and fourth joints.
Locality:-Cape Natal N. by E. (approx.) 24 miles. Depth, $4+0$ fathoms. Bottom, mud.

Fam.: Palinuridae.

I:88. Palinuridae, Bate, Chalienger Macrura, Reports, vol. 24, p. 74 .
1891. Palimuridae, Ortmann, Zool. Jahrı., vol. 6, p. It.
ri93. Palinuridae, Stebbing, History of Crustacea, p. 195.
ičy 7. Palinuridae, Ortmann, American Journal of Science, vol. 4, p. 290.
1joo. Paliuluridae, H. Woodward, The Geological Magazine, Decade 4, vol. 7, p. 394.
rgoo. Palinuridac, Stebbing, Narine Investigations South Africa, Crustacea, part I. p. 29.

Ortmann in 1897 recognizes seven genera, which he arranges in threegroups - 1 Palimurellus, Jasus; 2 Palimurus, Palimustus, Linuparus; 3 Pamulirus, Pucrulus. Of these he says "the first may be called the mose primitive, the second the typical, the third the more advanced group." Of Païmustus A. MilneEdwards, I 880 , he remarks that it "comes very near to Palinurus, and differs only in the weaker 'frontal horns,' which are placed on the outer edge of two very peculiar plates projecting horizontally from the frontal margin and truncated squarely at the apex." In regard to the fossil species described and figured
by Dr. Woodward as Limuparus áducontornsis (Whiteaves) and L. canadonsis (W initeaves) there is this difficulty, that the rustral part is defective, so that it is not clear why the species -hould be referred to Linifuras rather than to Jusus. It should be noted that the generic names Scrox l'feffer, Avills Ortmann, and Pu'r Ortmann, were discarded from this family by the last maned author in 1807 for very sufficient reasons.

> (iex:- Jusus, Parker.
1883. Jasus, I'arier, Nature, vol. 29, p. 190.
1884. Jasus, Farker. Trans. Ncw Zcaland Inst., vol. I6, p. 304.
1888. Palinosylus, Bate, Challenger Macrura, Reports, vol. 24, p. ix.
1888. Palinos/us, Bate, Challenger Macrura, Reports, vol. 24, pp. 1... 85.

I名1. Jasus, Ortmann, Zool. Jahrb., vol, 6, pp. 14, Іб.
1893. Jasus, Stebbing, History of Crustacea, p. 197.

18y7. Jasus, ()rtmann, American Journal of Science, vol. 4, 1. $2 y 1$.
1goo. Jasus, Stebling, Marine Invest. S. Africa, Crustacea, part 1. p. 30.
T. J. Parker instituted Jasus only as a subgenus, but subse(iuently claimed priority for it over Bate's Palinostus. Bate substituted Palinosytus for Palinostus on the ground that A. Milnceledwards had employed Palinustus for the name of a new Scyllarid, distinct from l'ate's Palinosytus and near to Palinurus.

Jasts Lalandil (Milne-Edwards).

1837. Perlimuruslalandix, Milne-EdwardっHist. Nat. Crust.,vol. 2, p. 293.
1838. Palmarzis lilardiz, Krauss, sïdafrik, Crust., p. 53.
1839. Jasus lalalandii, l'arker, '1 rans. New Zealand Institute for 1883 , p 297.
1840. Palinostus lalumdii, Bate, Challenger Macrura, Reports, vol. 24, p. 86, pl. 11, fig. i, pl. ins, pl. 12, fig. i.
1841. Jasus lalandii, Ortmann, Zool. Jalırb., vol. 6, p. 16.

Dr. Ormann ineludes in the synonym the Chilian Palimurus fromtalis of Milnc-Edwards, loc. cit., p. 294, the P. paulensis from St. Paul in the Indian Occan, Heller, I862, which Heller himself had subsequently recognized as a young form of lalandii (Novara Crustacca, p. 98), and the P.cdzurdsii, Hutton (TransN.Z. Inst., 1875, p. 279. from New Zealand and lasmania.

A distinguishing specific character is that the segments of the pleon are furrowed and almost or altogether covered with flattened squamiform tubereles. The colour (in formalin) is a rich red brown, according to Minne-Edwards irregularly spotted with yellow, but the pale markings are at least sometimes symmetrically arranged. The telson and adjacent parts show a fine purple. Kranss states that when alive it is dark green, with reddish and yellow spots, but that it becomes red in drying, or when kept in spirit. Milne-Edwards gives the length of the borly as 15 inches; Krauss says it attains a length of 13 inches by a breadth of four and a half. The second antennæ are of great length, at least as long as the body.

Locality :-Hermanuspetrusfontein, Caledon District, near False Bay.

JASUS PARKERI, 11. Sp.
PLATE 7.
The rostrunn is not very large, acute, upturned in adrance of the clasping processes. The frontal horns are divergent, acute, With smooth margins, followed by two pairs of teeth slighty converging backward; a little behind these is a median tooth, followed by two parallel rows of submedian teeth, eight in a row, slightly graduated, the smallest at the hind margin of the carapace, all pointing upward and a litile forward. Un the outer side $0 \dot{i}$ each cye is a strong outstanding tooth, with a small subsidiary tooth on the upper part of its base; the next lateral tooth has an intcrrupted onter margin, and level with this there is a small tooth on the surface of the carapace behind the eye: the third lateral tooth is also large, but this is followed by a series of small teeth, twelve to fourteen on each side, not quite symetrically arranged. Close over the simuous hind margin is a series of minute tubercles, and some granules appear scattered above these, but otherwise the general surface is smooth, nor is there any well-marked cervical groove.

The first five pleon segments have a median carina, most strongly marked on the first three, the first, which is also the shortest, with a forward and upward-pointing tooth, the fourth With a minute, the fiftl with a well-marked apical tooth. Each segment forms a large lateral tooth, of which the mpper margin is serrate in the first segment, smooth in the rest: above this a boss in the first segment rises to the carapace, and there is a small denticle in the second; all but the first have a smaller lower tooth, and all clasp a little pleural tubercle of the following segment between two points. The sisth segment has two pairs of submedian teeth near the base and an apical median tooth, with a strong additional tooth over the peduncle of the uropods. The telson has fomr pairs of teeth diverging along the calcareons
part which ends in sharp lateral points, the membranous portions both of this and the uropods being slightly roughened.

The first antenne have the first joint longer than the second and third together, the third about twice as long as the second, and rather longer than the inner flagellum; the outer flagellum is shorter than the inner, stouter at the base, and strongly setose on its inner margin. The second antemme have the epistomial base deeply grooved in the middle. If this be taken to represent the first two joints of the peduncle, then the third (or first free) joint has two tecth on the outer, one on the upper, one on the inner side, with some serration also on the inner margin; the forrth joint has about 12 teeth in various sequences, and the fifth fourteen of various sizes. This peduncle does not reach the end of the third joint of the first antenne: the flagellum is 9 inches long.
The five pairs of trunk legs are all simple and slender, decreasing in stontness and increasing in length from the first to the fifth pair. The fourth joint is shorter in the first pair than in the second and in the second than in the third, but without sensible difference of length in the fourth and fifth. On the other hand, the length of the sixth joint sensibly increases from the first to the fifth pair, while it is considerably stouter in the first than in any of the succecding pairs. The sternal plastron between these from a narrow base widens greatly, with a longitudinal median scries of five teeth and two submedian on its hind margin. Laterally each of its divisions has two decided teeth, widest apart in the last division, and there more clearly than in the others, accompanied by some small denticles.
Of the pleon segments, the first one carries ventrally two sublateral tecth on its hind margin. The four pairs of pleopods are delicate oval plates fringed with short setre. The uropods reach a little beyond the telson : the outer ramus is rather longer and broader than the imner.
The colour of the specimen in formalin is orange and orangered, the flagella of the first antenne, the fifth and sixth joints of the trunk limbs of the membranous part of the caudal fan, and the ventral surface of the pleon, except on the bind margin of each segment, being pallid.

The length from rostrum to end of telson is about four and a half inches, the carapace measuring 42 mm . by a breadth of 26 mm. : the telson 24 mm . by 15 mm .

L ocality:-The single specimen-a male-was taken by slimimp trawl, Buffalo River north 15 miles. Depth. 3 io fathoms. Bettom, coral and mud.
The specific name is given out of respect to the late Mr. T. T. Parker, who instituted the genus. To the remarkable armature of this beautiful species there is no resemblance. so far as I know, in any other living Palinurid hitherto describerl.

Fam.: CillidNissidaE.

1900. Callianassidae, Stebbing, Aarine Investigations South Africa, Crustacea, pt. 1, p. 38.
1901. Callianassidae, Alcock, Indian Deep-Sea Crustacea, Macrura and Anomala, pp. 151, 197.

Gen.: Callianassa, Leach.

In connection with the description of Callianassa kraussi (South African Crustaceasi p. 38, 1900) notice, was taken of numerous. species of this orellus. It may here be worth while to add that Say's Callianassa major was in 1866 transferred by Stimpson to a new genus Callichirus, chiefly, as it seems, on the ground that the inner branch of the uropods is "very narrow, almost styliform." At the same date Stimpson instituted another new genus, Glypturus, with " caudal lamellæ deeply sculptured," for the species G. acanthochirus, which he distinguishes from Callianassa grandimana Gibbes, only by details of the cheliped. To these two species of Glypturus Miss Rathbun in 1900 adds a third. G. branneri. Recently Mr. Lanchester has described a new Callianassa from the Malay Peninsula as C. sccura (Proc. Zool. Soc. London, p. 555, 1902), closely related to C. pachydactyla, A. Milne-Edwards, and C. amboinencis, de Man.

In a paper on the decapod crustacea of West Africa, also in 1900, Miss Rathbun keeps distinct Callianassa turncrana, White, from C. diademata. Orturann, the former being descriled as having a three-spined rostrum, the latter one that is five-spined. But it may be doubted whether this minute distinction in these large forms, exactly agreeing in the large chelipeds and the trilobed telson, is su'ficient for the maintenance of Dr. Ortmann's species. C. turncrana is said to be at tines prodigiously numerous. so that there may well be opportunity for small individual variations.

Callianassa rotundicaudata, n- sp.

Plate 8.

The carapace is about two-sevenths of the total length of the body, the front being feebly advanced between and at each side of the bases of the first antemæ: its hind margin is fringed with some setules. The first two segments of the pleon are coalesced, and together are as long as the carapace, with no trace oi pleopods; the third segment, which is half as long, carries at each distal corner a tuift of setæ. thickened with short, close-set plumosity; the two following shorter segments have similar tuits of setæ near the middle. The sixth segment is fringed laterally with setules, and has two rows of setre on the hind margin. The
te'son is alnost circular ; its hind nargin is fringed with setie, two groups longer than the rest leeing inserted within the margin, and another group above the midklle of the dorsal surface.

The ere-plates are somewhat triangular with the inner margins adjacent, and the pigmented purtion at a little distance from the apex.

The first antennce have the third joint considerably longer than the first and second together, and the flagella somewhat longer than the second and thind joints together, these two joints and the slonder inner liagellinn liaving long plunnose setæ. A setose slit forms the opening to the anditory apparatus of the first joint.

The scconcl antennæ have a perluncle abont as longe as that of the first pair. the fifth jont slightly shorter than the fourth, the fiagellun1 slunder, longer than the peduncle. but not very elongate.

The cutting edge of the mandible is divided into ten or eleven small tecth, incrasing in size from the ends of the row towards the mildle of it.

The third maxillipeds have the third and fourtly joints expandeci, the third longer than broad, with a comb of minute tecth on the inner surface nearer to the onter than the inner nargin; the fourth joint is broader than long, and widens distally; the fifth and sixth joints are subequal. longer than wide, cach with a close-set group of spines on the inner surface; the seventh joint is narrower, rather shorter and blunt ended.

In the larger first cheliped the fourth joint has a tooth proximally, and is then cup-shaped on the outer surface, but on the inner is nunch widened; it is a little longer than the preceding joint, which is widest distally: the fifth joint is nearly as wide as long, about as wide as the sixth, but only half as long: in the sicth the thumb is two-sevenths of the length. nutheh narrower than the novable finger. with no gap between then. In the smaller cheliped the fourth joint is rather shorter than the preccding but wider, with no tooth; the fifth joint is shorter than the sixth, but longer than the palmar portion of it, the latter being not greatly longer than the narrow setose fingers.

The sccond chelipeds are very similar to those of Callianassa Praussi, but the following pair differ considerably from that species, the oval sixtl joint having no backward prodnced lobe, and the finger, though laminar, being narrowly triangular. The fourth pair of feet are scparated at their bases by a sternal plaque trilobed in front and bifid behind. These and the following pair are constructed much as in C. Rraussi and C. subtcrrania (Montagu).
'The pleopods on the third. fontrth, and fifth pleon segments have the usual character, the fringing setre being minutely flumose and appearing as if consisting of numerons iointlets. The retinaculum is distally fringed with close-set, tiny spines.

The uropods have the inner branch oval. longer than the telson but narrower, the outer reaching beyond the inner, though scarcely so long; the outer branch fully as wide as the telson; both branches thickly fringed with long plumase setre, and the outer with a surface row of spinules near the distal margin.

Length, i9 min. A single specimen.
Locality :-St. Francis Bay. Lat., $3 t^{\circ} 2^{\prime} 45^{\prime \prime}$ S.; long., $25^{\circ} 10^{\prime} 00^{\prime \prime}$ E. Depth, $30-3+$ fathoms.

The specific name refers to the sliape of the telson. From C. stibterranca, which in several respects it approaches, the species is distinguished by the much longer palm of the great cheliped, thie differently-shaped fingers, and apparently by the much snaller process of the fourth joint, the differently-placed dentate clest of the third maxillipeds, and the much smaller size of the animal. From C. pachydactyla, A. Milne Edwards, it is distinguished by the dentate fourth joint of the larger first cheliped, and the elongate fifth joint of its smaller companion.

> SCHIZOPODA.
1885. Schizopoda, Sars, Challenger Schizopoda, Reports, vol. I3. syco. Schizopoda, Stebbing, Proc. Zool. Soc. London. p. 537.

Fami: Lopifogastridae.

Gen.: Lophogaster, MI. Sars.

1857. Lothogaster, M. Sars, Forhandl. Skand. Naturi.. Möde i Christiania, 1856 , p. 160.
1858. Lophogasler, G. O. Sars, Challenger Schizopoda Reports, rol. 13, p. I4.

