New nematode species and genera
(Chromadorida, Microlaimidae) from the deep sea of the eastern tropical South Pacific (Peru Basin)

C. Bussau* & K. Vopel**

Abstract
Six new nematode species are described from the sediment of a manganese nodule area of the abyssal eastern South Pacific: Aponema nympha sp.n., Caligocanna mirabilis gen. n. sp.n., Microlaimus discolensis sp.n., M. clancularius sp.n., M. porosus sp.n., and Bathynox clavata gen.n. sp.n.. The new genera Caligocanna and Bathynox are considered to belong to the Microlaimidae MICOLETZKY, 1922. The genus Caligocanna gen.n. differs from all other genera of the family Microlaimidae in combining the following characters: The six cephalic setae of the second circlet longer than the four cephalic setae of the third circlet. Annullated cuticle; annules with numerous longitudinal bars. Monospiral amphids turn ventrally. The genus Bathynox gen.n. differs from all other genera of the family Microlaimidae in having projecting, club-shaped corpora gelata and somatic setae positioned on peduncles.

Key words: Nematoda, Chromadorida, Microlaimidae, new genus, new species, deep sea, South Pacific Ocean.

Introduction
This paper based on material taken from the abyssal eastern South Pacific in February 1989. At that time a DISturbance and reCOlonisation experiment (DISCOL) was started in the vicinity of a German nodule-mining claim in the Peru Basin, 600 km south of the Galapagos Islands and more than 800 km off the South American continent (THIEL & SCHRIEVER 1990). The major purpose of DISCOL was to study the reaction of benthic organisms to physical seafloor disturbances. Faunistic analyses revealed that the nematode community was dominated by species belonging to the families Chromadoridae,
Desmoscoleidae, Diplopeltidae, Microlaimidae Oxystominidae, Xyalidae, and Monhysteridae, which contribute about 80% to total nematode abundance; Microlaimidae alone makes up 6-10% (Busau 1993, Vopec & Thiel 1999). The total number of nematode species at the study site was estimated at about 300 (Busau 1995), of which 137 were described in the doctoral dissertation of Busau (1993). However, most of these descriptions have not been published. Here we present six new microlaimid species, two of them being accommodated in new genera.

Material and Methods

Sediment samples were obtained from multiple-corer deployments from the DISCOL Experimental Area (DEA) in February and March 1989 (Tab. 1). The DEA is a 3754 m diameter circle having an area of 10.8 km² and centered upon 07°04'4" S, 88°27'6" W (Peru Basin) at a water depth of 4100-4200 m. Between 5 to 30% of the bottom at this site was covered with mammillated, botryoidal nodules (cauliflower type) exceeding 10 cm in diameter. Detailed descriptions of the site may be found in Thiel & Schriever (1990) and Borowski & Thiel (1998). The sediment consisted of a 5-10 cm thick surface layer of semi-liquid dark brown ooze with underlying compact, whitish clay. Meiofauna samples were collected with a multiple corer. Each core (71 cm³) was subdivided into 4 slices with a thickness of 1 or 2 cm (0-1, 1-2, 2-4, 4-6 cm). Samples were preserved in 4 % formaldehyde-seawater solution. From these samples, 10 cm³ subsamples were taken for taxonomic analyses, the material washed on a 40 µm mesh size sieve, and the remaining material stained with Rose Bengal. Nematodes were isolated under a stereomicroscope and transferred into a mixture of 3 % glycerin and 97 % distilled water. The fluid in the vessels evaporated at room temperature in a desiccator. Thereafter the nematodes remained in anhydrous glycerin and the specimens were placed onto slides for identification and description. Drawings were made with the aid of a drawing tube on a microscope with interference contrast equipment. All measurements are in micrometers; curved structures are measured along the median line. The classification of Microlaimus de Man, 1880 is: Order Chromadorida, suborder Chromadorina, family Microlaimidae (Lorenzen 1981). The holotypes and paratypes are deposited in the collection of the Natural History Museum Vienna.

Tab. 1: Stations in the experimental area.

