Dear Amphipodologists,

We hope this newsletter finds of you safe and healthy. The time since many of us last met in Dijon for a wonderful week of amphipodology has been difficult and heartbreaking. Many of us have also been sent into isolation and “home-officing”, and the daily contact with our colleagues is now more than ever depending on emails and electronic platforms for contact. Conferences and meetings are rapidly being moved to electronic platforms or postponed, the latter being the case for our beloved ICA, see more about that on page 64.

We are happy to see that the facebook group is active, and our bibliography might give indication that, for some of us, the time away from the lab has brought about the possibility to focus on writing. Writing publications is not an easy task when combined with homeschooling or care for family-members and neighbours “locked up” in their homes, and we are very impressed with the 397 publications the bibliography presents. Also, make sure to check out the last page for a new feature: “the old photo”. We hope this will bring happy memories to some, and pleasure to all.

2020 has also seen the debate of scientific recognition (in the form of impact factor) for one of the journals several of our taxonomy-oriented colleagues are using - Zootaxa. After a month of not being considered for IF, we are happy the journal again is “counted”.

We have lost our cherished fellow amphipodologists Jean-Claude Sorbe and Vadim V. Takhteev since we published the last newsletter, and in their honour we bring their In Memoriams, written by their friends and colleagues. Augusto Vigna Taglianti, known to many for his work on amphipods with Sandro Ruffo, is remembered in Fragmenta ecologica 51(2): 105-125 (2019).

Wim and Anne Helene
Jean-Claude Sorbe In Memoriam

Jean-Claude Sorbe died at the end of 2019 following a heart attack after a trek in the Pyrenees, an activity that was one of his passions.

On my return from Quebec in 1987, after having done part of my post-doctorate with the Professor Pierre Brunel of the University of Montreal on the suprabenthic communities of the Gulf of St-Lawrence, and built a suprabenthic sledge inspired of Brunel type, that we started working together in 1989 as part of the thesis of Marta Elizalde.

Like several researchers who worked on the stomach contents of the demersal fish, Jean-Claude was impressed by the number of crustaceans consumed by these fish living near the sea bottom, while their abundance sometimes seems low in the benthic sampling with dredges or grabs gears.

Born in 1947, in the Dordogne, to whom he remained strongly attached, and where he learned his first experience with the natural sciences in the sampling of freshwater aquatic environments, he studied natural sciences at the University and completed his postgraduate thesis in 1972 at the University of Aix-Marseille on the ecology and food ethology of the demersal fish from the southern continental shelf of the Bay of Biscay. During his thesis, he collected fish offshore Arcachon by embarking on professional trawlers. After a period of cooperation as a teacher in Algeria, he returned to France where he was appointed as a researcher at the Centre National de la Recherche Scientifique (CNRS) in the late 1970s.

It was, in 1978, that he used for the first time a suprabenthic sledge off the Basque Country on the continental shelf at a depth of about 100 m. Then he built several sledges before arriving at a more definitive form allowing both to sample the water-sediment interface and the first meter of the water layer just above the bottom. Hyperbenthos – Suprabenthos was the subject of long discussions and questions that we had, and Jean-Claude even questioned the French Academy which confirmed that the right term was the suprabenthos.

The suprabenthos fascinated Jean-Claude all the rest of his career punctuated by the defence of his ‘thèse d’État’ in 1984 at the University of Bordeaux on the subject: Contribution to the knowledge of the suprabenthic communities from the southern part of the Bay of Biscay. It was in this area that Jean-Claude had made more his samplings of the bathyal fauna of the continental slope often difficult to sample given the depth and the presence of canyons. The canyons of Cap Ferret and Cape Breton had no secrets for Jean-Claude, it was there that he made the greatest part
of his sampling at sea on oceanographic boats and in particular the ‘Côte d’Aquitaine’, with which he explored the upper part of the continental slope with Marat, and I was able to participate in some campaigns with Jean-Claude and Marat, then it went deeper up to 3,000 m in the canyons of Cape Breton and Cape Ferret. It was an opportunity for him to participate in national programs coordinated by his laboratory colleagues on the functioning of the deep ecosystem of the southeast Bay of Biscay.

I also had the pleasure of participating with Jean-Claude in an expedition south of the Azores to explore the deep seamounts in 1993 aboard the Oceanographic Vessel the Suroit. We were able to sample the suprabenthos from the seamount summits like Meteor and Atlantis but also on the slope up to 2250 m. In the mid-1990s, a publication began, on the presence of the neritic mysid Anchialina agilis on these offshore systems. This project was orphaned. It remains for me to finish this paper; it will be my tribute to Jean-Claude.