Lophogaster typictes, M. Sars.
1857. L.ophoguster typicus, M. Sars. Forhandl. Skand. Naturt, Mödle i Christiania, ı \&56, p. 160.
1862. Cichomysis alata, Norman, Rep. Brit. Assoc., 1861, p. 15 I. 1862. Lophogaster typicus. 11. Sars, Christiania Universitetsprogram, pp. 1-37, pl. 1-3.
1885. Luphogaster typicus. (i. O. Sars, Challenger Schizopoda, Reports, vol. 13, p. It, pi. 1. figs. 1%.
IO92. Lephogaster typicus. Noman, Mmn. Nat. Hist. ser. 6. vol. 9, p. 459 .

The references are taken from the last two authorities. Professor G. O. Sars describes three specimens from south of the Cape. One of these was a male, 25 mm . (an inch) long, with only three teeth on the outer margin of the antennal scale. The specimen now noted measured at least an inch, and has four teeth on the outer margin of the scale. The distal part of the telson was unfortunately broken off. The bipinnate branchire add much to the beauty of this species as the series is visible at each side of the translucent carapace, and two rows at right angles to the others meet along the centre of the ventral surface. Sars has called attention to the curious circumstance that this schizopod, first known from Norway and the Shetland Isles and then from the neighbourhood of the Cape, so far remains unknown from intermediate waters.

Locality:-Cape St. Blaize, N.E. by N. $\frac{1}{4}$ N. if $\frac{1}{2}$ miles. Depth, 40 fathoms. Bottom, sand and rock.

S COMATOPODA.

1852. Squilloidca, Dana, U.S. Expl. Exp., vol. 13, Crustacea, p. 614.
1853. "Stomatofoden," Claus, Unters. geneal. CrustaceenSystems, p. 7o, etc.
J883. Squillacea, Boas, Morphologisches Jahrbuch. vol. 8, p. 574.
1854. Stomapoda, Carns, Prodronus Faunæ Mediterraneæ, vol. I, p. 464.
1855. Stomatopoda. Brooks, Challenger Stomatopoda, Reports, vol. 16.
1856. Stomatopoda, Stebbing, History of Crustacea, p. 279.
1857. Stomapoda, Alcock, Amn. Nat. Hist., ser. 6, vol. I3, p. 409.
1858. Stomatopoda, Bigelow, Proc. U.S. Mus., vol. 17, p. 490.
1859. Stomatopoda, Hansen. Isop. Cumac. und Stomatopoden Plankton-Exp., p. 64.

The name Stomapoda of Latreille is far older than the term Siomatopoda, but the latter has the advantage of keeping in mind Latreille's authorship, without perpetuating the confusion involved in the group as he understood it.

> Fami: Souillidae.

As this is the only family at present assigned to the order, the alove references will be a sufficient guide to the sources of infermation, which are numerous.
1793. Squilla, Fabricius, Ent. Syst., vol. 2, p. 511.

Without setting forth the copious references to this genus in its enlarged and restricted acceptations, I will recommend the reader to consult Dr. Bigelow's paper above cited, only here taking from it the gencric diagnosis:-
" Stomatopoda liaving the telson attached to the sixth abdominal segnent by a movable joint; the hind body depressed and wide; the dactylus of the raptorial claw with usually not more than six teeth; as a rule, more than four intermediate denticles on the telson, which is usually longer than wide; and the inner basal spine of the uropod the longer of the two."

Squilla armata, Milne-Edwards.
${ }^{18} 37$. Squilla armata, Milne-Edwards, Hist. Nat. Crust., vol. 2, p. 521.

18 $\ddagger 9$. Squilla armata, Nicolet, Gay's Hist. de Chile, Zool., rol. 3, p. 223.
1880. Squilla armata, Miers, Amn. Nat. Hist., ser. 5, vol. 5, p. 26. 1891. Squilla armata, Bigelow, Johns Hopkins Univ:, Circ., 88. 1894. Squilla armata, Bigelow, Proc. U.S. Mu1s., vol. 17, p. 515 , figs. 9 and 10 in text.
I borrow the references and accept the specific name from Dr. R. P. Bigelow's excellent account of the species. With some reason he appends a note of interrogation to its identification with the form named by Milne-Edwards and Gay. MilneEdwards only says, " this species is extremely near to Squilla mantis, from which it is distinguished by the absence of crests on the carapace, and by the presence of two spiniform teeth on the upper face of the ophthalmic ring; the claws have seven teeth; length, three inches and a half; habitat, the coasts of Chili." Dr. Bigelow's specimens were from various stations off the coast of Patagonia, had the dactylus of the raptorial claw "armed with seven to mine teeth, rarely six," and varied in length from 60 to $122 \mathrm{~mm} \cdot$; they are described as having the "carapace with median carina obsolete or entirely absent. intermediate and lateral carinz present on the posterior lateral lobes, anterior lateral angles produced into acute spines." In the South - Lirican specimen there is one pair of distinctly marked though not sirongly raised carinæ, and the dactylus of the claw has six tecth in addition to the terminal tooth. 'Apart from the abovementioned carinæ, it agrecs in all respects with Dr. Bigelow's description, and the telson, which he figures, is in this species rather peculiar. It has " a crest and a keel and a series of curved tines of pits on each side, six marginal spines, the submedian pair
with morable tips, no submedian denticles, ten to eleven small intermediate ones, and one lateral one." Each lateral and intermediate spine has a small tooth adjacent to its base on the inner stie. lietween the submedian spines the margin is divided by a deep median sinus into two rounded or somewhat quadrate, usually smooth, lobes.

Length, from tip of rostrum to apex of submedian spine of telson, 82.5 mm .

Locality:--Cape Point Lighthouse N.W. by IV. $\frac{1}{2}$ IV. $7^{\frac{3}{4}}$ miles. Depth, 45 fathoms. Bottom, broken shells and a little mut.

Gen:: Lysiosquilla, Dana.

1852. Ly'sıosquilla, Dana, U.S. Expl. Exp., vol. 13. Crustacea, p. 615.
1853. Lysiosquilla, Bigelow, Proc. U.S. Mus., vol. 17, p. 502.
1854. Lysiosquilla, Hansen, Isop. Cumac. und Stomatoporlen Plankton-Exp., p. 73.

As observed by Miers and others, the earlier name Coronis. Latreilie, is preoccupied. Bigelow supplies the more important references and the following diagnosis:-
" Stomatopoda having the sixth abdominal segment separated from the telson by a movable joint: the hind body depressed, loosely articulated and wide: the dactylus of the raptorial claw without a basal enlargement, but with not less than five marginal teeth; no more than four denticles. and often only one, between the intermediate and submedian marginal spines of the telson. which is usually wider than long: and the outer spine of the basal prolongation of the uropod usually longer than the inner one."
E:richthus Durauccllii, Guérin. Iconographie, Crustacés, p. 19. (Erichthus Duraucellii, on pl. 2t, fig. 3) is rerognizel by brooks as the Lysiocrichthus and by Hansen as the Lysicrichthus larva of L3 siosquilla maculata.

Lysiosquilla maculata (Fabricius)

1793. Squilla maculata, Fabricius, Ent. Syst., vol. 2, p. 51 I.
1794. Cancer (Mantis) arcnarius, Herbst, Krabben und Krebse, vol. 2, pts. 3, 4, p. 96, pl. 33, fig. 2.
1795. Squilla muculata, Milne-Edwards, Hist. Nat. Crust., vol. 2, p. 518, pl. 26, figs. II-15.
:1852. Lysiosquilla maculata, Dana, U.S. Expl. Exp., vol. I3, Crustacea, p. 6i6.
1796. Ly'siosquilla maculata, Miers, Proc. Zool. Soc. London, p. I 38 .
ISEO. Ly'siosquilla maculata, Miers, Ann. Nat. Hist., ser. 5, vol. 5, pp. 5. 125, pl. I, figs. I, 2.

I886. Lysiosquilla maculata, Brooks. Challenger Stomatopoda, Reports, vol. I6. pp. 45. $110 . \mathrm{pl}$. 10 , figs. I-7, pl. 1I, figs. 4. 5.

:S94. Ljsiosquilla maculata, Bigclow. Proc. U.S. \[us., rol. 17, p. 508 .
1995. Ly'siosquilla maculata, Hansen, Isop. Cumac. und Stomatopoden Plankton-Exp., p. 74.
j:9S. Lisiosquilla maculata, Borradaile, Proc. Zool. Soc. London, p. 37.

Herbst gives a reference to Rumph's Squilla aremaria terrestris, "Kumph. Mus. tab. 3. fig. E.," which Milne-Edwards cites as tab. 4, tig. E., while l'abricius refers to "Cancer arenarius, Kumph. Mus. tab. 3, fig. 2," and Bigelow quotes Rumph. Ambonn. Karit., p. 6, 1705. Rumph in his Amboinsche Rariteitkamer, p. 4, gives the alternative names Locuste or Squalla Arenaria Terrestris, and the species is represented full size on his plate 3, fig. E. Herbst adduces Cancer arenarius, etc., from "Linn. Mus. Adolph. Frid., p. 86," a work of 1754 . Linnæus himself in 1758 gives the same reterence lor Cincer mantis, followed by a reference to " Rumph. Mus.t. $3, f . E$., C. Arenarius." Since this habitat includes the Aslatic, Indian, and Mediterranean Seas, the Linnean species may be taken to cover Squalla muntis as well as Lysiosquilla maculata. The specific name which Herbst adopts with proper respect to his Dutch preclecessor has generally been set aside as of later date than that given by Fabricius, but, so far as can be knowr, they are contemporary, for although Herbst's second volume is dated 1796 , the parts of it in which Cancer (Mantis) urenarius was published belonged to 1793. In the contlict of claims the Fabrician name may be allowed a prescriptive preference.

This large and striking species cannot be identified simply by the transverse blue bands, since they are found also in Squilla uittata, Milne-Edwards, which Miers, following the lead of Milnevittato, Milne-Edwards, which Miers, following the lead of Milne-Edwards himself, identifies with the earlier Squilla (now Lysiosquilla) glabriuscula, Lamarck. The latter has the dactylus armed with only $5 \cdot 7$ teeth, and sumetimes fewer, whereas L. maculata has from '8.10. Herbst's figure, though coarsely executed, gives a very good general idea of the appearance.

The specific name chosen by Fabricius evidently refers to the colouring of the telson. for he speaks of "the last segment apically dark, with two whitish marginal spots." This is quite correct, but the broad distal dark-blue band is so much broken by the two White spots that the effect produced would rather lead one to speak of 3 blue spots. In Herbst's figure they are quite separated,
but not entirely in our specimen. The telson has a medio-dorsal triangular elcevation, and is broadly truncated, with only two spines on either side above the truncation, between which and the lower spines there is a faint projection of the margin. The rostral plate is. as described by Milne-Edwards, cordiform and very pointed.
Length, 175 mm ., or 7 inches from apex of rostrum to distal margin of telson.
Locality:-"Squilla procured at Durban (from Durban Museum)." A specimen nearly twelve inches long, sent me by Mr. W. R. Forrest from Antigua, differs from the form above described in not having the rostral point produced, in having the fifth pleon segment denticulate along the hind margin, except at the centre, the sixth denticulate in an arched proximal band and round the distal margin, and the telson with three spines on' each side. and the truncate portion cut into five square teeth on one side and six on the other side of a small median emargination. Milne-Edwards, in his description, says that the hind margin of the telson is armed with three little obtuse "dentelures" on each side of a little median emargination. We may infer, therefore, that the species is subject to some variation in minor details.

ISOPODA ANOMALA.

Fami: Apseunidae.

1896. Apseudidae, Sars, Crustacea of Norway, vol. 2, pt. I, p. 5. 1902. Apseudide, Harriet Richardon, Trans. Connect. Acad. Sci., vol. i1, p. 280

Gex-: Apseudes, Leach.

1813. Apscudes, Leach, Edinburgh Encyclopredia, vol. 7. p. 404. 1880. Apscudes, Sars, Arch. Naturv., rol. 7 (1881), extract, p. 7. 1886. Apsiudes, Norman and Stelbing, Trans. Zool. Soc. London, vol. 12, part 4. p. So.
1814. Apscudes, H. Richardson. Proc. L'.S. Mus., vol. 23. p. 505.

From the references given mumerons others can be obtained, both for the family and the genns.

Apsecdes (;Rosshmavi\%, Noman.

1870. Ipschdes grossimanus, Norman, Proc. Royal Soc., p. 157.
1871. Ipsemdes grissimanus, Norman and Stebbing, Trans. \%ool. Soc. London, rol. 12, part 4, p. 93, pl. 19.

This species is distinguished by its tridentate rostrum and the sharp tooth on each side of the carapace behind the distally. rounded ocular processes. A female specimen, measuring fully 17 mm. , had the marsupium bulging with numerous rather large eggs. The species has previously been taken in go fathoms off the south-west coast of Ireland, and in $7+8$ fathoms off the Portuguese coast. The South African specimen above mentioned was taken in $2+5$ fathoms, Table Mountain east +1 miles. Other specimens, also females, with the eggs showing a light red colour, were taken at a depth of 125 fathoms. Lion's Head S. 82° E. 27 miles.

ISOPODA GFAUINA.

Fant: Cirolanidae.

1900. Cirolanidae, Stebbing, Willer's Zoological Results, Part 5, p. 628.

The above reference will furnish screral others to works of importance by H. J. Hansen and others on this family. It may, however, be added that in the Proc. Acad. Philadelphia, p. 187, 1891, Mr. J. E. Ives appends to his description of Cirolana magara, n. sp. a list of 33 species of Cirolana which had been named up to that date. This list was obviously drawn up before the additions and corrections published by Hansen in the preceding year with regard to this family could have come under the author's notice. It has its own independent value.

A new genus, Calopisthus, is added to the family by Miss H. Richardson in the Trans. Connect. Acad., vol. 12, p. 289, 1902.

Gen. : Cirolana, Leach.
1818. Cirolana, Leach, Dict. Sci. Nat., vol. 12, p. 347. 1900. Cirolana, Stebbing, Willey's Zool. Results, Part 5, p. 629.

Cirolana tenlsticauda, n. sp.

Plate 9.