<table>
<thead>
<tr>
<th>station</th>
<th>date</th>
<th>position</th>
<th>water depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC 184</td>
<td>02/09/1989</td>
<td>07°05.04'S - 88°26.66'W</td>
<td>4174 m</td>
</tr>
<tr>
<td>MC 185</td>
<td>02/10/1989</td>
<td>07°04.39'S - 88°27.45'W</td>
<td>4157 m</td>
</tr>
<tr>
<td>MC 186</td>
<td>02/11/1989</td>
<td>07°04.42'S - 88°27.86'W</td>
<td>4136 m</td>
</tr>
<tr>
<td>MC 187</td>
<td>02/13/1989</td>
<td>07°03.91'S - 88°28.07'W</td>
<td>4132 m</td>
</tr>
<tr>
<td>MC 189</td>
<td>02/14/1989</td>
<td>07°03.39'S - 88°27.69'W</td>
<td>4146 m</td>
</tr>
<tr>
<td>MC 193</td>
<td>02/18/1989</td>
<td>07°04.39'S - 88°27.86'W</td>
<td>4147 m</td>
</tr>
<tr>
<td>MC 194</td>
<td>02/18/1989</td>
<td>07°04.44'S - 88°27.92'W</td>
<td>4138 m</td>
</tr>
<tr>
<td>MC 195</td>
<td>02/19/1989</td>
<td>07°01.52'S - 88°27.56'W</td>
<td>4178 m</td>
</tr>
<tr>
<td>MC 197</td>
<td>02/19/1989</td>
<td>07°01.31'S - 88°27.53'W</td>
<td>4180 m</td>
</tr>
<tr>
<td>MC 198</td>
<td>02/19/1989</td>
<td>07°04.22'S - 88°27.46'W</td>
<td>4168 m</td>
</tr>
<tr>
<td>MC 200</td>
<td>03/20/1989</td>
<td>07°05.10'S - 88°27.04'W</td>
<td>4169 m</td>
</tr>
<tr>
<td>MC 201</td>
<td>03/20/1989</td>
<td>07°05.20'S - 88°27.20'W</td>
<td>4170 m</td>
</tr>
</tbody>
</table>
Family Microlaimidae Micoletzky, 1922

Genus Aponema Jensen, 1978

Aponema nympha sp.n.
(Figs 1-6)

Type material: Holotype: *d*₁ (NHMW-EV 3836). Paratypes: *d*₂ (NHMW-EV 3837), *d*₃ (NHMW-EV 3840), *f*₁ (NHMW-EV 3839), *f*₂ (NHMW-EV 3838).

Type locality: Abyssal eastern tropical South Pacific Ocean (Peru Basin), top sediment layer (0-1 cm); *d*₁, *d*₂, *f*₂, MC 184; *d*₃, *f*₁, MC 186 (Tab. 1).

Etymology: *Nympha*, Gr. = bride.

Measurements:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>16/17</th>
<th>M</th>
<th>380</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁:</td>
<td>-</td>
<td>75</td>
<td>M</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>445 µm; a = 26.2; b = 5.9; c = 6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>16/17</th>
<th>M</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₂:</td>
<td>-</td>
<td>80</td>
<td>M</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>430 µm; a = 25.3; b = 5.4; c = 6.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>16/17</th>
<th>M</th>
<th>388</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₃:</td>
<td>-</td>
<td>75</td>
<td>M</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>445 µm; a = 27.8; b = 5.9; c = 7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>16/17</th>
<th>189</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>f₁:</td>
<td>-</td>
<td>78/22</td>
<td>M</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>420 µm; a = 19.1; b = 5.4; c = 7.6; V = 45.0 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>17/20</th>
<th>M</th>
<th>375</th>
</tr>
</thead>
<tbody>
<tr>
<td>f₂:</td>
<td>-</td>
<td>78/195</td>
<td>M</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>440 µm; a = 22.0; b = 5.6; c = 6.8; V = 44.3 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Holotype (*d*₁): Cuticle 0.5 µm thick at mid-body and weakly annulated with 0.5 µm wide annules. Numerous sublateral somatic setae (1-1.5 µm length). On the left body side 23 ventro-sublateral and 18 dorso-sublateral setae discernible. First circlet of sensilla on lips not observed. Six small cephalic papillae (second circlet) at anterior tip of head. The four cephalic setae of the third circlet (1.5 µm long) positioned 3 µm behind the anterior end. Amphids 6 µm wide. Their anterior margins located 3 µm posterior to the head tip. The corpus gelatum protrudes slightly from the aperture. Small, unarmred, funnel-shaped buccal cavity. Pharynx posteriorly enlarged to a muscular bulb with sclerotised internal lining. Valve structures of pharyngeal bulb transversely divided into two parts. Nerve ring at 60 % of pharynx length. Cervical gland, porus and cardia not observed. The single, anterior, outstretched testis positioned on right side of intestine. Curved spicules 20 µm long. Gubernaculum with two dorsally oriented apophyses. Preclcloacal supplements not observed. Tail length five times body diameter at anus. Caudal glands open to exterior through a common duct.