During the campaigns at sea, I was able to appreciate how happy Jean-Claude was and participated in the life of the researchers on board with very good relations with all the crews of the oceanographic ships. This was in contrast to Jean-Claude at the Arcachon Marine Station, where he was seen as a discreet or secret researcher, often working alone and asking very little for the laboratory’s financial resources. However, he has also helped many students and doctoral students at the Arachon Marine Station in the identification of crustaceans including amphipods. Moreover, it was most often with his own resources that he financed part of the small material needed for his collections and his participation in national or international scientific conferences and symposia, often accompanied by his wife Aouda, who actively and continuously participated in the sorting of Jean-Claude’s many samples. She regularly came to the laboratory to help Jean-Claude; his brutal death is a terrible ordeal for her as their relationship was so close.

Jean-Claude had always much international collaboration, especially with many Spanish and Portuguese colleagues. He published many notes on the suprabenthos with several colleagues including Joan Cartes, Carlos San Vicente, Jordi Corbera, Inmaculada Frutos with whom he worked in recent years of his scientific activity. He also made some publications with our colleague Jose Manuel Guerra-García. He had the opportunity to work on the suprabenthos of the Mediterranean Sea, Catalan Sea and along the coast of Israel and the Levantine Basin in the eastern Mediterranean Sea, and in the Antarctic Ocean, around the South Shetland Islands and Bransfield Strait. During his career, he had participated in oceanographic campaigns in Antarctica and off the Israeli coast. Recognized as a specialist in amphipods, he was associated with the exploitation of samples coming from southern Spain or southern Iceland in the Atlantic or from campaigns in Papua New Guinea, which were the subject of descriptions of new species for science.

Although modest on the administrative aspects of the research, he co-organized with his colleague Jean-Marie Jouanneau, the third International Symposium of Oceanography of the Bay of Biscay, at the Marine Station of Arcachon in 1993, colloquia in which he highlighted his numerous collaborations with his Spanish colleagues.

Recently, always with his Spanish colleagues, he explored an area still very little known: the Le Danois Bank, off the coast of Cantabria, surrounded by a complex system of canyons and channels, at depths ranging from 500 to 4,000 m.
All the work carried out by Jean-Claude in the Bay of Biscay has made it possible to know much better the continental platform off Arcachon, as well as the underwater canyons of Cap Ferret and Cap Breton.

Since his retirement in 2012, he has continued to work at home where he had set up a laboratory at the same time by continuing contributions with colleagues at the Arcachon Marine Station and in particular with Benoit Gouillioux on the amphipods, but also with Laure Corbari as correspondent at the Muséum national d'Histoire naturelle in Paris, the address he gave for his last publications. Jean-Claude has made good use of much of his biological material collected throughout his career and preserved in good condition and in his collections accumulated over time are precious that still need to be studied. Who will spend time on it is a real question.

In fact, Jean-Claude Sorbe did little work on the Arcachon Basin, but he recently intervened to identify invasive species including isopods, probably imported in the 1970s at the same time as the Japanese oyster *Crassostrea gigas*.

He will remain the man of the deep suprabenthos of the Bay of Biscay, an excellent zoologist, an incomparable observer, a field oceanographer, a perfectionist and an indefatigable worker.

Among the suprabenthic fauna, that of the Peracarida is particularly rich, Jean-Claude was interested in three groups, the amphipods, the cumaceans and the mysids. But he also described new species of isopods.

Jean-Claude Sorbe had described 12 new species and two new genera of amphipods for the science:

- *Apherusa delicata* Krapp-Schickel & Sorbe, 2006
- *Autonoe catalaunica* Ruffo, Cartes & Sorbe, 1999
- *Bathymedon longirostris* Jaume, Cartes & Sorbe, 1998
- *Carangolia barnardi* Jaume & Sorbe, 2001
- *Dorotea* Corbari, Frutos & Sorbe, 2019
- *Dorotea papuana* Corbari, Frutos & Sorbe, 2019
- *Dulichiopsis dianae* Corbari & Sorbe, 2017
- *Elasmopus thalyae* Gouillioux & Sorbe, 2015
- *Eusirus bonnieri* Peña Othaitz & Sorbe, 2020
- *Leucothoe cathalaa* Frutos & Sorbe, 2012
- *Liropus cachuchoensis* Guerra-García, Sorbe & Frutos, 2007
- *Papuadocus* Corbari & Sorbe, 2015
- *Papuadocus blodiwai* Corbari & Sorbe, 2015
- *Protoaeginella spinipoda* Laubitz & Sorbe, 1996

He is also the author of the descriptions of nine other new species for science including one Ciliophora, five isopods and three mysids.