1843. : Cirolana scitpta (not Milne-Edwards), Krauss, Die südafrikanischen Crustacecn, p. 66.

Body about thrice as long as broad. by help of antenne and uropods nearly parallel-sided. Hearl much broader than long, A 1847.
not deeply immersed in pereon, hind margin less wide than the slightly arched front, which has a woll marked process between the first antennæ. First peræon segment the longest, with hinder angles strongly rounded, the front ones squarely produced forward. Hind margins of the first four segments of pereon and first of pleon smooth, the rest tuberculate, almost imperceptibly on fifth peræon segment, on the others successively with greater prominence, the fifth pleon segment having also on each side of the centre a strong tubercle in advance of the hind margin. The telsonic segment carries anteriorly a median carina beginning with a small tooth or prominence and ending in a large one, this being followed by two pairs of tubercles, of which the surface has in addition one or two at the base on each side of the carina, and many of various sizes along cach margin. The slightly sinuous sides, where free from the uropods, are fringed each with seventeen spines in sets of six and eleven, interspersed with short plumose setæ, the narrowly rounded apex having a similar armature of four spines and accompanying setæ. Of the second and third peræon segments, the side-plates do not reach the hind margin of their respective segments, and in the former case are narrower behind than in front ; in the other segntents the sideplates have the hind margin produced backward, and agreeing as to sculpture with the hind margin of the segment, those of the seventh overlapping the first two segments of the pleon. The third pleon segment is the widest, and the fourth is wider than the fifth
The eyes are dark in formalin, ronghly romnded, of moderate size, with numerous small components.

First antennæ-The peduncle is clearly three-jointed, shorter than the flagellum, which has seyenteen joints furnished with lyaline filaments.
Second antenne-The first three joints of the peduncle are short, the fifth is longer than the fourth; the flagellum, about twice as long as the peduncle, attains to thirty-one joints.
The frontal lamina surmounting the epistome widens to the convex anterior border, from which it bends to meet the rostral point with an angular termination.
The mouth-organs, as will be scen from the figures, are in tolerably close agrecment with what is usual in the genus. In the first maxille attention may be called to the little projecting horn on the outer side of the immer plate. Such a process is figured by Hansen for Cirolana borcalis Lilljeborg, but not for Cirolana tiongata Milne-Edwards, nor for his own Cirolana minuta, nor do I find it in Cirolana oricntalis Dana, which has in its place a minute spine, in agrecment with Cirolana japonica Hansen; the process is feebly developed in Cirolana pleonastica and Cirolana albicaudata, which I have recently described.
First gnathopods-Thesc are rather robust, the fourth joint futly as broad as long, with two rows of spines along the inner
margin, the short trianglar fith joint underriding the sixth and having its base deeply imbedded in the fourth. The finger is shorter than the sixth joint, and as in all the trunk limbs has a short, dark-coloured nail, preceded by a small spine, which gives a biungtuculate appearance to the joint.
Second gnathopods-The spines on inner margin of fourtly joint are arranged in two sets separated by an tnarmed interval; the fifth joint is small, but does not underride the sixth, nor is it imbedded in the fourth; the sixth joint is much less stout than in the preceding pair.
Peræopods-1 hefirst pair issimilar to the second gnathopods The other four pairs have the joints longer, especially the last two pairs which are subequal. There are no plumose setæ on these limbs, but spines at the apices, and a few on the inner margins of the third to sixth joints.

Pleopods-The rami are broad in all of them.
Uropods-The peduncle is produced rather beyond the middle of the telsonic segment, but not quite to the middle of the inner ramus; this ramus is very broad, and reaches beyond the segment, its margin, except near the base, being elosely fringed with spines and setæ; the outer ramus, though about as long as the inner, does not reach nearly so farback, and is much narrower, but with similar armature. Colour, in formalin, cream, with symmetrical brown markings on upper surface, but not on under surface or on appendages, except the uropods. Length, 15 mm ., or a little less or more.
Locality :-Table Bay, and from " Red Pait" (a large Ascidian). Somerset West, shore.
Krauss, loc. cit., under C. sculpta, M.-Edw., says. "A specie distinguished by the exceedingly pretty marking of the abdomen, which I have found in Table Bay. Yellowish green, with black speckles and spots. Length, 6 lines." Herklots in 1851 merely mentioned the name on Krauss's authority. Hansen doubts the identification, and is disposed to think, from the strong sculpturing of the pleon, that Milne-Edwards's species may be a Corallana. Milne-Edwards thus describes his C. sculpta:"Head much broader than long, scarcely narrowed anteriorly. and little immersed in the thorax. Margin of the last thoracic rings and of the rings of the abdomen finely denticulate. The last segment of the abdomen furnished with a conical tooth on the median line, with a multitude of little crests, and ending behind acutely. Feet feeble, and scarcely hairy. Terminal plates of the uropods almost of the same size and apically acute. Length, about 9 lines. From the coast of Malabar."
The description of the uropods will not at all suit the present species, and the distance of habitat does not encourage the hypothesis of misdescription. Milne-Edwards also says that in his species the head is scarcely narrowed in front: in the South

African spectes it is plainly widened. The new specific name for the latter alludes to Krauts's remark upon the beautiful marking wif the pleon.

CHROL.AN. FLCNIATILIS, 11. sp.

This species is clusely allied to Cirolana plomastica, described and figured in " Willey's Zoological Results," Part 5, p. 629, pl$67 \mathrm{~A}, 1900$. Between the mouth organs of the t wo there seems to be no difference on which to lay any stress. It may, however, be mentioned that in the present species, out of the thirteen seter fringing the imner plate of the second maxille, eight instead of three are conspicnonsly plumose, and in the maxillipeds the terminal joint narrows distally instead of widening. The antemue are more distinctive. for here in the first pair the first two joints are clearly separate, the first distally widened, the third is as long as the preceding two combined; the flagellum consisting of ten or eleven unfurnished joints, is as in the other species equal in length to the peduncle; in the second pair the peduncle is a little longer than the first antemax, its fifth joint is clearly longer than the fourth, the flagellum is more than twice as long as the peduncle and consists of about forty joints, vary ing from under to over that number, of the earlier joints some fourteen or fifteen carrying rather conspicuous little tufts of setr.
The surface of the pereon is somewhat pubescent, especially at the sides; the hind rim of the seventh segment carries about eighteen tubercles. Of the pleon, the third, fourth, and fifth segments have the lind margin tuberculate, the fourth has its sides strongly produced over the produced and rounded sides of the fifth, the produced lobes of the fourth having the peculiarity of a lateral slit, such as might be expected to indicate two segments in coalescence, of which there is here no question. The telsonic segment is triangular. with straight sides, the breadth at the base equal to the median length. At the 1ipper part of each side there is a small ridge, and on cither side of the middle line there is a partial carina formed in two or three sections. beginning near the base, bit not reaching the narrowly-rounded apex, the ornamentation being thus a kind of link between that of C. sulcata and C. pleonastion. The lower half of the segment is fringed with plumose setre. among which are four spines at the apex, and two on each side in notclies above the apex, not as in C. pleonastica, eight together round the apex. The inner ramus of the uropods reaches beyond the telsonic segment, and is not a rery broad oral, but: :roader and longer than the outer ramus. Colour (in formaiin) uniform. a duil pinkish brown, probably not to be relied upon as characteristic. Size, 12 mm . long, by 4.5 mm . broad.

Locality :-Two milesup the Buffalo River. This is described as a tida! river. The specific name alludes to the place ni capture.
C. pleonastica was obtained at depths of 60 and 100 fathoms in Blanche Bay, New Britain.
1sigo. Cirolana sulcuta, Hansen, Cirolanidic, \iil. Se'sk., ser. 6, vol. 3, p. 336 (fOO), pl. 2, fig. 5-5e.
This species, fully described and excellently figured by H. J. 1lausen, is easily recognized by the peculat seulpture of the telsonic segment, which has a medio-dorsal longitudinal furrow between two stont carimx, which meet at their extremities.

Locality :-Somerset West, shore; from " red bait."
The specimens described by Hansen were taken in Simon's Bay.

Fame: Ægidae.
1879. AEgidat, Schiödte and Meinert, Naturhistorisk Tidsskriit, ser. 3, vol. 12, p. 325.
18yo. AEgidae, Hansen, Vid. Selsk. Skr., ser. 6, vol. 3, p. 315 (79).
1893. AEgidue, Stebbing, History of (rustacea, p. 347.

Gen.: Roclnela, Leach.

1sis. Rocineld, Leach, Dictionnaire des Sciences naturelles, vol. 12, pp. 348,349 .
1849. Acherusia, Lucas, Crust. Algérie, p. 78.
1867. Rocincha, Bate \& Westwood, Brit. sessile-eyed Crustacea, vol. 2, pt. 17, p. 289.
1879. Rocinelu, Schiödte and Meinert, Xaturhistorisk Tidsskrift, .ser. 3, vol. 12, p. 380.
1893. Rocincla, Stebbing, History of Crnstacea, p. 348.
1897. Rocincla, Sars, Crustacea of Norway, vol. 2, p. 65.

Rocineli dumerilit, Lucas.

1849. Achorusiu Dumerilii, Lucas, Crust. Mgérie. p. 79, pl. 8, fig. 3.
1850. Acherusia complanata, Grube, Die Insel Lussin und ihro l!eeresfauna, p. 76.
1851. Rocinela Dumerilii, Schiödte and Meinert. Nat. Tidsskrift, ser. 3, vol. 12, pp. 383. 391, pl. 12, figs. 4-9.
1852. Rocinela Dumerilii, Bovallius, Bihang till K. Svenska Vet. Akad. Handlingar, vol. 12, pp. 383, 391, pl. 12, ffgs. 1i-19.
The South Λ frican specimen is not 111 alsointe accord with the figures given either by Lucas or by schiiedte and Neinert in one
particular, for the head is strongly produced in front into a sumewhat upturned rotundo quadrate process, the sides of which are even a little incurved before diverging towards the eyes. From the authors mentioned one must infer that the process in thens specimens, thongh more or less blunt at the top, was otherwise triangular.

The nearest approach in other described species of Rocincla to the shape of the process exhibited by the African specimen is in R. oculata, Harger, 1883 , but that species is distinguished from R. dumoritii by being much broater in comparison with the length, by having the eyes contiguous instead of separated, and by having the inner ramus of the uropods slightly shorter than the outer, instead of distinctly longer. According to Bovallitus, in the adult male of dumorilii the front of the head "shows an obtuse projection shorter than in the ovigerous female, but longer than in the virgo." Grube (listinguished his Acherusia complanata from dumorilii only on the ground that its first pleon scgment did not run out into strongly-produced joints, such as are shown in the figure given by Lucas, and the same distinction might be drawn for the African specimen, in which the first pleon segment is much less wide than those that follow, although its apices are sharper than theirs, but Schiödte and Meinert explain that in the ovigerous female the first pleon segment is in fact almost entirely concealed, thongh in the "virgo" it is broad and pretty fully uncoyered. In their account they say that the tarsus (sixth joint) of the prehensile feet has three sharp spines in the ovigerous female, four in the "virgo." In the African specimen the joint in question has four spines, and the Danish authors figure four for both forms.

The eyes are large and dark, composed of about 140 ocelli. the facets casily catching the light. The well-marked medio-dorsal depression on the head, described by Lucas, is present. On the other hand, the longitudinal furrow on the telsonic segment which he says is pretty well marked. is rather to be imagined than perceived. Schiodte and Meinert speak of it as "lightly" shown in the ovigerous female, and "very lightly" in the "virgo." The colonring and size (an inch long), and all details except the frontal process, so well agree with carlier descriptions and figures of R. dumorilii that it would be rash to form a new species for this single specimen.

Locality :-Vasco de Gama Pt. S. 7.5° E. $13 \frac{1}{2}$ miles. Depth, I 66 miles.

Fim.: Cymotiomae.
1900. Cymothoidac. Stebbing. South African Crustacea, Part I, p. 55 ; and Willey's \%ool. Results, Part 5, p. 639.

Gen: Nerochla, Leach.

1818. Verocila, Leach, Dict..Sci. Nat., vol. 12, p. 35 r.
1819. Nerocila, Harger. U.S. Fishery Report for 1878, Part 6, p. 391 .
1820. Nerocila, Schiödte and Meinert, Nat. Tidsskrift, ser. 3, vol. 13, p. 4.
1821. Nerocila, Bovallius, Bihang till K. Svenska Vet-Akad. Handlingar, vol. 12, pt. 4, No. 4, p. 3.
1822. Ncrocila, Stebbing. History of Crustacea, p. 35 r.

Additional references, including the synonyms Ichthyophilus, Latreille, and Emphylia, Koelbel, will be found in Schiödte and Meinert.

Nerocila cepiralotes, schiödte and Meinert.

1881. Nerocila cephalotcs, Schiödte and Meinert, Nat. Tidsskrift, ser. 3, vol. 13, p. 60. pl. 4, figs. 16-18.
In this species the head is broadly rounded in front, and behind fitted into the trilobate front margin of the first peræon segment. The angles of the sixth and seventh peræon segments are produced, acute, reaching beyond the still more acute apices of their side plates. The lateral angles of the first and second pleon segments much overlap those of the third and fourth segments. and in all four to a lateral view they have a somewhat hook-like shape. Our specimen is a female, with distended marsupial plates.
Locality:-Cape St. Blaize N. $4 \frac{1}{4}$ miles. Depth, 35 fathoms. Bottom, mud. Found on Synaptura pectoralis. Schiödte and Meinert examined a specimen from Cape Agulhas and another from the Cape of Good Hope, besides others.

Fam.: Idoteinase.

1900. Idoteidae, Stebbing, South African Crustacea, pt. I, p. 51 .
1901. Idoteidae, H. Richardson, Proc. U.S. Mus., vol. 23, p. 537.