Paratypes. Paratypes resemble holotype in most respects. Males (*d*₂, *d*₃): Monospiral amphids of *d*₃ (7 µm diameter) turn ventrally, the corpus gelatum does not protrude. Amphids of *d*₂ 6 µm in diameter with slightly protruded corpora gelata. One anterior, outstretched testis on the left side (*d*₂) or ventral (*d*₃) to the intestine. Females (*f*₁, *f*₂) with monospiral amphids (4 µm diameter) turning ventrally; the corpus gelatum does not protrude. Two outstretched ovaries, the anterior on the left, the posterior on the right side of the intestine.

Diagnosis: *Aponema nympha* sp.n. differs from the two *Aponema*-species, *A. papillatum* Pastor, 1980 and *A. torosus* (Lorenzen, 1973), by the combination of the following...
Figs. 1-6: *Aponema nympha* sp.n.. Head (1), habitus (2), and copulatory apparatus (3) of σ_1; amphid of σ_3 (4); head of φ_1 (5); habitus of φ_1 (6).
characters: small body size, amphids close to the anterior end, morphology of the copulatory apparatus. A sexual dimorphism in the diameter of the amphids seems to be present; the males have larger amphids, the females small ones.

Genus Caligocanna gen.n.

Generic diagnoses: Microlaimidae. The six cephalic setae of the second circlet longer than the four cephalic setae of the third circlet. Cuticle annulated, each ring with numerous longitudinal bars. Labial papillae of the first circlet not observed. Monospiral amphids turn ventrally. Vestibule bears 12 cuticularised ribs. Buccal cavity armed with four teeth. Pharynx posteriorly enlarged to a muscular bulb. Males with two opposed, outstretched testes; females with two outstretched ovaries. Caudal glands open to exterior through a common terminal duct. Males, females, and juveniles are assumed to build sediment tubes.

Etymology: *Caligo*, Lat. = darkness; *canna*, Lat. = tube. The name refers to life in darkness and the assumed tube-building ability.

Type species: *Caligocanna mirabilis* sp.n.

Caligocanna mirabilis sp.n.

(Figs 7-13)

Type material: Holotype: δ_1 (NHMW-EV 3841). Paratypes: δ_2 (NHMW-EV 3842), φ_1 (NHMW-EV 3843), φ_2 (NHMW-EV 3844), φ_3 (NHMW-EV 3845), φ_4 (NHMW-EV 3846), juv.-1 (NHMW-EV 3847), juv.-2 (NHMW-EV 3848).

Type locality: Abyssal eastern tropical South Pacific (Peru Basin), top sediment layer (0-1 cm); δ_1 (holotype) MC 198; δ_2 MC 185; φ_1, φ_2, φ_3, φ_4, MC 184; juv.-1, MC 197; juv.-2 MC 194 (Tab. 1).

Etymology: *Mirabilis*, Lat. = wonderful.