Six species have been dedicated to Jean-Claude Sorbe, including a polychaete, a Scyphozoa Coronamedusae, a cumacean, a chaetognath, a mysid and an amphipod *Ampelisca sorbei* Dauvin & Bellan-Santini, 1996.
Jean-Claude was the supervisor of Marta Elizalde Arriaga PhD on The bathyal suprabenthic communities of the southern margin of the Cap-Ferret canyon (Bay of Biscay) defended at the University of Bordeaux in 1994 and with he continued to publish until 2014 on the suprabenthic fauna of the continental slope of the Bay of Biscay. Finally he had written with Inmaculada Frutos and Angelika Brandt a synthesis on deep communities, an article that will make a date on the knowledge of this interface compartment between the benthic and the pelagic systems (Frutos, I., Brandt, A., Sorbe, J.C., 2017. Deep-Sea Suprabenthic Communities: The Forgotten Biodiversity. Marine Animal Forest, 475-503).

Jean-Claude still had many projects that we had discussed at the last conference on amphipods last August 2019 in Dijon, he disappeared suddenly too early to bring them to completion.

Jean-Claude was a colleague, a friend, with whom it was very pleasant to work and exchange, even though we met too rarely, he spoke passionately about his crustaceans and his mountain hikes. The amphipod and crustacean community will miss him.

Jean-Claude Dauvin, July 22, 2020
Vadim V. Takhteev In Memoriam

"You need to do miracles with your own hands"

(Alexander Green "Crimson Sails")

The note is dedicated to Doctor of Biological Sciences, Professor Vadim V. Takhteev. His professional and life path and main scientific achievements are briefly presented.

Good scientists become due to good teachers, hard work and the ability to set any goals for themselves and achieve them. Doctor of Biological Sciences and Professor of Irkutsk University, Vadim V. Takhteev possessed just such a character. He loved to work tirelessly and as a result, he discovered many new and unknown things for science. There were no harbingers of trouble, but on August 25, 2020, at the age of 55, Vadim Takhteev's life suddenly ended...

Vadim Takhteev was born on March 27, 1966 in Irkutsk. In 1988 he graduated with honors from the Faculty of Biology and Soil Science of the Irkutsk State University. During 1988–1990 he was affiliated at Limnological Institute of the Siberian branch of the USSR Academy of Sciences. In 1990–1991 Vadim was a assistant at the Department of hydrobiology and invertebrate zoology in the University. From 1992 to 1994 he continued as a PhD student at this University, where in 1994 he had successful defense of his dissertation focusing on taxonomy and ecology of Baikal amphipods. This work was supervised by famous scientist Yaroslav I. Starobogatov, the famous Russian zoologist, professor and chief scientist at the Zoological Institute of the Russian Academy of Sciences. In the course of further career, Vadim Viktorovich was the head of the Baikal Museum, researcher, assistant professor at the university. In 2001, at the Zoological Institute of the Russian Academy of Sciences, he defended his doctoral dissertation entitled "Amphipods of Lake Baikal, their taxonomy, phylogeny, evolution, distribution and ecology."

Since 2003, Vadim has worked as a Professor at the Department of Hydrobiology and Zoology of Invertebrates at Irkutsk state university (ISU). The main discipline in which Vadim
Viktorovich taught classes for students of the Biology and Soil Faculty of Irkutsk State University is "Baikalovedenie [Baikal Science]". In 2009, as one of the executive editors, he created a team of authors from 46 leading scientists of the Baikal region and began preparing a fundamental two-volume book on this subject, which should become a detailed textbook for students and, at the same time, a handbook for scientists. The book was published in 2012. In 2014, Vadim became the Laureate of the Irkutsk Region Competition and the Governor's Prize in Science and Technology.

Vadim was a member of the dissertation council at Irkutsk State University, chairman of the Irkutsk (Baikal) branch and a member of the Central Council of the Hydrobiological Society at the Russian Academy of Sciences, vice-president of the Russian Carcinological Society and a full member of the Moscow Society of Nature Experts. He was in the Federal Register of Experts in the Field of Scientific and Technical Knowledge of the Russian Federation and Experts of the Russian Academy of Sciences, was a member of the Commission for the Protection of Rare and Endangered Plants, Animals and Other Organisms under the Government of the Irkutsk Region.

Vadim managed a number of grants from the Russian Foundation for Basic Research, two projects under the Program on Conservation of Russia's Biodiversity ("Baikal Component"), a government contract under the federal program "Priority Areas for the Development of Science and Technology" as well as grants from the Irkutsk Regional Branch of the Russian Geographical Society.