For the synonymy see Part I. p. 51, of the present work. To the references there given nday be added Idotcidac, H. Richardson, The American Naturalist, vol. 34, p. 224, 1900, and Les Idotíes, H Milne-Edwards, Le Règne Animal, Edition par les Disciples de Cuvier, Crustacés. p. 201, pl. 69, date uncertain. Of the last work, published by Fortin, Masson et Cie, it should be remarked that the plates ought not to be neglected by the carcinologist, although the accompanying volume of text is of a very mean order. Here also it may be well to call attention to the circumstance that Guérin-Méneville, in his Iconographie du Règne Animal de G Cuvier, a work vaguely dated $1820-18+3$, thinks the explana-
tion of the plates a fitting opportunity for describing a new genus and species, Edotia tuberculata from the Falkland Islands, and no less than three new species of Idotea from the Cape of Good Hope, all of these unfigured, and consequently a source of trouble to succeeding anthors. The species assigned to Idotea are named I. Latreillii, 1. Edwardsii, I. distincta. From Miers' revision of the family, however, it does not appear that any cne of these three names can be retained, since with no littleprobability he identifies the first with I. indica, Milne-Edwards, the second with Oniscus ungulatus, Pallas, the third with I. peronii, Milne-Edwards.
From the following accounts it will be seen that within this family the mouth-organs present some interesting variations. Thus in Glyptidotea and less conspicuously in Paridotea the maxillipeds are seven-jointed, in Idotea they are six-jointed, in Symidoter five-jointed, in Colidotea four-jointed. These differences depend on coalescence occurring or not occurring between the fourth and fifth joints of the "palp." or between its second and third joints, or between both those pairs, and in case of Colidotia the first joint, in addition, loses its identity by coalescence either with the second joint of the stem or the second of the palp. In Paridota ungulata I now incline to think that the second and third joints of the palp should be separately reckoned, though it is a point rather difficult to determine. In the same way the second and third joints in Idolse indica are far less distinctly separated than they are in Idotio bulthica. The first maxilla also show some curious differences in minute details. Paridotia ungulutir has on the inner plate of these appendages five plumose setre (not six, as stated on page 54 of Part I.) in Glyptidotea as in Idolen there are three, and in Symidotea hirtipes only two.

(i.うPTHOTE

Side-plates distinct in all pereon segments execpt the first. Pleon consisting of a single segment, with three pairs of lateral sutures at the base. Sculptured joints in peduncle of both pairs of antennæ. Second antennæ with the flagellum multi-articulate. Maxillipeds seven-jointel. Whl the trunk limbs more or less subchelate, the penultimate joint most dilated in the first pair.

By the sculpturing of the head and the strongly :rehensile character of the limbs, the type species of this genus recalls Glyponotus, while in other characters it resembles Idotow and Syinidotea. but from all hitherto defined senera of the Idoteide it appears to be distinguished by its rlistinctly seven-jointed maxillipeds and its pleon suture: The seneric mame is componnded in allusion to the mixture of characters.

Gluridoten lichtexisternir, Krauss.

Plate 10.
1843. Idoloa lichtonstcinii, Kraus., Die sülafrikanischen Crus. taceen, p. 62, pl. 4, fig. 4 .
1881. Idotca Lichtenstimii, Miers, jonnn. Limn. Soc. London, vol. 16, p. 64.

The front of the heat is trisintate, the median noteh small and overlinng by a large, biunt-ended, horizontal process of the dorsal carina, the lateral angles produced into blunt points directed slightly outwards in advance of the small, black, dorso-lateral, triangularly-rounded eyes, belind which the lateral margins converge to the faintly-concave hind burder. The first peræon segment is short in the madde, but with the sides reachnglorward to the eyes, Hanking the head with broadly rounded plates, of which, lowever, the inner and the linder margins are flattened. Of the six followning segments the side-plates are al distinct, in shape passing from oval to sub-quadrate, not produced backward, but matching the length of the segmont, which is least in the seventh and greatest in thespond and thard, the latter with ilsswe: plateprescnting the greatest breadth. The pleon has a length equal to the first three segments if the pereon, the breadth at the base being not much less than the lengels, and ncarly two and a half times the width of the apex, which is shallowly enn rginate with rounded corners. The three pairs of stitures are dorsally successively shorter; ventrally they are very distinct. A nledian carina extends from the ceplalic process on to the pleon, where it loses the rather moderate acmitenes of its earlier purt:on, and near the middle of the segment bifurcates, being very faintly contintted to each apical angle.

First antenne-The first joint is deeply cut into several unequal lobes, among which is implanted the narrow stalk of the second joint; this in turn is divided into lobes at its widened distal extremity, receiving the shorter third joint, which also forms a little cup for the narrow base of the flagellim. The latter has the shape of a blade-bone, and has ts ec neex margin closely set with fourteen semi-circular lobos, from each of which projects a pair of hyaline sensory fíanents and two setules, or perhaps from the last two semi-circles there may be on ly one filament apiece. It is possib!e that thise 11 a ginal divisions with their apparatus indicate a coalescence of many articulations to form this peculiarly shaped one-jointed f'agellum.

Second antennx-The first joint short: the second much wider, cut into deep lobes which encircle the third joint, this also being wide and lobed, but less strengly than the preceding, the fourth joint oblong, a little longer than wide. the fifth abruptly narrower, considerably longer : the flagellum longer than the perduncle, con-
sisting of seventeen joints, of which the first is the longest and the last minute, all apically fringed with inconspicuous setules.

Epistome strongiy prodnced forward, its linguiform process being just concealed by the nasiform process of the head in a dorsal view, the narrow arms flanking the upper lip, which is triangular above and has the slightly convex lower margin covered with a thick monstache. Lower lip-The rotundo-quadrate lobes are rather strongly setu'ose. In the stomach near the entrance are two dark reniform masses very strongly setulose round the adjacent inner and the hinder margins. These correspond to what in the Amphiporla I have called organs of trituration, but which Professor Della Valle names "cardiac folds." In the Amphipoda they are often armed with numerous and powerful spines. The exterior of the stomach is covered like the rest of the animal with little scale-like markings.

Mandibles - The left mandible has the middle tooth of its cutting plate simple, but the tooth on each side deeply bifid; in the secondary plate there is one strong, horny-looking triangular tooth, and three spine-like teeth, two of them short; there are four or five crowded plamose spines in the spine-row, the molar is strong, with setules at the base, the oval crown setulose, a little serrate above, accompanied by a projecting group of setæ. The riglit mandible has two simple teetl and a third feebly trifid in the cutting plate, the secondary plate divided into feeble spine-like teeth, the crown of the molar scrate along one cdge.

First maxillæ--The onter plate is surmounted by eleren crowded spines, the outermost but one being the strongest. the innermost six slender, forming two sets, each consisting of three graduated spincs. The inner plate has thee pumos setre en the narrow apex.

Second maxillæ-The outcrmost plate has seven pectinate spines: the mirldle plate earries six; the consi lerably broader inner plate is distally fringed with several p^{\prime} um ose setx.

Maxillipeds-The inner margin of the first joint forms a rounded process beset with plumose setæ; its external part forms a broad base for the large distally narrowed epipod. The seend joint is elongate, its apical process, d'stally fringed with setæ, reaches beyond the second joint of the palp, and somewhat above its base has a strons spine-hook, nearly at the level reached by the apex of the epiporl. The first joint of the palp is small, the second widened. cup-like, with the inner margin much longer than the outer, the third joint similar bat larger, and with less difference between the two margins: the fourth foint is much the longest, oval, but with truncate apex, on which is placed the small, but very distinct, wal fifth joint, thi ; like the three preceding joints having setie on the inner margin.

First gnathopods-Thongl the seven pairs of trunk limbs are all very similar in character, the first pair have cerfain distinctive features. They are the stortest, and have the sixth joint
shorter, and absolutely as well as relatively wider than it is in the otner pairs; also on its outer surface this joint is armed with a great number of pectinate spines, which are wanting in the other pairs. The second joint is deeply channelled along the front, the third and fourth joints are distally widened, lobed on each side ; the fifth joint is very short, not under-riding the sixth; the sixth obtains a subchelate character ly help of a strong subbasal spine confronting the finger, this spine being to appearance roughened with rows of minute teeth extending from near the base quite to its apes. The finger is bing tuiculate groups of setules or slender spines attending the stronger onter nail and the shorter inner one.

Second grathopods and the peræopod;-There is a gradual increase in the length of the limbs, the sixth joint becoming narrower and longer. but the differences otherwise not being very material. In all the limbs the peculiar denticulate spine of the sixth joint is conspicuous, and the finger shows an impression on the inner surface where its base rests against the circular apex of tl . sixth joint.

The pleopods do not seem to differ from those in the genus Idoter.

The uropods--These also are in close agreement with those of Idotea. The ramus is more than a third of the length of the peduncle, at its base nearly as broad as the length, which is grei ron the convex outer than on the straighi muer margin, the apical being obliquely truncate and faint'y emarginate, rather more than half the basal breadth. There is no other plate, but a strongly plumose setre about half as long as the ramus, and by this possibly the onter ramus is represented.

The colour in formalin is orange, with a pair of bright red spots on the front margins of the peræon segments from the second to the seventh. Small spots and stellate markings are visib'e under the microscope on many parts. including the maxilIipeds, uropods, etc.

Length, about 24 mm . The single specimen carried numerons eggs within the four pairs of marsupial plates, and could not be fiattened out for minutely exact measurements. Krauss gives the size of the specimen taken in the algæ of Table Bay as length I inch, breadth 3.7 lines.
Iocality:-Dredged between Bird Island and the mainland, Algoa Bay, in io to 16 fathoms, on a bottom of sand. shells, and stone.

Gen.: Synidotea, Harget.

1878. Symidotea, Harger, Amer. Jour. Sci., ser. 3, vol. I5, p. 374. 1880. Synidotea, Harger, U.S. Fisheries Report for 1878, pt. 6, p. 350 .

188ı. Edutia (part), Miers, Journ. I_inn. Soc. London, vol. I6, p. 65 .
1885. Synidotca, Sars, Norwegian North Atlantic Exp., vol. I4, p. 116.
1895. Stenesma, Dollfus, Fenille des Jennes Naturalistes ser. 3. Année 25, No. 292, p. 9.
1897. Synidotca, Benedict, Proc. Aci d. Philadelphia, p. 390.
1899. Synidotea, H. Richardson, Prec. L'S. Mus., vol. 21, p. 847. 1900. Syuidotca, H. Richardsen, Imerican Nitualist, vol. 34 , p. 227.

190I. Syinidotea, H. Richardson, Proc. U.S. Mus., vol. 23, p. 54 t .
Of this genus an excellent little monograph was published by Dr. J. E. lienedict in 1897. He assigns to it fiiteen species, and gives figures of the thirteen which had come under his own observation. The genus may be defined as follows:-

Sides of head in a dorsal view entire and not laterally produced. Side-plates of peræon coalesced with the segments. Pleon consisting of a single segment, with one pair of lateral sutures at the base. Eyes lateral. Second antennæ with well developed multiarticulate flagellum. Maxillipeds with thre-jonitid palp, or in other words, maxillipeds five-jointed. Uropods with a single b-anch.

Dr. Benedict distinguishes two sections of the genus, the first having the distal end of the ple 11 emarginate or bicuspid, the scond having the end bluntly pointed.
Miss Ricliardson, in her aralytical key to the genera of Idoteidue, assigns to the group including Synidotea the character of having the "cogs all ambulatory." In S. hirtipes, however, the first pair are shorter and stouter than the rest. with expanded penultimate joint and reflexible finger constituting a prehensile hand. Also they close so firmly upon the mouth that their ambulatory function has probably been relinguished.

Syinotei hirtipes (. Milnc-Fdwards).

18to. Idotea hirtipes, Milne-Edwards, Ilist. Nat. Crust., vol. 3, p. $13+$.
18.4. Idotea hirtipes. Krauss, Dic Südafrikanischen Crustaceen, p. 61.

1ss I. Edotia hirtipes, Miers, Journ. Linu. Sue. London, vol. r6, p. 68.
1897. Synidotca hirtipes. Benerlict, Proc. Icad. Philadelphia, p403.

On the description given by Miers and quoted by Benedict, little criticism is needed, but Miers says without reserve, that the legs are iong and slender, whereas the first pair are rather short and stout. Also he speaks of the distal emargination in the telonic segment as small and shallow. It seems to be variable,
but is usually broad and often well marked. The last threc segments of the pereon are notably shorter than the rest, and the demarcation of the side-plates is very faint. In the uropods the peduncular plate has on its upper half two obliquely transverse ridges fringed with spines like those along the margin, and at the apex of its hinge margin it has two plumose setæ.
The first antennæ have the first joint short and wide, the rest narrow, the flagellar joint being about as long as the second and third joints of the peduncle combined, widening a little from its base, then tapering. fringed with about 18 pairs of filaments.
The epistome is much wider above than below, produced upward to a short median triangular point, its lower margin straight, scarcely so wide as the upper lip, which is proximally as well as distally fringed with seta-like spines, those projecting from the distal margin being very closely set; the margin itse!f is unsymmetrically bilobed. The lobes of the lower lip are also sather strongly fringed on the inner margin.

The mandibles liave the basal part double-ridged and the extremity geniculate. The cutting plate is four-toothed, the secondary plate tridentate, its teeth horny-looking on the left mandible, slighter, pellucid. and a little setulose on the right. No spine-row was perceptible. The molar is prominent, with oval denticulate crown.
The first maxilix have the outer plate surmounted by ten, or sometimes by eleven, spines, some of which are denticulate, none very powerful. The inner plate is narrow at both ends, and lias at the apex only two setre. which are rather long, and, as usual. plumose.
The second maxille have some of the spines on the inner plate plumose, those on the middle plate finely pectinate, about fifteen in number.
The maxillipeds lave the first joint short, the epipod nearly parallel-sided, not reaching the apex of the process of the second join, though extending considerably wond the first joint of the palp; its upper margin slopes inward. The process of the second joint is shaped as commonly in the Amphipoda Gamanaridea, and similarly fring d with setæ on the inner and anir: 1 margins, but here it is tied to its fellow, each member of the pair carrying a strong spine-hook for grappling the other. The first joint of the palp is small and rather obscure, the second is very large, widening distally, its distal margin flatly rounded on the inner part and externolly forming a little free projection. The third joint is also very large, its inner margin almost continuous with that of the preceding joint, feebly convex, fringed with short spines, its outer margin strongly convex, fringed with seta-like spines. some of which also stand out from the surface.
The character of the first gnathopods has been already noticed in remarks on the genus.

In the first pleupods the peduncle is fringed with a dozen hooked spines. The male stilet of the second pair is produced considerably beyond the rami. None of the rami show any transverse suture.