Measurements:

<table>
<thead>
<tr>
<th>δ_1</th>
<th>δ_2</th>
<th>φ_1</th>
<th>φ_2</th>
<th>φ_3</th>
<th>φ_4</th>
<th>juv.-1</th>
<th>juv.-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>24</td>
<td>25</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>25</td>
<td>25</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 98</td>
<td>M 375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>32</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 108</td>
<td>258</td>
<td>367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td>32</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 95</td>
<td>220</td>
<td>332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>27</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 100</td>
<td>255</td>
<td>395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>30</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 74</td>
<td>M 173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>24</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

360 μm; $a = 14.4; b = 4.2; c = 6.0$

450 μm; $a = 18.0; b = 4.6; c = 6.0$

425 μm; $a = 13.3; b = 4.1; c = 5.9; V = 56.5 \%$

435 μm; $a = 13.6; b = 4.0; c = 6.4; V = 59.3 \%$

395 μm; $a = 14.6; b = 4.2; c = 6.3; V = 55.7 \%$

$>430 \mu$m; end of tail covered with sediment

215 μm; $a = 12.6; b = 2.9; c = 5.1$

305 μm; $a = 12.7; b = 3.5; c = 6.1$
Figs. 7-13: *Caligocanna mirabilis* gen.n. sp.n.. Head (7) and habitus (8) of φ₁; habitus of φ₂ (9); Habitus φ₁ (10); habitus of juv₂ (11), φ₂ (12), and φ₄ (13) embedded in sediment agglutinations.
Description: Holotype (σ_1): Cuticle 1 µm thick at mid-body and annulated with 1.5 µm wide annules. Each ring with numerous longitudinal bars. Head not annulated. Only few sublateral somatic papillae (1 µm long), each deriving from a cuticle pore. Lateral epidermal cords 10 µm wide at mid-body region. Labial papillae (first circlet) not observed. Six cephalic setae (second circlet) 2 µm long, positioned 2 µm behind tip of head. The four cephalic setae of third circlet (1 µm long) 6 µm behind anterior end. Monospiral amphids (7 µm diameter) turn ventrally. Anterior margins of amphids located 4 µm behind anterior end. Vestibule bears 12 cuticularised ribs. Buccal cavity sclerotised and armed with 2 large teeth in anterior and 2 small teeth in posterior compartment. Exact position of teeth not recognisable. Pharynx posteriorly enlarged to a muscular bulb. Cardia small and inconspicuous. Cervical gland, porus and nerve ring not observed. Two opposed, outstretched testes right and ventrally of intestine. Sperm cells large (30 x 15 µm); their surface covered with small papillae. Curved spicules slightly sclerotised and 17 µm long. An inconspicuous gubernaculum adjacent to the spicules. Tail length 3 times body diameter at anus. Caudal glands open to exterior through a common duct.

Paratypes. Paratypes resemble holotype in most respects. Male (σ_2): Two opposed, outstretched testes; the anterior on left side, the posterior on right side of intestine. Spicules 23 µm long, gubernaculum measures 10 µm. Females (φ_1, φ_2, φ_3, φ_4): Nerve ring of φ_1 at 61 % of pharynx length. Two outstretched ovaries ventral to intestine. Subventral of the posterior end of pharynx, two (φ_1) or four (φ_2) fluid-spheres (which resemble the „pigment bodies“ of Desmoscolex). Juveniles (juv_1, juv_2) similar to the adults in most respects. Male (σ_2), female φ_4 and juvenile (juv_2) embedded in a sediment agglutination.

Diagnosis: With the exception of Spirobolbolaimus bathyalis SOETAERT & VINCK, 1988 and S. boucherorum GOURBAULT & VINCK, 1990, all species of the Microlaimidae possess six cephalic setae in the second circle which are shorter than or approximately as long as the four cephalic setae of the third circle. In Caligocanna mirabilis gen.n. sp.n. and the above-mentioned species the setae of the second circlet are longer than those of the third circlet. C. mirabilis gen.n. sp.n. differs from S. bathyalis and S. boucherorum in lacking postamphidial setae and having monospiral amphids. Within the Microlaimidae an annulated cuticle with longitudinal bars has previously only been known from Bolbolaimus teutonicus (RIEMANN, 1967), Cinctonema polare (COBB, 1914), Microlaimus annelisae JENSEN, 1976 and M. ostracion STEKHOVEN, 1935. In these species the cephalic setae of the third circlet are much longer than those of the second circlet. The presence of six long and four short cephalic setae and of an annulated cuticle with longitudinal bars sets the new genus Caligocanna apart from all other genera of the Microlaimidae.

Genus Microlaimus DE MAN, 1880

Microlaimus discolensis sp.n.