During his scientific career, Professor Takhteeev wrote over 200 scientific, popular science and educational-methodical publications; including seven personal and collective monographs, three popular science books, four textbooks. For the popularization of knowledge about the Nature of Lake Baikal, Vadim was awarded a Diploma of the Ministry of Natural Resources of the Russian Federation.
The scientific interests of Vadim Takhteev were taxonomy, ecology and evolution of amphipods and other endemic fauna of Lake Baikal. Also, he analyzed fauna and studied ecology of community in thermal and mineral springs, small mountain streams and alpine lakes of the Baikal region. Furthermore, he devoted a lot of time to the historiography of scientific research on Lake Baikal.

The main scientific achievement by Vadim Takhteev can be confidently considered a complete revision of Baikal amphipods. In his opinion, 7 families, 41 genera and 276 species, 78 sub-species are represented in Lake Baikal. These Baikalian species contribute 61% to the total diversity of Amphipoda of the of continental waters of Russia (Takhteev et al. 2015). From Baikal and its surroundings, he described 3 families, 1 subfamily, 2 genera, 2 subgenera, 34 species and subspecies of amphipods that are new for science.

Vadim Takhteev firstly substantiated and applied a typological approach to the systematization of Baikal amphipods. He studied the distribution of amphipod species according to biotopes; carried out a classification of their life forms, paying special attention to predators and scavengers (vulture amphipod).

One of the interesting moments was his discovery of a new species of amphipods, well adapted to living in conditions of strong currents and cold water in the region of the Khamar-Daban mountain range. This crustacean was named after these mountains - *Gammarus dabanus*. This was the first record in the Baikal region of gammarid living not in stagnant, but in fast-flowing waters.

Vadim Takhteev carried out a taxonomic revision of several separate genera - *Poekilogammarus*, *Plesiogammarus*, *Odontogammarus*. One of the species, *Echinogammarus borealis*, was described by Sovinsky (1915), but “lost” in the later works, was revised by V. Takteev and synonymized with *Carinogammarus cinnamomeus* (Dybowsky).

He tried to revise the most difficult and polymorphic genus of Baikal amphipods, *Eulimnogammarus*, applying the approaches of phenetic taxonomy. He also conducted detailed ecological studies of three coastal species from the genus *Eulimnogammarus* and two species from the genus *Pachyschesis*, inhabiting the marsupia of females and the gill cavities of males of large amphipods. For the latter genus, he confirmed the parasitic nature of the relation...
with the hosts. He discovered a large taxonomic diversity within the genus *Pachyschesis*. Currently, this genus includes 16 species.

In his research, Vadim applied new methods. Together with an electronic engineer Sergey L. Arakelov from Applied Physics Institute ISU, a system for remote underwater video surveillance was designed (2013). This system was used to study the phenomenon of diel vertical migrations, to observe the distribution of animals and plant organisms at the lake floor as well as to describe the bottom landscapes and biocenoses. In the future, such video surveillance may become one of the methods for regular environmental monitoring of processes occurring in the coastal zone of Lake Baikal. Such video-observations are also suitable as one of the methods of regular environmental monitoring of processes occurring in the coastal zone of Lake Baikal.

Colleagues remember Vadim as a fascinating storyteller and an interesting interlocutor who delves deeply into the question. At the same time, in matters of Lake Baikal, he was extremely principled, firmly and consistently insisted on the dissemination of scientific knowledge and reliable information about its current ecological state of Lake Baikal.

Vadim was a good person, great scientist, wonderful teacher, worthy and reliable scientific leader, and the leading Baikalist of our time. He belongs to a constellation of world-class scientists.

Selected papers:

The note was prepared by:

post-graduate student of Vadim Viktorovich, assistant Irina O. Batranina,

Ph.D., associate professor Ekaterina Borisovna Govorukhina,

Ph.D., Associate Professor Evgeniya Aleksandrovnlicheska Misharina

(the Department of Hydrobiology and Zoology of Invertebrates, Faculty of Biology and Soil Science, Irkutsk State University)

and Ph.D., Berezina N.A. (the Zoological Institute of the Russian Academy of Science)
Bibliography

(finished Aug 31 2020)

Alves, J., E. Neves & R. Johnsson 2020. Two new Amphilochida (Amphipoda: Amphilochidira) associated with the bioinvasive *Tubastrea coccinea* from Todos-os-Santos Bay, Bahia State, Brazil. —— *Zootaxa* 4743, 21-34. https://doi.org/10.11646/zootaxa.4743.1.2 (Deals with *Leucothoe oxumae* n. sp. and *Stenothoe ogumi* n. sp., both from *Tubastrea* on the Cavo Artemidi shipwreck in the Todos-os-Santos Bay.)