Locality:-Specimens were taken at three staticns-Cape St. Blaize
W. II $\frac{1}{2}$ miles, 27 fathoms, fine sand; and Cape St. Blaize N.W. $3 \frac{1}{4}$ miles, 33 fathoms, mud.

Miss H. Richardson's genus Colidotea is distinguished from Synidotea by having only two joints to the palp of the maxillipeds, and the side-plates distinct and well-developed in the last three segments of the peræon. The first joint of the maxilliped palp in S. hirtipes is so faintly marked that in this respect tl may be regarded as a link between the two genera. On the other hand, the side-plates of the peræon segments are scarcely discernible.

In his key to the species of Synidotca, Dr. Benedict was unable to include S. hirtipes (Milne-Edwards) and the var. laevidorsalis (Miers), a larger, narrower form from Japan, neither of which he had seen. But he incidentally recognizes that they belong to the first of the two sections into which the divides the genus. Within this section S. hirtipes makes the nearest approach to S. laticauda, Benedict, of which Dr. Benedict remarks that "the valves of the opercultun are diagonally crossed by a curved line." As already noticed. in S. hirtipes the valves of the opercular uropods are crossed by two such lines. No one observing one of them could well fail to notice the other, so that this may be taken as a distinctive mark separating S. mrtipes from S iaticauda, which is also a broader form. Miers, it is true, does not make any reference to the second line in S. hirripes, but possibly it might not attract attention in the dried specimens which he examined. In the var. lacvidorsalis he figures the opercular valve with only one line which points to the conclusion that this Japanese form is specifically distinct.

Inotea indica, Mihne-Edwards.
1840. Idotea Indica. Milne-Edwards, Hist. Nat. des Crustacés, vol. 3, p. 13 I.
1843.? Idotea Latreillii, Guérin-Méneville. Iconographie du Règne Animal, Crustacés, p. 32.
1881. Idotea indica, Miers, Tourn. Tinn. Soc. London, vol. ı6, p. $50, \mathrm{pl} .2$, figs. 4, 5.
This species bears a rather close seneral resemb'ance to Idotea emarginata, Fabricius, but is distinguishable from it by the rather sinuous and less convergent sides of the telsonic segment, and by the side-plates of the peræon. Miers says that these latter parts are "small, in the second segment occupling, in a lateral view,
unly the anterior half of the lateral margins, in the second and third segments the middle portion of the lateral margins, in the fifth and sixth segnents they reach nearly, and in the seventh segment quite, to the postero-lateral angles."

His description was taken from the type in the Paris Museum, "an adult male," to mm. long. It agrees well with our specimen, which appears to be a female, being without the male appendages on the seventh pereon segment and the second pleopods. The sideplates are obviously quite different from those of the male b. cmarginata, but they also differ very considerably from those of the temale of that species, which Sars (Crustacea of Norway, vol. 2, p. 85, pl. 35, fig. 2) describes and figures as "rather small and not contiguous." It is important to remember the striking dissimilarity between the side-plates in the two sexes of the species in question, although I find that at least sometimes they may be contiguous in the female as well as in the much larger male, whereas in Idotca indica there is no approach to contiguity, the whole series being well separated.

Miers gives the flagellum of the second antennæ as eighteenjointed, and states that the last peræopods have "their penultimate joints thickened and considerably elongated." In his figure this is a very notable feature, and may be a characteristic of the adult male. In our specimen the flagellum of the second antennæ has on one of the pair fifteen and on the other sixteen joints; the last peræopods are not very strikingly larger than the penultimate pair.
The mouth-organs are in near general agreement in most respects with those of the type species of Idotea, the I. balthica (Pallas), as recently figured by Sars. In both species it seems to me that the upper lip has a small emargination which Sars does not indicate, and that the lobes of the lower lip are more squared than in his figure. In both species the inner plate of the first maxillæ carries at the apex three plumose setæ, but its shape is notquite the same as both, the widening being near its junction with the stem in I. balthica, but higher up in I. indica. The most notable difference is in the maxillipeds, for these in I. balthica have the palp very distinctly four-jointed, whereas in I.indicat the dividing line betiveen its second and third joints is only faintly discernible, except at the edges, nor does our specimen show any trace of the notch near the apex of the fourth joint, which at least sometimes in I. balthica marks the place at which a small fifth joint is lost in coalescence with the fourth. The epipod is oval. The outer apex of the second joint of the stem carries four setæ, its process is armed with one hooked spine.

Length, 27 mm .
Locality :-Hout Bay, from a depth of 9 to 20 fathoms, on fine sand and broken shells.

Fam: Shlineromidae.
1840. "Sphéromiens," Milne-Edwards, Hist. Nat., Crust., vol. 3, p. 197.
1847. Sphacromidae, White. List of Crustacea in Mrit. Mus., p. 102.
1900. Sphacromidac, Stebbing. Proc. Zool. Soc. London, p. 55^{2}.
sgor. Sphacromudac, Harriet Richardson, Froc. L.S. Mus., vol. 23. p. 532.
1902. Sphneromiduc, Harriet Richardson, Trans. Connect. !cad. Sci., vol. 11, p. 291.

In the Proc. Zool Soc. London for 1900 a list of authorities on this family is given, and it is scarcely necessary to repeat it here.

> Gen. : Exosphaeroma, Stebbing.
1900. Exosphacroma, Stebbing, Proc. Zool. Soc, London, p. 553 .

Exosphaleroma implifrons, 11. sp

Ph.ste if.

The head, which is slightly notched at the summit. is remarkable for the wall-like stecpness with which it rises in front far above the eyes. A small triangular rostrum separates the cavithes from which spring the bases of the first antennæ, and, on etther side of these a small wing or hollowed surface of the head lies below the greatly projecting cye-lobes.

The peræon is broad, strongly imbricated, a deep cavity being formed by the dorsal slope of the first segment and the posterodorsal slope of the head. The side-plates of the last six segments are rather abruptly bent downwards and even a little inward, the last th.. nding less acutely than the preceding three. The infero-lateral margin of the first segment forms an acute angle at either end, in front helping to embed the eye-lobe, behind slightly under-riding the side-plate of the second segment. A very notable peculiarity of the species is furnished by the eroded appe ir caus did by little pits in the intequment. These are conspicuous on the lower part of the head and its adjoining appendages, over much of the first pereon segment, on all the side-plates and hind margins, and over a great part of the pleonIn the last three perxon segments the hind margins are cut into several blunt denticles, of which there are two, not always very distinct, on each of the three precering segments.

The pleon is rery strong featured, its basal portion being produced into prominent submedian bosses, and the terminal portion also having two that are even more prominent, overhanging the triangular telsonic portion, the apex of which is somewhat trilobed and curves upward beyond two little notches. There are two tufts of setules on the underside of the apex, and the mediolateral parts of the pleon are setulose. The basal portion shows four components, the first marked by a sinnous dorsal line, the next two only by lateral sutures, but the second, third, and fourth segments are much broader than the first, and the second has a more extensivelateral margin than the rest, and one which outHlanks the side-plate of the seventh perron segment.

The eyes are dark, of irregular shape, tending to oval, with about a hundred swall components.

The first antenne have the first joint much longer than the second and third combined, the second much narrower than the first, broader but considerably shorter than the third. The flagellum of nineteen joints, carrying hyaline filaments, is shorter than the pedmele. The second antennæ are rather longer than the first, with the penultimate joint of the peduncle not shorter than the ultimate, the fifteen-jointed flagellum subequal in length and proximally in breadth to the peduncle.

The epistome and upper lip, as seen in situ with the other " oris partes," and as secn when detached, are shown in the figures. The mandibles are particularly massive, with the palp especially inconspicuous and membranaccous. The cutting edge is very dark, and looks like a single undivided tooth, very blunt. The secondary plate on the left mandible is also dark-coloured. simple but comparatively thin and small; the crown of the molar is light brown in colour, so prominent and so close to the secondary plate that no spine-row could be perceived between them. On the right mandible the secondary plate is divided into slender teeth.

The lower lip las the principal lobes quadrately rounded. rather strongly spinulose, their inner margins indented, the inmer lobes pretty strongly developed.
The first maxille have the usual four plumose setre on the apex of the inner plate, these scte slightly increasing in length from the outer to the innermost. On the outer plate nine horncoloured spines surmounted the apex on one maxilla. and ten on the other.
The second maxillæ have what I suppose to be the exopod very distinctly represented by a rather long, narrow lobe of the outer margin; of the three plates. the innermost has some plumose spines mixed with the others, while on the middle and outer plates there are to each aboint tent thin graduated spines.

The maxillipeds have the plate arising from the second joint more than twice as long as broad, with the greatest breadth A1847.
beyond the middle, the apical border a little oblique. Each plate has a strong coupling spine. Of the five joints of the palp the first is small, the second large, the others successively smaller, the second to the fourth produced into narrow lobes, apically tufted with setce, like the narrow unlobed fifth.
liirst gnathopods-These are distingnished from the following six pairs of trunk-limbs by the triangular shape of the fifth joint, and its position overlapped on the outer side by the apical lobe of the fourth, and on the inner side under-riding the sixth joint. On the inner margin the fourth and sixth joints have cach five, and the fifth lias four spines, which are plumose in such a way as to give a land-like appearance to the upper shorter ones. "The ninger is biunguiculate, with a seta between the outer and the shorter inner magnis. In the other limbs, the fifth joint, though smaller than any of the rest, except the finger, is similar in shape, armature, and mode of articulation to the fourth.

Pleopods-The inner apex of the perluncle has not more than three or four spines with bent tips. The male appendage of the second pair reaches a little beyond the margin of the ramus, and is blunt-ended. The sutured plate of the fifth pair is distally squamose, its projecting bosses being especially conspicuous in this respect. This character is perhaps general in the Sphæromida. In shape and relative dimensions the rami of the pleopods seem to show some differences from species to species, but whether the differences are stable ard really specific I am not in a position to say.

Uropods-The peduncle has a strong ridge on the upper side. 'The fixed inner ramus is oval, setulose on its margins, and has an apical tooth directed a little outward. The movable outer ramus is longer and broader, with irregular outline, the upper surface hollowed, carrying a row of setules, the under surface having two such rows; the apex is tridentate, the middle tooth large and prominent.

Length about twice the breadth. The largest specimen, if it would submit to be unrolled, might be i 6 mm . long. The smallest differed from the largest and from the one figured, which was 12.5 mm . long, in slightly bent posture, and 7.5 mm . broad, by having the telsonic apex simple, not trilobed, and by having much reduced lobes on the basal part of the telson.

Locality:-Between Bird Island and mainland, Algoa Bay, in a depth between 10 and 16 fathoms, on a bottom of sand, shells, and stones. The extraordinary appearance of the head has suggested the specific name of this remarkable form.

$$
\text { P1,ATE } 12 \mathrm{~A} .
$$

The head of this species is distinguished from that of E. amplifrons chiefly by the want of any eccentric elevation above the eyes, its upper line in a front view being gently convex instead of iorming an almost pointed arch.
The pereon is broad, with the imbrication even more strongly marked than in E. amplifrons, the transverse ridges occasionally carrying four widely spaced low tubercles, which, however, were obsolete in the specimen figured. The integument is not at all eroded. The segmentation of the plern is as in the preceding species, but here the basal part has two tubercles instead of great bosses, and the terminal part, though it carries two large bosses surmounted by two tubercles, ends in a commonplace manner, the apical margin being truncate and shallowly trifid like the British form known as Sphacroma prideauranum.

The first and second antemae are distinguished from those of E. amplifrons by characters of doubttuily specific value. In the first pair the first joint is more massive, but the angular projection on the side margin is much less prominent. In the second pair the penultimate joint of the peduncle is shorter than the ultimate. That the flagella have a joint or two more than observed in the other species camot be a matter of importan se.

The upprr ap on the inner side has the transverse line above the apical margin more prominent, straighter, and carrying -tronger setules than in E. umplifrons.
The mandibles are less massive than in the species just mentioned, though generally similar, but with the ch.tting plate more ontdrawn, the secondary plate on the left mandible trilobed, -obscure, and at most very slight on the right : on both there is a distinct spine-row of five or six spines, some of which are a little denticulate. The molar has on one side above the crown a small appendage, probably common to all the species. The palp is a little stronger than in E. amplifrons, but as there, with the joints nearly equal, the second and falcate third fringed with spines, of which two or three at the apex of each of these joints are the longest.
The lower lip and maxillae are as in E. amplifrons, but the maxillipeds have a rather differently-shaped plate to the second oint, its greatest breadth being at the middle, and the apical margin much more oblique. On one of the first maxillæ eleven spines could be counted on the onter plate-
First gnathopods-These are nearly as in the preceding species but the fourth joint has a row of seven spines with two others out of the row, the fifth has five spines, and the sixth has six. The other limbs may show similar differences but they are not striking.

The pleopods hate irum four to three hooked spines at inner apex of peduncle. In the second pair the male appendage in the specimen examined did not quite reach the extremity of the ramus. The central appendages on the seventh segment of the pereon are rather different from those of li. gigas (Leach), being closely adjacent and sligitly curved.

The uropods differ considerably from those of E. amplifrons, being much simpler, the peduncle not ridged above, the fixed ramus the larger, with squared end, the outer ramus shorter, oval, with subacute aper.
The specimen figured is remarkable for the numerous purplishbrown spots with which its dorsal surface is richly sprinkled. Unfortunately, there is no constancy in the colouring of speciuiens.

Length, 16 mm ., breadth, 8 mm .
Localitv :-Between Bird Island and mainland, Algoa Bay, Dredged from depth of ro-16 fathoms.

> Exosphateroma setulosum. in. sp.

Plate 1213.

The head is nearly as in E. salidum, but even less raised above the broadly rounded cye-lobes. The whole surface is pubescent, this characteristic showing most distinctly on the hind margins of the peraen segments and on the pleon. The peræon shows a tendency to develop inconspicuous tubercles on the hind margin of the otherwise smooth segments. Th the pleon the basal portion has two small tubercles at its hind margin, and the terminal part has two parallel longitudinal ridges stopping considerably short of the depressed trifid apical marge in, of which the centre-piece is more advanced than in E. zalidum.
The first and sccond antennee are nearly as in E. validum, but in the first pair the first joint lias the angular projection more, prominent, and the flagellum, though consisting of only the same number of joints-twenty-one-is here not shorter than the peduncle. The second pair have a tlagellum of eighteen joints as compared with sixteen in the much larger E. validum.
The epistome and upper lip show a somewhat different appearance from those of E. zalidum, as will be scen in the figures of these parts as dissected. In the other month organs there seem no essential differences. except in the plates arising from the second joint of the maxillipeds, these plates having a length decidedly less instead of greater than twice the breadth.
The first gnathopods have on the fourth joint five spines in a row, on the fifth four, and on the sixth four, but in each case there is an additional spine on one side of the row, and a spinule in front of the serics on the sixth joint. Here as in the preceding
species, the last three pairs of limbs are a little more slender than the three preceding pairs.