(Figs 14-24)

Type material: Holotype: σ_1 (NHMW-EV 3849). Paratypes: σ_2 (NHMW-EV 3850), φ_1 (NHMW-EV 3851), φ_2 (NHMW-EV 3852), juv, (NHMW-EV 3853).

Type locality: Abyssal eastern tropical South Pacific (Peru Basin), top sediment layer (0-1 cm); σ_1, σ_2, MC 197; φ_1, MC 189; φ_2, MC 186; juv, MC 193 (Tab. 1).

Etymology: The name refers to the „DISCOL“-area.
Figs. 14-24: *Microlaimus discolensis* sp.n.. Habitus (14) and head (15) of δ_1; buccal cavity of φ_2 (16); epidermal gland and pore of δ_1 (17) and φ_1 (18); sperm cells of young ($19, \delta_1$), medium (20, δ_2), and old (21, δ_2) developing stage; copulatory apparatus of δ_1 (22); vulvar region of φ_1 (23); sperm cell inside the reproductive organs of φ_1 (24).
Measurements:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>M</th>
<th>507</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁</td>
<td>85</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>29</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>d₂</td>
<td>75</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>?</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td>310</td>
<td>90</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>q₂</td>
<td>442</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>29</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>juv.₁</td>
<td>253</td>
<td>72</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

560 µm; a = 18.7; b = 6.6; c = 10.6

425 µm; a = 15.2; b = ?; c = 8.5

565 µm; a = 15.3; b = 6.3; c = 10.7; V = 54.9 %

505 µm; a = 16.8; b = 5.4; c = 8.0; V = 58.0 %

305 µm; a = 13.9; b = 4.2; c = 5.9

Description: Holotype (d₁): Specimen curved and partly covered with sediment at the head- and tail-region. Annulated cuticle 2 µm thick at mid-body region; rings 1 µm wide. Somatic setae absent. Numerous cuticular pores (2 µm diameter); on right body side 35 subdorsal and 15 subventral pores discernible. Conspicuous glandular structures located beneath each pore. Labial papillae (first circlet) not visible. The six cephalic setae (second circlet, 9 µm long) positioned 4 µm behind anterior tip of head. The four cephalic setae of third circlet (8 µm long) situated 7 µm behind anterior end. Monospiral amphids turn ventrally (9 µm diameter); their anterior margins located 13 µm behind tip of the head. Vestibule bears 12 cuticularised ribs. Buccal cavity armed with 3 teeth (one dorsal, two subventral). Pharynx provided with a muscular terminal bulb. Cervical gland ventrally, close behind the pharyngeal bulb. Porus, nerve ring and cardia not observed. Males with two opposed, outstretched testes – the anterior to right, the posterior to left side of intestine. Reproductive organs contain sperm of different stages of maturity. Spicula curved and 28 µm long. Gubernaculum 11 µm long. V-shaped, distally unpaired and proximally paired and free from the spicules. Tail length 2.4 times body diameter at anus. The caudal glands open to the exterior through a common duct.

Paratypes (d₂, q₁, q₂, juv.₁): Paratypes resemble holotype in most respects. All paratypes curved. Conspicuous glands with cuticular pores. Females with two outstretched ovaries positioned ventral to intestines. Numerous sperm in female reproductive system.

Microlaimus porosus sp.n.
(Figs 25-27)

Type material: Holotype: d₁ (NHMW-EV 3854). Paratypes: q₁ (NHMW-EV 3855), q₂ (NHMW-EV 3856), juv.₁ (NHMW-EV 3857), juv.₂ (NHMW-EV 3858).

Type locality: Abyssal eastern tropical South Pacific (Peru Basin), top sediment layer (0-1 cm); d₁, MC 195; q₁, juv.₁, MC 198; q₂, MC 187; juv.₂ MC 197 (Tab. 1).

Etymology: Poros, Gr. = pore.

Measurements:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>M</th>
<th>309</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁</td>
<td>77</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td>200</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

380 µm; a = 21.1; b = 4.9; c = 5.4

435 µm; a = 19.8; b = 5.1; c = 5.2; V = 46.0 %
Figs. 25-30: *Microlaimus porosus* sp.n. (25-27); habitus (25) and head (26) of φ_1; copulatory apparatus of σ_1 (27). *Microlaimus clancularius* sp.n. (28-30); habitus (28) copulatory apparatus (29) and head of σ_1 (30); the body of σ_1 is embedded in a sediment agglutination.
Microlaimus clancularius sp.n.