Ando, K. 2019. The study of amphipods in brimstone pools of Akiyoshi-do Cave, Japan. —— Subterranean Biology 32, 81-94. https://doi.org/10.3897/subtbiol.32.35031 (The population densities of *Pseudocrangonyx akatsukai* and *Gammarus nipponensis* have decreased since the 1970s)

Andrade, L. F. & A. R. Senna 2019. Two new species of *Cephalophoxoides* Gurjanova, 1977 (Crustacea: Amphipoda: Phoxocephalidae) from southeastern Brazil, with comments on the taxonomic status of the genus. —— Zootaxa 4712, 531-551. https://doi.org/10.11646/zootaxa.4712.4.3 (Deals with *C. fortisetus* n. sp. (23*02’S, 43*00’W) and *C. obtusimanus* n. sp. (23*14’S, 44*03’W). A key to all *Cephalophoxoides* species is provided.)

Andrade, L. F. & A. R. Senna 2020. Four new species of *Pseudharpinia* Schellenberg, 1931 (Crustacea: Amphipoda: Phoxocephalidae) from southwestern Atlantic and new records of *P. tupinamba* Senna & Souza-Filho, 2011. —— Zootaxa 4763, 501-537. https://doi.org/10.11646/zootaxa.4763.4.3 (Deals with *P. bonhami* n. sp. (24*58’S, 45*26’W), *P. jonesyi* n. sp. (26*34’S, 47*59’W), *P. pagei* n. sp. (23*53’S, 42*28’W), *P. planti* n. sp. (23*03’S, 42*19’W) & *P. tupinamba*. A key to all *Pseudharpinia* is provided."

Andrade, L. F. & A. R. Senna 2020. *Atlantiphoxus wajapi* n. gen., n. sp. (Crustacea: Amphipoda: Phoxocephalidae), a new deep-sea amphipod from the southwestern Atlantic. —— Scientia Marina 84(2), 1-12. https://doi.org/10.3989/scimar.05001.16A (Deals with *Atlantiphoxus wajapi* n. gen., n. sp. from 23*53’S, 42*28’W, 500m depth.. A table differentiates this genus from *Fuegiphoxus, Linca* and *Parharpinia*).

Arezoo, M. 2019. Studies on interstitial biological indicators (amphipods and isopods) in sandy beaches of Okinawa Island. —— *Thesis from the University of the Ryukyus* http://hdl.handle.net/20.500.12000/44889 (Not seen)

Ariyama, H. 2019. Two species of *Ceradocus* collected from coastal waters in Japan, with description of a new species (Crustacea: Amphipoda, Maeridae). ---- *Zootaxa* 4658, 297-316. http://dx.doi.org/10.11646/zootaxa.4658.2.5 (Deals with *C. kiiensis* n. sp. (Ena, Yura Town, Wakayama Pref.) and *C. laevis*. With a key to Japanese *Ceradocus*.)

Ariyama, H. 2020. Six species of *Grandidierella* collected from the Ryukyu Archipelago in Japan, with descriptions of four new species. ---- *Zootaxa* 4816, 1-46. https://doi.org/10.11646/zootaxa (Deals with *G. contigua* n. sp. (Jakushima Island, Kagoshima pref., *G. gilesi*, *G. halophila*, , *G. japonicoides* n. sp. Amai-oshima Island, Kagoshima pref.), *G. nana* n. sp. (Iriomote Island, Okinawa pref.) and *G. pseudosakaensis* n. sp. Iriomote Island, Okinawa pref.). A key to male Ryukyu Islands *Grandidierella* is provided. The genus *Propejanice* is here considered a junior synonym of *Grandidierella*.)

Ashford, O. S., T. Horton, C. N., Roterman, M. H. Thurston, H. J. Griffiths & A. Brandt 2019. A new Southern Ocean species in the remarkable and rare amphipod family Podosiridae (Crustacea: Amphipoda) questions existing systematic hypotheses. ---- Zoological Journal of the Linnean Society XX, 1-16. https://doi.org/10.1093/zoolinnean/zlz145 (Deals with Acutocoxae ogilviae Ashford & Thurston n. sp. (Southern Ocean 60°72’S, 43°01’W, 1139m). The phylogenetic position of the family Podosiridae is extensively discussed from morphological and molecular data; it appears to have no close relations to Podoceridae or Eusiridae, but rather to the Stenothoidae. Further molecular research is necessary.)