The pleopods are nearly as in the preceding species, but nu male appendage was discernible on the second pair.

The uropods are as in the preceding species, except that the outer ramus is as long as the inner, with a strong outwarddirected apical tooth, and that the whole appendage is strongly fringed with setules.
The specimen figured was ornamented by a narrow transverse purple band near the hind margin of each percon segment, and by transverse and longitudinal bands on the telsonic segment, but this striking pattern was not repeated on other specimens.
Length of unrolled specimen would be 10 mm .
Locality:-Between Bird Island and mainland, Algoa Bay, dredged from deptlo of 10-16 fathoms.

The specific name refers to the pubescence on many parts of the integument. Between this species and E. oalidum the alliance is very close, but it has not seemed feasible to attribute all the differences mentioned to conditions of age or sex.

Exusphamoma gigas (Leach)

3818. Sphacromu gigus, Leach. Dict. Sci. Nat., vol. i2, p. 346. 1900. Errosphacrona sigas. Stebbing, Proc. Zool. Suc. London, p. 553 , pl. 39.

The synonymy of the species is given and discussed in the Proccedings of the Zoological society for 1900. in combination with that of White's Sphacroma lanciolatum. On the whole, it now secms to me that the two forms ought to be kept specifically separate, and that the names allotted by Leach and White may conveniently stand, although it may not be alosolutely certain which of the forms Leach had before him.

The Soutl African specimens appear to be in substantial agrecment with those described and figured as E.rosphacroma gisas from Mr. Rupert Vallentin's Falkland Island collection. except that in point of size they by no means merit their specific name of gigas. They are quite small. The specimen dissected was 9 mm . long loy 5 mm . broad, with the male appendages well developed, those on the second pleopods being considerably longer than the rami. The first antenne have the flagellum ir-jointed, a little longer than the peduncle, and in the second antennæ the flagellum is 19-jointed and considerably longer than the peduncle. These numbers and dimensions contrast with those in the large Falkland Islands specimen, in which the first flagelhm is 7^{-} jointed but shorter than the peduncle, and the second has about I6 joints. These flagella, however, are notorionsly subject to
much variation, so that the differences nuted are of little importance compared with all the numerous points of agreement. The thick fur on the pereopods is a very conspicuous feature.
Locality:--Two miles up Buffalo River, taken with small shrimp net on a muddy bottom.

> P.AR.ISPHAEROMA, 11. g.

1 iith and sixth segments of the pereon laterally projecting beyond the rest. lïrst division of the pleon with its first component segment conspicuons, the second overlapping it, and also the seventh segnent of the perani, but not the third of the pleon. of which the second, third, and fourtly segments are, as usual, coalesced in the middle; telsonic segment with blunt dorsal process near the middle and shallowly concave emargination of the apex. Epistome elongate. its apex prominent beyond the rostral point of the head and between the somewhat projecting bases of the first antemre. Second antenne geniculate between the fourth and fifth joints. The trumk-limbs not bidentate in appearance, a slender spine lying ciose within, the nail. Hind pereopods slender. Last pleopods withont conspicnous transserse pleating.
The generic name alludes to the obvious affinity between this and other Sphæromidæ.
This genus agrees with Dymamone, Leach, in having a simple excavation of the telsonic apex, but several distinctive marks are presented in the above definition. Dymamenc itself still remains obscure, the adult male form not laving been determined. Bate and Westwood in their discussion of it (British sessile-eyed Crustacea, vol. 2, p. 418 say, "T11 our figures of the second maxilla in D. rubra and Montugni. only one of the lobes was observed on dissection." Their figures, howerer, show that they are referring not to the second trut the first maxillæ. Both pair: are normal, as they might easily have satisfied themselves, in the two forms mentioned.

It is possible that Cumninglam's Cymodoced daraimii if better known might be included in this genus. although that specic: lias the outer branch of the uropods scarcely half as long as the inner, while in the species lere to be described the outer branch is fully as long as the inner (see Trans. Linn. Soc. London, vol. 27 , p. 499, pl. 59, fig. 1, 1871, and Studer, Isopoda of the Grazelle, p. 18, Berlin, 8884 .
P.ARSS: HAEROMA l'RGMINEAS, 11. Sl.

PLATE 13.
The head is mueh broader than its length, bounded by a slight ridge in front of the eyes. in alsance of these being folded
beneath. The first fon segments of the perieon are bent sharply downwards at the sides so that in dorsal view the side plates of the second, third, and fourth are inconspicuous, but those of the fifth and sixth segments are more outstanding, so that in folding up the animal does not become smoothly globular. The first division of the pleon has been described in the accomnt of the genus, apart from notice of a central blunt process which overhangs the hind margin of the fourth segment. This and the similar process on the following division seem slightly to vary in relative size, the former being usually the larger, and both becoming sery prominont in lateral view when the ammal is rolled or folded up. The telsonic segment is broad. widening to the insertion of the uropods, thence with convex sides converging to the apical emargination.
The eyes are large and prominent. their hind margins inserted in the first pereon segment. Their colou (in formalin) is purplish red.

The first antenne have the usual geniculate joint, followed by a small second joint. which is longer than broad. The slendei' third joint is longer than the first. The flagellum of 22 joints is longer than the peduncle. It begins with a very short joint, followed by a long one; most of the others carry hyaline filamonts.

The second antenne have a stont peduncle, the first three joints short, the iourth a little shorter than the fifth. which is subequal to the first three combined. The flagellum of 19 joints is longer than that of the first antennæ, and in the first 9 joints much stonter, these, in addition to the apical sete present on all the joints, having on the sides brushes of elongate setac-probably; a masenline feature.

The epistome is very much longer than the npper lip) which it partially embraces with its narrow ends, the clongate trunk having slightly sinuous sides and a rounded top which folds over so as with a more or less pointed return piece to meet the apex of the rostrum. The broad basal joints of the first antenne are yet kept completely apart instead of meeting, as they do in most Sheromidre, at or over the apex of the epistome.

The upper lip has a broad, not quite symmetrically, bilobed distal margin, and on the suríace a pair of retionlated clear spaces-

The lower lip has the hinder angles more squared than is usual in this family. The mandibles are strong, the cutting plate divided into three hornv-looking teeth, the secondary plate on the left mandible with three horn-coloured teeth, of which the middle ore is the smallest, this plate on the right mandible being slighter with the teeth not horn-coloured. The spine-row consists of eight or nine spines closely set, most of then broad. The molar has a round +d crown fringed with teetn and traversed by faintly-marked rows of denticles, having also on the outer side
some seta-like spines. The second and third joints of the paip have numerous spines.

The first maxilla have on the apex of the outer plate eleven or twelve spines, uncqual but all slender, and on that of the inner plate four plumose setre.

The second maxillæ have several plumose setæ on the imnermost plate, all three plates having the usual spine-armature, and the outermost being articulated considerably above the middle one. Near the base of the appendage below the channelled outer margin is a very prominent lobe, fringed with upward curving setules. Such a lobe is often indicated rather than developed in other genera. In the case of Exospharoma amplifrons the suggestion has already been offered that it represents an exopod.

The maxillipeds are as in E.rosphacroma. The plate of the second joint is broal, the processes of the fourth, fifth, and sixth are narrow, and the seventh joint is slender.
The first gnathopods lave the fourth joint as long as the third and broader, its inner margin carrying four denticulate spines, of which the small triangular fifth joint has six, and the rather long sixth joint has ten, besides two dozen smaller spines planted well within the margin on the imer surface. Between the margin of the finger and its adjacent spine there is a spinule, as in Exosphaeroma and elsewhere, but here these three parts lie in close proximity.
The second guathoporls have the third joint quite as long as the second, and much longer than the fourth, which is even shorter than the fifth. The latter has two or three spines on the inner margin, and within it a close-set row of eight or nine stont spines. The sixth joint is rather large, the upper part fringed with scven stont spines. The unguis is arranged as in the rest of the limbs.
The first peræopod has the second, third, and sixth joints subequal, the sixth a little longer, and the fifth a little shorter than the second or third, the fourth being the shortest of all. The third, fourth, and fifth are fringed on the inner margin with brushes of sete. 'The rather elongate finger is furry on its outer margin. The fifth pereopod is more slender than the first, and has its sccond joint longest, the third, fourth, and fifth subecual, the sixth not greatly shorter than the second, the finger furry as in the first pair, but a little shorter.

The pleopods. The spines on the imner margin of the peduncle of the first three pairs are three in number. The mate appendage of the second pair is more clongate than the rami, not acute at the apex. The thirel and fourth pairs lave the outer branch two. jointed. The fourth and fifth pairs have bnth branches branchial, but not pleated, and in the fifth pair the squamiferous processes are scarcely in relief.
The uropods have the imer marticulated brancla adjacent to

The telson, the rounded end just projecting beyond the ennarginattion of the segment ; the equally long outstanding outer brancls is apically acute and usually (though not in the specimen figured) rather sickle-shaped at the end.

The colour (in formalin) long retains bright orange red transverse bands, often interrupted in the middle, especially in the pleon being limited to the extent of the transverse sutures.

Length, 19.5 mm . Breadth, 9.5 mm .
Locality :-Vasco de Gama Peak S. 75° E. $13 \frac{1}{2}$ miles, at a depth of 166 fathoms.

The specific name refers to the prominence of the epistome.

Gen: Cymodoce, Leach.

1814. Cymodoci, Leach. Edinb. Encycl., vol. 7, p. 433.

18r5. Cymodice, Leach, Trans. Linn. Soc. London, vol. ir, p. 368.
1816. C fimodice Leach, Encycl. Brit., Art. Amnulosa, p. 427.

18i8. Cymodocea, Leach, Dictionnaire des Sciences Naturelles, rol. 12, P1. 3+1, 342.
£668. Cymodoca, Bate \& Westwood, Brit. Sessile-eyed Crustacea, pt. 20, vol. 2, p. 425.
1891. Cymodocir. [ves, Proc. Acad. Philad., pp 188, 194.
1893. Cymodoct, Stebbing, History of Crustacea, p. 362.

Leach, not content with using three different forms of the name of this genus, in the Limean Transactions misquotes the earliest form of it as Crmodyce.

> (「MODOCE UNCINATA, 11. Sp.

PidTE 1 \&.

The head and pereon have no very striking peculiarities, but the tip-tilted pleon is characteristic. In large specimens its surface is rougher than that of the rest of the body, as if covered with minnte hexagonal crystals. Its first division extends laterally beyond the side-plates of the seventh peræon segment. having the boundary line of its own first segment almost concraled. Of the three followino centrally coalesced segments the first is the broadest, and has the longest lateral margin, but does notoverlap theothers; the last has two conspicuous submedian tecth projecting over its hind margin. The telsonic segment carriestwo large, somewhat carinate, submedian bosses, beyond which it is depressed and narrows rapidly to the trifid apex, the contre piece of which is faintly trilobed and carries on its upper surface a reverted lobe or tooth, forming the hook to which the specific name refers.

The eyes are dari, with numerous components, the margin turned towards the side of the head nearly straight, that towards the madle of the head being angularly convex.

The antemee are normal, the flagellum of the first pair compused of eighteen joints, that of the second stonter and a little longer, with fourteen joints; in this pair the fith joint of the peduncle is a little longer than the fourth.

The epistome is much broader than long, the apex pointed. The upper lip is rather deep, with broadly rounded outer margin. The mandibles have the characters usual in this genus, the joints subequal. In the first maxillæ eleven spines were counted conting edge undivided, the palp slight, with its first and second on the outer plate, the inner having the usual four plumose setæ. In the plate of the maxillipeds the greatest bradth is in the upper half.
The first gnathopods. like all the other limbs, have at spine outstanding from the lower apex of the outer margin of the third joint. Uwing to the chamelling of this joint its outer apex seems to lose its apical position. The fourth joint has five stout and more or less plumose spines on the inner margin, the triangular fifth has four and the sixth has six.
The second gnathopods are considerably hinger than the first, and closely resemble the five pairs of pereopods, all having the fifth joint similar to the fourth but shorier, both being spinose along the inner margin and on the cuter apex. The sistl joint has spines a ong the inner margin. The b.fid finger is stout. The male urgans on the seventh pereon segment are clongate, tapering.

The pleopods have only three hooked spines on immer apex of peduncle. The male appendage of the second pair is much longer than the rami. In the fourth and fifth pairs the branchial ramus is strongly plicated. The covering ramus in the fifth has a transverse suture as in the third and fourth pairs.
The uropods are broad, somewhat hirsute, the movable onter ramus having a little noteh at the apex of its onter margin, which is often obscured by the setules; it reaches a little beyond the nner ranus and the telson.
Length of specimen figured, in slighty bent position, 12.5 mm ., breadth, 6.5 mm .
Tocalities:-Table liay, 22 lathoms. Uff linfialo Day, 30 fathoms.

1 Siny Cypronisciduc, Giard and Fomier, Tratand de Wimereux, Bopyriens, p. 221.
1893. Cypronisciaac, Stebling, History of Crustacca, p. 397.
1900. Cyproniscidac. Bonner. Travaux de Wincrenx, vol. S, p. 190.

18̊t. Cyproniscus, Kossmann, Sitzungsberichte K. Akad. Wiss. Berlin, Heft 22, p. 400.
1887. Cyproniscus, Giard and Bonmier, Travaux de Wimereux, Bopyriens, p. 220.
1803. Cyproniscus, Stebbing, History of (rustacea, 1). 397.

1Sys. Cyproniscus, Sars, Crustacea of Nornay, vol. 2, 1.232.
1900. Cyproniscns, Bonnier, Travaux de $\|$ innerens, Vol. ©, p. 191.