(Figs 28-30)

Type material: Holotype: δ₁ (NHMW-EV 3859). Paratype: δ₂ (NHMW-EV 3860).

Type locality: Abyssal eastern tropical South Pacific (Peru Basin), top sediment layer (0-1 cm); δ₁, δ₂, MC 195 (Tab. 1).

Etymology: Clanculum, Lat. = secret.

Measurements:

<table>
<thead>
<tr>
<th>δ₁</th>
<th>112</th>
<th>M</th>
<th>560</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>26</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ₂</th>
<th>103</th>
<th>M</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>26</td>
<td>29</td>
<td>23</td>
</tr>
</tbody>
</table>

Description: Holotype (δ₁): Male curved and embedded in a sediment agglutination. Annulated cuticle 1.5 µm thick at mid-body region; rings 1.5 µm wide. Only few sublateral pores (1 µm diameter) of epidermal glands discernible. Head not annulated and 11 µm long. Labial sensilla (first circket) and somatic setae not observed. The six cephalic setae of the second circket (2 µm long) positioned 3 µm behind anterior end. The four cephalic setae of the third circket (5 µm long) 10 µm behind anterior end. Monospiral

Paratypes (q₁, q₂, juv₁, juv₂): Paratypes resemble holotype in most respects. Females with two outstretched ovaries, the anterior to the left, the posterior to the right of intestine. Amphids of q₂ measure 5 µm in diameter. Their anterior margins positioned 19 µm behind anterior tip of head.

Microlaimus clancularius sp.n.

(Figs 28-30)

Type material: Holotype: δ₁ (NHMW-EV 3859). Paratype: δ₂ (NHMW-EV 3860).

Type locality: Abyssal eastern tropical South Pacific (Peru Basin), top sediment layer (0-1 cm); δ₁, δ₂, MC 195 (Tab. 1).

Etymology: Clanculum, Lat. = secret.

Measurements:

<table>
<thead>
<tr>
<th>δ₁</th>
<th>112</th>
<th>M</th>
<th>560</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>26</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ₂</th>
<th>103</th>
<th>M</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>26</td>
<td>29</td>
<td>23</td>
</tr>
</tbody>
</table>

Description: Holotype (δ₁): Male curved and embedded in a sediment agglutination. Annulated cuticle 1.5 µm thick at mid-body region; rings 1.5 µm wide. Only few sublateral pores (1 µm diameter) of epidermal glands discernible. Head not annulated and 11 µm long. Labial sensilla (first circket) and somatic setae not observed. The six cephalic setae of the second circket (2 µm long) positioned 3 µm behind anterior end. The four cephalic setae of the third circket (5 µm long) 10 µm behind anterior end. Monospiral
amphids turn ventrally (6 µm wide, 4.5 µm long). The anterior margins of the amphids located 17 µm behind anterior tip of head. Buccal cavity armed with three teeth (one dorsal, two subventral). Pharynx posteriorly enlarged to a muscular bulb. Nerve ring at 56 % of pharynx length. Cervical gland ventrally, closely behind pharyngeal bulb. Its porus not observed. Cardia 10 µm long and 8 µm wide. Two opposed, outstretched testes, the anterior one to the left side, the posterior one to the right side of intestine. Curved spicula 50 µm long. X-shaped gubernaculum (one unpaired median piece with a pair of dorsal and ventral projections each) 30 µm long surrounding distal parts of spicules. Tail length 3.5 times body diameter at anus. Caudal glands open to exterior through a common duct.

Paratype (♂₂): Paratype resemble holotype in most respects. Male contracted and embedded in a sediment agglutination. Two opposed, outstretched testes, the anterior one on the left side, the posterior on the right side of intestine.