Biological Invasions, in press. https://doi.org/10.1007/s10530-020-02292-8 (Gammarus pulex, G. tigrinus & Dikerogammarus villosus)

Blokhin, I. A. & T. A. Morozov 2020. (Amphipod communities (Amphipoda, Gammaridae) in soft soils of the Avacha Bay (South-eastern Kamchatka) in 2019. ---- ???????? (In Russian, 34 spp of amphipods listed)

Brown, T. L. 2020. *The causes and costs of intersexuality in two freshwater populations of the amphipod, Gammarus minus, found in Montgomery County, Virginia, USA.* ---- D. Phil. Thesis, Ohio State Univeristy (Not seen)

Bruschetti, M. 2019. Role of reef-building, ecosystem engineering polychaetes in shallow water ecosystems. ---- *Diversity* 11, 168. https://doi.org/10.3390/d11090168

Bueno, A. A. de P., K. M. Oliveira & G. Wellborn 2019. A new species of *Hyalella* Smith, 1874 (Crustacea: Amphipoda: Hyalellidae) from Oklahoma, USA. ---- *Zootaxa* 4700, 259-269. https://doi.org/10.11646/zootaxa.4700.2.5 (*H. cheyennis* n. sp. from Connerville, Oklahoma, USA)

Cannizaro, A. G., J. R. Gibson & T. R. Sawicki 2020. A new enigmatic genus of subterranean amphipod (Amphipoda: Bogidielloidea) from Terrell County, Texas, with the establishment of Parabogidiellidae, fam. nov., and notes on the family Bogidiellidae. ---- Invertebrate Systematics 34, 504-518. https://doi.org/10.1071/IS19061 (Not seen, sadly. Deals with Simplexia longicornis n. gen, n. sp. (Terrell Co., Texas), that together with the sympatric Parabogidiella americana, is placed in the new family Parabogidiellidae.)

Castejón-Silvo, I., D. Jaume & J. Terrados 2019. Feeding preferences of amphipod crustaceans *Ampithoe ramondi* and *Gammarella fucicola* for *Posidonia oceanica* seeds and leaves. —— *Scientia Marina* 83, 349-356. https://doi.org/10.3989/scimar.04892.06B

Chankat, W. & K. Wangkulangkul 2019. Role of the sea urchin *Stomopneustes variolarius* (Lamarck, 1816) pits as a habitat for epilithic macroinvertebrates on a tropical intertidal rocky shore. —— *Zoological Science* 36, 330-338. https://doi.org/10.2108/zs180196 (No amphipods mentioned)

species. ---- Estuarine, Coastal and Shelf Science, 227: 106306. https://doi.org/10.1016/j.ecss.2019.106306 (17 amphipod spp in Table 1.)

Consolandi, G., A. T. Ford & M. C. Bloor 2019. Feeding behavioural studies with freshwater Gammarus spp.: The importance of a standardised methodology. —— In: Reviews of

Copilaş-Ciocianu, D., G. M. Berchi & L. Mumladze 2020. First survey of shallow-water Amphipoda along the Georgian Black Sea coast reveals new faunistic records and the unexpected Atlantic invader Melita nitida. —— Mediterranean Marine Science, in press http://dx.doi.org/10.12681/mms.22844 (Seven spp new to the fauna of Georgia. Melita mirzajani may turn out to be a junior synonym of M. nitida)

Copilaş-Ciocianu, D., Š. Borko & C. Fišer 2019. The late blooming amphipods: Global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. —— Molecular Phylogenetics and Evolution 143, 106664. https://doi.org/10.1016/j.ympev.2019.106664 (The study proposes amphipods originated in the Late Palaeozoic, but diversified and radiated in the Late Mesozoic.)

Dvoretsky, A. G. & V. G. Dvoretsky 2020. (Symbionts and sessile microbiota of Red King Crab from eastern Murman (Dalnyezelentskaya Bay, Barents Sea) in July 2014.). ---- ????? (In Russian)

Gasca, R. & M. E. Hendrickx 2020. Species of Scina Prestandrea, 1833 (Amphipoda, Hyperiidea, Scinidae) from western Mexico with the description of a new species from the Gulf of California. ---- Zootaxa 4803, 329-344 https://doi.org/10.11646/zootaxa.4803.2.5 (Nine Scina species, among them S. trispina n. sp. from the Gulf of California, c 1400m)

Gorokhova, E., G. Martella, N. H. Motwana, N. Y. Tretyakova, B. Sundelin & H. V. Motwani 2020. DNA epigenetic marks are linked to embryo aberrations in amphipods. ---- *Scientific Reports* 10: 655 https://doi.org/10.1038/s41598-020-57465-1 (*Monoporeia affinis*)

Mediterranean coast. With a complete redescription, The species Hirayamaia tridentia is transferred to Apocorophium.

Hughes, L. E. 2020. *Lepidepecreoides stoddartae* sp. nov. from the Falkland Islands (Amphipoda: Tryphosidae). ---- *Zootaxa* 4816, 108-114. https://doi.org/10.11646/zootaxa.4816.1.7 (From the North Falkland Basin, no less than 12 specimens of this rarely collected genus. With a key to all species of *Lepidepecreoides*).