Sars gives the following definition of the genus:-
." Body of the adult female forming an inert eurved sate wholly filled with ova or embryos, and affixed to the host by the aid of a thin tlexible cord; dorsal face convex and exhibiting distinct traces of segmentation, ventral face tlattencd, lateral parts expanded, anterior extremity broadly produced, posterior obtusely romnded and incurved. Body of immature female sub-pyriform, bluntly truncated in front, hind extremity narrowly exserted, lateral parts not distinctly defined. Lody of young fenale, immediately after the transformation subfusiform, very faintly segmented, front part still enveloped by the larval skin, and deeply immerged within the body of the host, being anchored by a pair of long, flexuous, root-like processes. Jdult male exactly rescmbling the female larva of last stage, being rather slender, and withont eyes; hind expansion of basal joint of antennule divided mito a restricted number of teeth, coxal plates coarsely pectinate; otter ramus of uropoda much smaller than the inner. Parasitic on Ostracoda."

The single species for which the gents was lotnded, and on which the above defintion is based, was originally described by Sars in 1882 under the nams of Cryptothirla cypridinac, the specimens having been found infesting Cupridinn noricgica, Paird. So far as the material permits a decision, the new species about to be described agrees accurately with the generic definition drawn up by Professor Sars, except in one particular. In the new species the onter ramus of the mopoda is very little smaller than the inner.

In the male and last larval stage of iemate the type species shows the terminal segment with an mudivided margin. In the new species the margin is divided into teeth. This character is found also in the larval parasite of Aesa z'entrosu. M. Sars, deseribed by G. O. Sars as "Cryptoniscid No. 2" in the Crustacea of Norway, vol. 2. p. 246. pl. 100, fig. 3. Further, in Hansen's Isopoden. Cimaceen und Stomatopoden der Plankton Expedition, IS95, it appears clearly in the larve which le designates Entonistus a, Bovprus ", liopyrus\%, Boprous . That such a pectuliarity shonld be common to the parasites of Ostracoda, of Tsopoda, and of one or more higher Nalacostracan groups, is wothy of notice, as one more link comecting the numerons
specie: which in the origerous female attain the most remarkable diversities of form. Professor Sars mites in the single family Cryptoniscidae parasites which M M. Giard and Bonnier distribute among the Cryptoniscidae, Cyproniscidae, Podasconidac. and Cabiropsidac, according as they respectively infest Thyrostraca, Ostracoda, Amphipoda, or Lsopoda. The latter arrangement is confessedly provisional, and viewed in that light it may be allowed to have the considerable merit of convenience.

Crprosiscus croscophori. Stebbing.

$$
\text { PLATE } 15 \text { B. }
$$

1yor. Cypromiscus crossophori, Stebbing, Knowledge, vol. 24, p. 100.

In ovigerous female, somewhat longer than broad and slightly ansymmetrical, shows no definite division into segments. ()f lateral lobes the two or three in the centre are well defined, and from thesesutures rum both dorsally and ventrally, but without meeting in the middle either of the convex side or the flattened opposite side. Both apices are broadly rounded. The flexible cord is attaclied high up on the convex surface.

In the last larval stage the animal is somewhat fusiform, with fine strix across the back. The heat is rathernarrowly rounded in front, widening sreatly to the strongly-produced subacute postero-lateral angles, the under surface of the front showing a reflexed median point. Of the seven segments of the peraon the first is completely overlapped by the angles of the head, the sixth is the widest and slightly the longest; all have denticulate sides. The six segments of the pleon are together, about as long as the six preceding segments, and taper gradnally to the insertion of the uropods, behind which the telsomic part of the sisth segment is triangular with somewhat sinnous sides and a rather rounded apex, the whole margin being cut into fourteen teeth, or twelve, if the uppermost points are not included in the reckoning.

Eyes not perceived and probably absent, in accord with the seneric definition. First antenne adjacent on underside of head: the basal expansion hand-like, showing on the inner side a short thimb and towards the onter side fonr fingers, and besides these two others not accurately in the sanc plane, one lying on the furst finger, the other projecting between it and the thumb. The second joint is nearly as broad as long, and carries two shont branches. of which one at least is tipped with a long seta; the small third joint carries it great tuft of divergent hyaline filaments.

The second antennx are much longer, with a tapering peduncle of four joints. of which the first is much the stontest, the second considerably the longest; the slender flagellum is abont as long
as the last three joints of the pedumele, its own five joints succesively shorter, all these eight joints with a seta a-piece, the last of them with two setæ.

The first and second gnatinopods differ from the iollowing limbs by having the fifth joint mure prolonged and more strongly under-riding the hand, which is phump and oval, affording a slightly oblique palm for opposition to the short curved finger. The five pairs of percopods have the wrist or fifth joint very small, the sixth joint somewhat tapering, seemingly with a little notch or spine near the middle of the opposable margin, thought these limbs can scarcely be called subchelate. since the finger is straight, except at the extrens apex. In all the trink limbs the iong second joint is attached to a pectinate coxal plate. which is prominent in a ventral view of the animal.

Pleopods. The pedincle is short but broad, its outer part forming a narrow apex, to which the onter ramus is attached: its inner margin, at least in the first pair, carries two apically bent spines; the inner ramus is rather tlie broader, and has its distal margin armed with five long plumose setac: the onter ramms has four such seta and a spine or simple seta on the outer angle.

The uropods have a peduncle as long as broad, and as long as the inner ramus; the latter has a seta at the middle of its inner margin and four setx on the apex; the outer ramus, which is rather shorter and narrower, has also four on the aper.

The ovigerous female, with eggs not far advanced, was δ mm. long by 7 mm . broad: the larval form was 2.5 mm . in length, and rather less than three times as long as broad. Tinere were three larve in the same Ostracode with the developed female abore described, and with a well developed egg of the host, Crossophorus africamus. Tn another female of the same Ostracode a single larva of the parasite occurred.

CRUSTACEA ENTOMOSTRACA.

OSTRACODA.

Mrodocopa.
Fan.: Cririnnidide
1806. Cypridinidac, Brady and Norman, Trans. Roy̌al Dublis Soc., ser. 2, vol. 5. p. 638.
¥goo. Cypridinidac, Stebbing, MVilley's Zoological Results, Eart 5, p. 662.
Further references are given in the iast-mentioned work.
Gen.: Crossobhorus, Prady.
1880. Crossophorus: Pratly: Challenger Ostracoda, Reports, vol.
I. p. 157.
1888. Crossuphorus, 内ars, Arch. Naturv., vol. 12, p. 182.
1896. Crossophorus, Brady and Norman, Trans. R. Dublin Soc, ser. 2. vol. 5, p. 643.
Shell porcellanous, broadly rounded at hinder extremity; antennal notch owerhung by subacute rostral processes. First antenne with second joint longer than third and fourth combined; fifth joint with sensory appendage in both sexes. Second antennee with thrce-jointed secondary appendage, its third joint in the male falcate, clasping, in the female continuous with the second joint and ending in a long seta. Mandibles five-jointed. with strongly hifid hairy masticatory process on first joint, and small bisctous exupord on the second. liirst and second maxilla about as in Cypridina. Maxillipeds six-lobed, the penultimate division forming a large sub-triangular lamina continuous on the inner margin with the small apicai lobe. Apex of vermiform appendage variable, the armoned spines on these limbs numerous. Caudal lamine having stont angues interspaced with slender ones, the graduation in the length of the ungues being also discontimuons, although continuous for those of similar stoutness. except that the hindermost is shorter than the penultimate.

In his Neapolitan monocraph Dr. (r. W. Muiller dismisses this genus as insufficiently described (p. 174, 1894). But this was before the revision of it by Prady and Norman had appeared. Those authors hat the opportunity of examining a female specimen 7 mm . long, taken by the Porcupine Expedition of 1869, in the Atlantic, west of Donegal Bay, Ireland, lat. $55^{\circ} 1 \mathrm{I}^{\prime} \mathrm{N}$. . long. $\mathrm{II}^{\circ} 3 \mathrm{I}^{\prime} \mathrm{W} .$, in which the genus was originally founded was a male, 84 mm . in length, taken by the Challenger from a reputed depth of itoo fathoms, bottom temperature $35^{\circ} .6$ Fahr., a little to the East of New Zealand, lat. $40^{\circ} 28^{\prime} \mathrm{S}$., long. $177^{\circ} 43^{\prime} \mathrm{E}$. That the two specimens belong to the same gentis cannot reasonably be doubted, and, notwithstanding the enormous interval between the places of capture, Brady and Norman assign them to the same species, Crossnphoms imperator. That they are very nearly allied may be readily allowed. but their specific identity is not so clear. The Irisla specimen appears to have the antemal notel more widely open but considerably less deep than it is in the shell From the Pacific. Thi the figure of the latter it penetrates back decidedly beyond the middle of the valves toward the dorsal margin, while in the forme it scarcely reaches the middle. Distally on its front margin the mandible has a row of 12 setre in the Pacific specimen, bun only 6 in that from the Atlantic. The little apieal lobe of the maxillipeds is well marked in the Pacific specimen, hut much less rlistinct in the other. Thevermif irm appendage of the male is described as almost exactly like that of Cypridina, whereas in the female "at the extremity one lip is in
the form of a blunt tooth: the other is divided into several (six: ${ }^{\circ}$) finger-like curred processes, which are ciliated on the edges." In the caudal lamina the stout ungues are seven in number in the female specimen, but in the male they seem to be certainly less numerous, though here, unfortunately, we have to judge not from the spines themselves, but from the scars of their places of insertion. The differences mentioned have led me to give the Irish specimen a distinctive name. Crossophorus imperialis.

In discussing the large lamina in the maxillipeds of Cypridina, r_{r}. W. Miiller suggests that it represents the coalencence of two joints, and to this view the apical lobe of the lamina in Crossophorus lends probability:

> Crossophort's Ifrichive, Stebbing.

$$
\text { PLATES I5A AND } 16 .
$$

IgoI. Crosophorns africamus, Stebbing, Knowledge, vol. 2t, p. IOO.
Shell smooth, not very hard, surface diversified by oily-looking little circles; antemnal notch not widely opened, reaching to the muune of the valve, the subacute rostral process finely ciliated on its lower margin.

Of eyes, nedian ocellus, or frontal tentacle, I have not found any trace, nor is montion of them made under this genns by Brady or by lirady and Norman. The first antennæ have the first joint long and broad, the sccond narrower and not quite so long, but longer than all the remaining joints together, more than twice as long as the third, which is obliquely articulated with the much shorter fourth: the fifth has an annulated sensory seta, carrying on one side a double series of branchlets, followed after a considerable interval by some very small ones at the distal end: on the two little terminal joints there are seven, mostly very unequal, setæ, three of them very long. Drady and Norman include in their character of the genus antennules with second joint only slightly longer than the third, but their figure shows it considerably longer than the third and fourth joints combined.
the second antennze have the swimming branch divided between the long apically widened first joint and the eight following joints, of which the first is considerably the longest, the first seven each armed with one plumose seta attended by a short spine, the terminal having seven such setre; the secondary appendage in the fenale is straight, its middle joint the longest, the third tapering.

The mandibles have the strongly hirsute and sharply itwopointed masticatory process projecting from distal part of first joint, with several spines adjoining on base of second, from inner margin of which issues a long plumose seta, the outer margin
carrying about nine spines below the apex, and at the apex the small pointed exopod; the third joint is short, with two plamose setae and three or four simple seta on the imer margin; the rourth joint is long, thickly set with spines along numel of the outer and at the apex of the inner margin; the short fifth joint carries two long ungues and some straight spines.

The first maxilla have a rather broad inner plate smrmounted by numerous plumose spines or setie; within this is another plate which carries a long plumose seta on the inner margin, then narrows to a rounded apex set with munerous spines; close by the side of it is another plate, hairy on the imer margin, and distally earrying three setæ; on the outer side is the longest and broadest part of the maxilla, carrying three slender spines on a projection of its outer margin near the base and a group at the apex, with which is articulated a short terminal joint armed with several spines, some of them denticulate.
The second maxillæ have at least a hundred plimose setze fringing the great vibratory lamina; close to the apex of this is a small plate carrying two setee, then a two-jointed plate with numerous slender spines, and to this succeeds a series of five lobes variously armed, the first three having each a set of graduated spines so closely placed that from one view the largest hides all the rest ; on the lowest lobe there is a bunch of ieathered spines.

The maxillipeds have on the lowest lobe three plmmose setæ, and several shorter plumose seta or spines on the apices of the next three lobes; the large sub-triangular lamina has its convex onter margin fringed with numerous spines and long plumose setæ, of the latter the little apical lobe carrying thirteen, the six nearer the noteh considerably shorter than the distal seven.

The vermiform appendage has a head-like apex, wider than the trunk, with a brush of terminally denticulate spines on each side: the mouth is formed by a rather strong tooth over a denticulate marsin, confronting what may be called the mpper jaw, which consists of a circlet of fine denticles; the annulated trunk is armed far along with at least a hundred and fifty denticulate spines.

The caudal laminæ have twenty-five ungues a-piece, mone or less conspienously dentate; the largest of all is on the apex, a rather slighter one being planted close behind this a little on the ventral margin; the apical unguis is followed by two much more slender ungucs, then by two similar trios on a smaller scale, and finally by a stout unguis heading a procession of fourteen small gradiated spines. In advance of the furca the margin is downy for a space, and the strongly-bent part of the dorsum is transversely corrngated, the narrowness of the numerous folds or stripes prorlucing an annulated appearance.

As already noticed the shell surface of the preserved specimens does not present an uniform texture The opaque ground is everywhere beset with glossy circles in great numbers, of very different sizes, though none of them are
large. Within the valves of a dissected specimen there were found in corresponding variety crystals, singly or in laminar groups, examples of which are figured on plate 15 A. Professor S. H. Vines, F.R.S., President of the Linnean Society, having kindly undertaken to examine the shell and some of the detached crystals, writes :-
"As far as I can make out, these sphæro crystals are not soluble in boiling water, but dissolve in acetic acid with evolution of bubbles of gas which is no doubt carbon dioxide.
"The examination of the piece of carapace seems to show that, for some reason or other, the carbonate of lime has crystallised out from the chitin. The crystals from the inside of the carapace are, I am inclined to think, some of the sphæro-crystals of carbonate of lime which have got free from the carapace altogether.
"I think that this separation of the lime from the chitin must be due to the action of the preservative in which the animals have been kept, though I am unable to account for it."