Discussion and diagnosis: Epidermal glands which open through pores or hollow setae have been described for many Adenophorea (CHITWOOD & CHITWOOD 1950, MAGGENTI 1964, 1981, DE CONINCK 1965, BIRD 1971, LIPPENS 1974, McLAREN 1976a, b, LORENZEN 1977, 1981, BUSSAU 1995). Setae connected with glands are common in Draconematidae, Epsilonematidae and Desmoscolecidae (NEBELSICK & al. 1992). In the Stilbonematinae, both pores (Leptonemella cincta COBB, 1920, and Catanema porosum HOPPER & CEFALU, 1973) and somatic setae (COBB 1920, INGLIS 1967, HOPPER & CEFALU 1973) were observed. Three ultrastructural investigations have dealt with the fine structure of complex epidermal glands in free-living nematodes: LIPPENS (1974) and NEBELSICK & al. (1992, 1995). The multicellular glandular sensory organs in Stilbonematinae terminate in setae. They are distributed in longitudinal rows along the body and most probably resemble the glandular structures in Microlaimus discolensis sp.n.. Epidermal glands are observed in Microlaimus cyatholaimoides DE MAN, 1922, but those are associated with short somatic setae and do not terminate in large pores (DE MAN 1922, HOPPER & MEYERS 1967). As far as we know, large cuticle pores have previously not been known within the genus Microlaimus.

Microlaimus discolensis sp.n. differs from all other microlaimid species in having numerous large cuticular pores (and epidermal glands), long cephalic setae in the second and third circlot of approximately equal length. Microlaimus porosus sp.n. differs from other species of the genus Microlaimus and from Calomicrolaimus acanthus (JAYASREE & WARWICK, 1977) and C. parahonestus (GERLACH, 1950) in combining the characters: large, conspicuous cuticular pores and the position and size of sensory projections. In M. clancularius sp.n. and M. discolensis sp.n. the cephalic setae of the second and third circlot are longer than those of M. porosus sp.n.. M. clancularius differs from C. acanthus and C. parahonestus in the arrangement and size of the cephalic organs. Microlaimus africanensis (FURSTENBERG & VINCX, 1992) is more than 3 times longer than M. clancularius.

Genus Bathynox gen.n.

Generic diagnosis: Microlaimidae. Amphids far behind anterior tip of head. Amphids possess a very small aperture. Club-shaped, projecting corpus gelatum, with constant
length and solid outer wall. Somatic setae on peduncles. Cuticle annulated. Labial papillae of the first circlot not observed. The second circlot with six short cephalic setae and the third circlot with four long cephalic setae widely spaced. Buccal cavity armed with one dorsal tooth and one or two subventral teeth. Male with one anterior outstretched testis, females with two outstretched ovaries. Caudal glands open to exterior through a common duct.

Type species: *Bathynox clavata* sp.n..

Etymology: *Bathos*, Gr. = abyss; *nox*, Lat. = darkness.

Bathynox clavata sp.n.
(Figs 31-37)

Type material: Holotype: d, (NHMW-EV 3861). Paratypes: q, (NHMW-EV 3862), q (NHMW-EV 3863), juv, (NHMW-EV 3864).

Type locality: Abyssal eastern tropical South Pacific (Peru Basin), top sediment layer (0-1 cm); d, MC 200; q, MC 198; q*, MC 194; juv, MC 201 (Tab. 1).

Etymology: *Clava*, Lat. = club.

Measurements:

<table>
<thead>
<tr>
<th></th>
<th>q1</th>
<th>q2</th>
<th>juv,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>115</td>
<td>117</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>100</td>
<td>230</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>350</td>
<td>478</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