Ivanova, E. S., N. E. Dokuchaev & S. E. Spiridonov 2019. Larval spirurids in a supralittoral amphipod in the north-east of Russia and the identification of the intermediate host of *Antechiniella septentrionalis* (Spiruridae: Acuariidae), parasitic in a tundra vole. ---- *Journal of Helminthology* 94, e877. https://doi.org/10.1017/S0022149X19000750 (The intermediate host is *Traskorchestia ditmari*).

zookeys.886.38511 (Deals with Exiliphotis petila n. gen., n. sp. (Daegwantal Island, Jeju-do), Latigammaropsis careocavata n. sp. (Soguelubi-do Island, Gyeongsangnam), Photis bronco n. sp. (Daryeo-do Island, Jeju-do), Ph. longicaudata (European material), Ph. longicarpus n. sp. (Geomeunyeo, Jeju-do Island), Ph. posterolobus n. sp. (Geomeunyeo, Jeju-do Island), Podoceropsis insinuomanus n. sp. (Gageo-do Island, Jeju-do), and P. pseudoclavapes n. sp. (Bigin-do Island, Gyeongsangnam-do). A key to Korean Photidae is provided)

Kodama, M., T. Onitsuka & T. Kawamura 2020. A new species of *Sunamphitoe* Bate, 1857 (Crustacea: Amphipoda: Ampithoidae) from Hokkaido, Japan. ---- *Journal of the Marine Biological Association UK* 100, 63-72. https://doi.org/10.1017/s002531541900105x (*S. gigantea* n. sp. from Katsurakoi, Hokkaido from *Saccharina* kelp fronds. A synoptic key compares the new species with *S. baegryeongensis* and two forms of *S. eoa.*)

Labaude, S., F. Cézilly, L. De Marco & T. Rigaud 2020. Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite. ---- *Scientific Reports* 10: 11670 https://doi.org/10.1038/s41598-020-68577-z (*Gammarus pulex* and the acanthocephalan *Pomphorhynchus laevis*)

fossarum exposed to environmentally realistic levels. ---- Aquatic Toxicology 218, 105357. https://doi.org/10.1016/j.Aquatox.2019.105357.

Environmental Science & Technology Letters 7(7), 469-476 https://doi.org/10.1021/acs.estlett.0c00299 (Hirondellea gigas, Bathycallisoma schellenbergi & Alicellla gigantea)

Liversage, K., J. Kotta & L. Pajusalu 2020. Effectiveness of common benthic macrofaunal sampling methodology on boulder and cobble reefs. ---- Journal of Experimental Marine Biology and Ecology 530-531, 151413 https://doi.org/10.1016/j.jembe.2020.151413 ('Large proportions of littoral amphipods and isopods were not sampled. ')

Lörz, A.-N., S. Brix, A. M. Jazdzewska & L. E. Hughes 2020. Diversity and distribution of North Atlantic Lepechinellidae (Amphipoda: Crustacea). ---- Zoological Journal of the Linnean Society, zlaa024. , https://doi.org/10.1093/zoolinnean/zlaa024 (This is an extensive revision. Descriptions and illustrations of L. arctica (of which L. norvegica is considered to be a junior synonym) and L. victoriae, and in toto figures of all Lepechinella species, as well as distribution maps.)

Lowry, J. K. & A. A. Myers 2019. Talitrus saltator (Montagu, 1808), a species complex (Amphipoda, Senticaudata, Talitroidea, Talitridae). ---- Zootaxa 4664, 451-480. http://dx.doi.org/10.11646/zootaxa.4664.4.1 (Deals with T. saltator s. str., T. cloqueti (Audouin, 1826) (neotype from Crete), and T. platycheles Guérin, 1832 from the western Mediterranean. The latter two taxa are revived.)

Lowry, J. K. & R. T. Springthorpe 2019. Talitrid amphipods from India, East Africa and the Red Sea (Amphipoda, Senticaudata, Talitroidea, Talitridae). ---- *Zootaxa* 4638, 351-378. http://dx.doi.org/10.11646/zootaxa.4638.3.3 (Deals with *Austropacifica* n. gen. –type *Orchestia monospina*, further species *A. australis, A. pectenispina* and *A. serejoea*; a key to the species is provided. *Gaza* n. gen., type *Gaza gazi* n. sp. (Gazi beach, Kenya), further species *G. ancheidos, G. guadalupensis, G. itampolo* and *G. samroiyodensis*; a key is provided. *Talorchestia* here has 18 species, among which *T. affinis* is redescribed, with *T. franchetti* and the ‘*T. martensi*’ of many authors as synonyms, *T. anakao* n. sp. comes from Nosy Vé, Madagascar, while the ‘*T. martensi*’ from India of Chilton has to remain *T. spec.* for the time being. A key to adult male *Talorchestia* is included. Table 1 lists all talitrids known from the Indo West Pacific, and figs 1-5 map their distribution.)