In the Trans. Zool. Soc. London, vol. I6, part 4, April, 1902, Dr. G. S. Brady, F.R.S., says in regard to Cyclasterope fascigera, n. sp., "The antennal setae of this species are often much encumbered, or even glued together by crystalline calcareous concretions similar to those which I have already described and figured as occurring in Philomedes sculpta." The latter species was described by Dr. Brady in the same Transactions, vol. 14, part 8, December, 1898. Dr. Brady, after discussing the nature of the concretions is disposed "to look upon them as pathological procucts which have withdrawn the lime otherwise available for shell-formation."

Mr. W. A. Cunnington, writing from Jena, states that in his study of the common Cladoceran Simocephalus he happens "to have noticed that the shed shell (or Ecdysis) is always accompanied by a large number of minute crystals," and asks, " might it be that the calcareous salts in the shell are temporarily dissolved to facilitate ecdysis, and the mineral matter is then thrown down in the presence of the excess of water !"

That there is some connexion between the presence of the detached crystals and the animal's preparation for changing its coat, seems highly probable. But the Ostracoda must be able to shed the carapace with great ease, and the adhesive character of the crystals under discussion would be so inconvenient to the living crustaceans that it will be satisfactory if the observed conditions can be definitely attributed to the action of the preservative fluid.
Size:-The largest specimen was 15.5 mm . long by 13 mm . in height, or what may be called the breadth in a lateral view.

Another specimen measures 15 mm . by 11.25 mm . The smallest specimen was 11.25 mm . by 8.75 mm ., and in this there was a young one measuring 2.4 mm . by 1.66 mm . All the specimens appeared to be females.
The young one just mentioned exhibited the various appendages in a forward condition of development, with the exception of the vermiform limb, the presence or absence of which was not ascertained. The scoond antenne have a single simple seta attended by a spine on the apical joint, and each of the preceding jonts similarly armed.The secondary appendage is indistinctly jointed, and has a long apical seta. The antemnal notel is set far back, instead of being forward as in the adult; the ventral margins oi the values are wide apart, and dorsally the valves are open anteriorly, showing bases of the two pairs of antennæ. A much less advanced embryo from the largest specimen shows the same backward position of the antennal notcln, but the valves more nearly meeting in front. By comparison of these two examples, it may be supposed that the body at a certain stage develops more rapidly than the valves.
Locality:-Cape St. Blaize N. by E. 73 miles. Depth, 125 fathoms. Botton, sand and shells. And, Cape St. Blaize N. by E. 67 miles. Depth, $90-100$ fathoms. Bottom, rough.

Professor Chun, in his account of the Valdivia expedition, figures some giant Ostracoda from depths of the Atlantic and Indian Oceans. Some of the specimens were taken off the East African coast, but they do not agree in shape with the species above described, and are assigned to the family Halocypridæ (see Aus den Tiefen des Weltmeeres, p. 5^{1}, figures in text, I900).

ADDENDA ET CORRIGENDA IN " SOUTH AFRICAN

CRUSTACEA," PART I., 1900.

On p. 30 in the reference to "Linuparis, White, 1847," the generic name should be Limuparus. Attention was called to this by Dr. Woodward in the Geological Magazine, vol. 7, p. 394 , where, however, the error is not traced back to its source in the report on the Challenger Macrura.
P. 33. To the list of those who have used Astacus as the generic name of the lobster may be added Westwood, in the Entomologist's Text-book, p. IOI, 1836 .
P. 37. In the last line the epithet "perplexing" is quite inappropriate to the statement quoted from Huxley, and the comment upon it with which the paragraph ends on p. 38 is quite beside the purpose. The mistake arose from a confusion of the eighth somite of the body with what is sometimes called the eighth thoracic somite. As my friend Dr. W. T. Calman promptly pointed out, there is only an infinitesimal difference between Huxley's observation that the second maxilliped in the lobster is without an arthrobranchia, and the explanation by Boas that this arthrobranchia is reduced to a pimple.
P. 49. In the synonymy of AEgcon should have been included a reference to Faxon's Stalk-eyed Crustacea of the Albatross, Mem. Mus Comp. Zoöl Harvard, vol. 18, i805, where an important footnote to p. 134 discusses that genus (with the changed spelling AEgacon), and expresses the opinion that Bate's Poltocaris is to be identified with it.

Pp. 54. 55. Some modifications in the description of the first maxillæ and maxillipeds of Paridota ungulata are supplied in the account now given of the family Idoteidac.

1. 6o. It should have been mentioned that the specimen of Sphurion laevigutum was taken from a Gemppterus coppensis, locally known as the "King-Klipfish."

The plates are mumbered consecutively to those of "South African Crustacea," Part I.)

Plate 5.
Platimala tlebyner, in. sp

A. n.s. Dorsal view of a specimen, natural size. Fourth trunklimb missing on the right side, and two terminal joints of the third limb on the left.
B. oc., a.s, a.i., pal. Underside of head of another specimen showing eyes, first and second antennæ, epistome, and part of palatal floor. Magnified.
B. car. Carapace of second specimen in lateral view, left side a little raised, natural size.
B. Pl. Sternal plastron and pleon of the second specimen, natural size.

$$
\text { PLATE } 6 .
$$

Scyramathia hertwigi, Doflein.
Dorsal view of a male specimen, life size, without the right cheliped and three following feet.
C.V. Cephalon in ventral view, showing the two pairs of antemæ and one member of the third maxillipeds in situ, natural size.
fll. Dorsal view of pleon, natural size.
a.s. First antema.
m. Mandible.
$\mathrm{mx} . \mathrm{I}, \mathrm{mx} .2$. First and second maxille.
mxp. 1, 2, 3. First. second, and third maxillipeds.
Ch. Right chelipet, natural size.
The separate figures of first antenna and mouth organs are magnified two diancters.

Plate 7.

Jasus parkeri, 11. sp.
Horsal view of specimen, natural size. with second antenne truncated not far above the pechucles.

Plate 8.

Calliamassa rotundicaudata, n. sp.
n.s. Natural size of specimen, lateral view; beneath it is a dorsal view of the same specimen magnified two diameters.
a.s., a.i. First antenna, with basal joint covcred by the eye; peduncle of the second antenna.
m. Mandible.
1.i. Lower lip.
$\mathrm{mx} . \mathrm{I}, \mathrm{mx}$ 2. First and sccond maxillæ.
mxp. 1, 2, 3. First, second, and third maxillipeds.
prp. I-5. First to fifth peræopods. The larger cheliped from the right side of the specimen is on the left side of the platc, with the outer surface shown. The smaller companion cheliped is on the right side of the plate.
plp. A pleopod.
plp. r. Retinaculum of the pleopod greatly magnified, with one of the marginal setæ.
T., urp. Telson and uropods attached to their segment.

The detached antennæ and limbs of peræon and pleon are all magnified to the same scale. The month organs are magnified to a scale double of the preceding.

$$
\text { Plate } 9 .
$$

Cirolana IENUSTICAUDA, n.sp.

n.s. Natural size of the specimen which is shown in dorsal view.
T., urp. Dorsal view more highly magnified, from another specimen, extending from sixth segment of peræon to encl of telsonic segment and the 1rropods.
Pl. L. Lateral view of pleon.
a.s., a.i. First and second antennæ; distal joints of first more highly magnified.
1.s. Upper lip, with epistome and frontal lamina.
m . Nandible from the inner (upper) side ; with the cutting edge, accessory plate, and equivalent of molar, more highly magnificd.
$m x 1, m x .2, m x p$. First and second maxillæ and maxilliped: with spines and setæ of first maxilla more highly magnified.
gn. I, g11. 2. First and second gnathopods.
prp. 4. Fourth pereopod.
The mouth organs are magnified to a higher scale than the other appendages.

Plate 10.

Gryptidotea Lichtensteinil (Krauss).

n.s. Line showing natural size (length) of specimen figured at the top of the plate in dorsal view.
a.s., a.i. First and sccond antennæ, with flagellum of first more highly magnified.
1.s. Upper lip, surmounted by the epistome.
g. Part of stomach, showing the cardiac folds above and the ventral fold helow.
$\mathrm{m} . \mathrm{m}$. Mandibles, viewed from the inner side: with cutting plates, spine-row, and molar, more highly magnified.
mx. I., mx. 2. First and second maxille; with spines of the first more highly magnified, as seen from the outer and inner sides.
mxp. One of the maxillipeds.
gn. I, gn. 2, prp. 5. First and second gnathopods and fifth peræopod. A grasping spine and one of the surface spines of the first gnathopod more highly magnified.
urp. One of the uropods.
Whole specimen cnlarged two diameters: antennæ, limbs, and uropod drawn under three-inch objective, month organs minder two-inch, and more magnified details under nne-inch.

Plate if.

Exosphamoma amplifrons, n. sp.

n.s. Natural size of specimen, of which lateral view is given-
C. Head seen from front, with epistome flanked by basal joint of first antennæ, and mandibles showing below.

1'1. Dorsal view of pleon.
or. p. Oris partes, ventral view of mouth-parts in position, flanked by lateral parts of head and first pereon-segment.
a.s., a.i. First and second antenne ; the first seen from outer side.
1.s. Upper lip, summounted by epistome attached to part of head.
1.i. Lower lip.
$\mathrm{m} \cdot \mathrm{m}$. Wandibles from inner surface.
mx. 1. First maxilla.
mxp. Maxillipeds.
gn. I. First gnathoped.
prp. 5. Jifith persenpod.

Plate i2A.
ENOSDHAEROMA VALIDUM, n. sp.
n.s. Natural size of specimen represented in the adjoining figure, nearly full dorsal view.
C. Pr.s. i. Front view of head and first peraeon segment. The first antennæ, epistome, upper lip, and mandibles are shown in situ.
a.s., a.i. First and second antenna; the first seen from inner side.
l.s., l.i. Upper lip and epistome in attachment to margin of liead, and lower lip.
mxp. Maxillipeds.
gn. 1. First gnathopod.

$$
\text { Plate } 12 \mathrm{~B} .
$$

Exosphatroma setulosum, il. sp.

11.s. Length of specimen in partially bent position, as shown in lateral view.
C. Front view of head, with basal joint of first antemme in situ.

Pl. Dorsal view of pleon.
a.s., a.i. First and second antennæ; the first seen from inner side.
l.s. UTpper lip and epistome.
mxp. Jlaxillipeds.

$$
\text { PLATE I } 3 .
$$

Parasphatroma prominens, 11. g. et sp.
11.s. Natural size of specinen in dorsal view at top of plate.
a.s., a.i. First and second antennæ.
ep., 1.s. Epistome and upper lip.
mx. I, mx. 2. First and second maxillæ.

11xp. Maxilliped.
gn. I, gn. 2. First and second gnathopods.
prp. I, 5. First and fifth peræopods.
plp. 2, 5. Second and fifth pleopods.
The separate appendages magnified to the same scale, about twelve and a half diameters.

> Plate if.

Cymodoce uncinata, n. sp.
n.s. Natural size of specinen in lateral view at top of plate.

P1. D). Dorsal riew of pleon, magnified three diameters.
Pl. L. Lateral view of pleon, much more magnified.
a.s., a.i. First and second antennæ.
cp., l.s. Epistome and upper lip.
mx. I, mx. 2. First and second maxilla.
mxp. Maxilliped.
gn. 3. First gnathopod.
prp. 5. Fifth peræopod.
pen. Male organs from seventh segment of pereon.
plp. 2, 3, 5. Second, third, and fifth pleopods.
The separate appendages all drawn to the same scale. magnified about twelve and a half diameters.

$$
\text { PLATE } 15 \mathrm{~A} \text {. }
$$

Crossolmorus africanus.

app. v. and c. 1. Hind portion of a specimen with eggs, in lateral view, showing the vermiform appendage directed upward, the caudal lamina pointing downward, and above this on the right the two genital tubercles.
ov. I. Large egg, in lateral and dorsal view, from small specimen.
a.i. Second antenna from the large egg.
ov. 2. Egg from a large specimen which was infested with welldeveloped female and larvæ of Cyproniscus.
er. Crystals forming flattened layers within the valves of a large ovigerous female; many of the crystals carrying setules and plumose setre evidently stripped from the organs of the Ostracode.

All the above are much magnified representations.

$$
\text { Plate } 15 \mathrm{~B} .
$$

Cyproniscus crossophori.

n.s. Natural size of the larva, figured in dorsal view at the middle of the plate, and also natural size of the developed female, figured on the left hand below, much less highly magnified, with a larva beside it to the same scale.
C.V. Cephalon of larva in ventral view.
a.s., a-i. First and second antenna.
gn. 2. Second gnathopod, in attachment to its segment, with ventral view of first segment and part of third.
prp. 5. Fifth peræopod.
plp. i. First pleopod.
'r. urp. Telsonic segment in dorsal view, with the uropods.

89
 Plate 16.
 Crossophorus africanus.

n.s. Natural size of a specimen, left side. a.s., a.i. First and second antennæ.
nı. Mandible.
mx. I, mx. 2. First and second maxillæ. mxp. Maxilliped.
app. v. Vermiform appendage.
c.1. Caudal lamina.

I N D E X.

[Published ;ith October, 1902.]

Marine Investigations

m .
a.s.

s

g.7.
*.s.

A

B.

- F ה 5 - 000 me

N. 5

$\mathrm{m} \times \mathrm{p}$.

Pl.

 South Africa.

In

[^0]: * The authors use the expression " tigelle mobi, '' to desiguate the last Luree joints of the third maxillipeds, and also the moval,e pat of the second antennx, including stem joints and flagellam.

[^1]: ＊A comparison of this quotation from the Catalogue of rgor with the corre－ sponding passage in the Journ．Asiat．Soc．，1899，shows that the words in brackets were accidentally omitted．

[^2]: * Milne-Edwards, Hist. Nat. Crust., vol. 2, p. 163 uses the expression "Section des Décapodes Anomoures;'" Dana, U.S. Expl. Exp., Crustacea, pp. 1429, 1430, following upon Section 1, Anomoura superiora, has Section 2, Anomoura media, Section 2, Anomoura submedia, and Section 4, A nomoura inferiora; Stimpson, in part 7 of his Prodromus, Proc. Acad. Sci. Philad., 1858, at p. 65 introduces the Schizosomi as second division of the Crustacea Anomoura.