405 µm; a = 20.3; b = 3.5; c = 7.4

430 µm; a = 14.8; b = 4.3; c = 7.2; V = 53.5 %

555 µm; a = 15.9; b = 4.7; c = 7.2; V = 52.8 %

400 µm; a = 18.2; b = 3.8; c = 7.3

Description: Holotype (q1): Posterior region of body covered with fine sediment particles. Faintly annulated cuticle 1 µm thick at the mid-body region; rings 0.3 µm wide. Somatic setae of the cervical region derive from pores, those of the remaining body (5 µm long) from peduncles measuring 1 µm in height. Head 8 µm long and not annulated. No sensilla observed on lips. The six cephalic setae (second circlot, 2 µm long) positioned 2 µm behind anterior end. The four cephalic setae of the third circlot (3 µm long) positioned 8 µm behind anterior end. Club-shaped corpus gelatum (29 µm long, up to 7 µm thick) projects 58 µm behind anterior end and possesses a solid outer wall. Buccal cavity funnel-shaped, slightly cuticularised and armed with a small dorsal tooth and one or two small subventral teeth. Pharynx posterior enlarged to a muscular bulb. Nerve ring, cardia, cervical gland and its porus not observed. One anterior outstretched testis on left side of intestine. Spicula 22 µm long. Gubernaculum measured 10 µm. Two lateral accessory pieces (6 µm long). Precloacal supplements absent. Tail length 3.7 times body diameter at anus. Caudal glands open to exterior through a common duct.

Paratypes (q1, q2, juv,): Paratypes resemble holotype in most respects. Females with two outstretched ovaries positioned to the left of the intestine.
Figs. 31-33: *Bathynox clavata* gen.n. sp.n. Anterior body (31) and copulatory apparatus (32) of σ; habitus of φ_1 (33).
Figs. 34-37: *Bathynox clavata* gen. n. sp.n., Anterior body of φ₁ (34); Anterior body (35); somatic seta (36) and tail (37) of juv₁.
Diagnosis: Within Microlaimidae rod-shaped corpora gelata are known from Calomicro-
laimuspecticaudaMURPHY, 1966, C. rugatusLORENZEN, 1976, Ixonema sordidum
LORENZEN, 1971 and Microlaimus ostracionSTEHOVEN, 1935. A gelatinous, rod-
shaped corpus gelatum apparently consists of a large amount of secretion which is
produced by the amphidial gland and penetrates through the apertura (RIEMANN & al.
1970, LORENZEN 1976). The amphidial secretions of the new genus Bathynox, however,
project in a club-like manner as is known from many species of Desmoscolecoidea.
There are two obvious differences between a rod-shaped and a club-shaped corpus gelatum:
1) The diameter of its distal part is much thicker than that of the apertura. 2) Both clubs
are of the same length. In contrast, rod and apertura possess diameters of equal size and
there is much variation in the length of the rods. The amphids of I. sordidum and C.
rugatus are located far behind the anterior end and the apertura is very small. The new
genus Bathynox differs from these two species by the position of setae on peduncles.
This character occurs in Desmoscolecoidea and Peresianidae. The presence of only one
anterior, outstretched testis is common only in Aponema JENSEN, 1978 and Bathynox
gen.n.. The new genus Bathynox can be differentiated from all other genera of the
Microlaimidae by its amphids, which are located far behind the anterior end, the very
small apertura, club-shaped corpora gelata, and somatic setae positioned on peduncles.

Acknowledgements
We especially wish to thank Dr. F. Riemann, Dr. M. Stachowitsch and the anonymous referees for valuable
comments on the manuscript. The work was funded by the German Federal Ministry of Education, Science,
Research and Technology under the project ECOBENT (03 G 106 A). This is Alfred Wegener Institute
Publication No. 1591.

References
BAUER-NEBELSICK, M., BLUMER, M., URBANCIK, W. & OTT', J. 1995: The glandular sensory organ
of Desmodoridae (Nematoda) – ultrastructure and phylogenetic implications. –
BOROWSKI, C. & THIEL, H. 1998: Deep-sea macrofaunal impacts of a large-scale physical distur-
BUSSAU, C. 1993: Taxonomische und ökologische Untersuchungen an Nematoden des Peru-
BUSSAU, C. 1995: New deep-sea nematoda (Enoplida, Thoracostomopsidae, Oncholaimidae,
Enchelidiidae) from a manganese nodule area of the eastern South Pacific. – Zoologica
BUSSAU, C., SCHRIEVER, G, & THIEL, H. 1995: Evaluation of abyssal metazoan meiofauna from
CHITWOOD, B.G. & CHITWOOD, M.B. 1950: Introduction to nematology. – University Park Press,
Furstenberg, J.P. & Vincx, M. 1992: Two new species of the family Microlaimidae (Nematoda: order Chromadorida) from South Africa. – Cahiers de Biologie Marine 33: 245-251