Lowry, J. K., R. T. Springthorpe & A. A. Myers 2020. *Carpentaria* gen. nov., a new talitrid genus from tropical Australia (Amphipoda, Senticaudata, Talitroidea, Protorchestiidae). ---- *Zootaxa* 4834, 425-433. https://doi.org/10.11646/zootaxa.4834.3.5 (*Carpentaria* n. gen, with type species *C. tropicalis* n. sp. (Darwin, NT, mangroves) and further species *C. limicola*, transferred from *Floresorchestia*. Both are fully described and illustrated here.)

Zootaxa 4766, 201-260. [https://doi.org/10.11646/zootaxa.4766.2.1 (p. 228 and fig. 12 show the presence of an associated amphipod (not identified, but purple) on Gilbertaster caribaeae.)

Makarenko, A. L. 2019. (Features of the propagation of alien species of amphipods (Crustacea, Amphipoda) in the condition of watercourses in Belarus). ---- Главная (Glavnaya) 64 (1), 72-81. [https://doi.org/10.29235/1029-8940-2019-64-1-72-81 (In Russian. 6 alien species studied in Belarus)]

Marin, I. 2019. Crustacean “cave fishes” from the Arabika karst massif (Abkhasia, Western Caucasus): new species of stygobiotic crustacean genera Xiphocaridinella and Niphargus from the Gegskaya Cave and adjacent area. ---- Arthropoda Selecta 28, 225-245. [https://doi.org/10.15298/arthsel.28.2.05 (Niphargus gegi n. sp. from Gegskaya cave, Gegri region; Abkhasia)]

Marin, I. & T. Antokhina 2020. Hidden burrow associates: macrosymbiotic assemblages of subtidal deep-burrowing invertebrates in the northern part of the Sea of Japan. ---- Marine Biodiversity 50: 50 [https://doi.org/10.1007/s12526-020-01065-9 (Figure 1 has a picture of a Liljeborgia found with Urechis)]

Marin, I. & D. Palatov 2019. An occasional record of the amplexus in epigean Niphargus (Amphipoda: Niphargidae) from the Russian Western Caucasus. ---- Zootaxa 4701, 97-100. [http://dx.doi.org/10.11646/zootaxa.4701.1.8 (Niphargus cf magnus)]

Marin, I. & D. M. Palatov 2020. A new species of freshwater amphipod Gammarus (Amphipoda: Gammaridae) from Tajikistan (Pamir Mountains). ---- Arthropoda Selecta 29, 199-209. [https://doi.org/10.15298/arthsel.29.2.04 (G. martynovi n. sp., in the lacustris group.)]
Marques-Junior, P. R. & A. R. Senna 2020. Description of a new genus and species of the family Melphidippidae Stebbing, 1899 (Crustacea: Amphipoda) from the deep waters of Brazil. ---- Zootaxa 3641, 463-475. [http://dx.doi.org/10.11646/zootaxa.3641.4.11] (Stebbingiella globulosa n. gen., n. sp. From off Sao Paulo state, 224m)

Mekhanikova, I. V. 2019. (A rare abyssal Baikal amphipod, Polyacantha calceolata (Crustacea, Amphipoda) at the St Petersburg cold methane seep, central Baikal.) ---- Zoologichesky Zhurnal 98, 1003-1018. (In Russian. Much information on this previously very rarely collected deep water species.)

(Aokiorchestia jajima is used in the taxonomic description in the paper. There seems to be a misspelling in the title. From Tokara Channel)

Morino, H. 2020. The description of two new genera and four new species of the terrestrial Talitridae (Crustacea, Amphipoda) from the Ogasawara and Daito Islands, Southern Japan. ---- Bulletin of the National Museum of Natural Sciences, Ser. A 46, 1-23. (Deals with Miyamotioia spinolabrum n. gen., n. sp. (Hahajima isl., Ogasawara), M. daitoensis n. sp. (Minam-Daitojima Isl., Okinawa), Leptorchestia biseta n. gen., n. sp. Ototojima Isl., Ogasawara, Morinoa chichijimaensis n. sp. (Chichima Isl., Ogasawara) and M. japonica. A key to all Talitridae from these islands is provided)

Moskalenko, V. N., T. V. Neretina & L. Y. Yampolsky 2020. To the origin of Lake Baikal endemic gammarid radiations, with description of two new Eulimnogammarus spp. ---- Zootaxa 4766, 457-471. https://doi.org/10.11646/zootaxa.4766.3.5 (A most interesting paper. The new species are Eulimnogammarus etingovae n. sp. (S. Baikal, near Kultuk) and E. tchernykhi n. sp. (Pescherk Bay, Baikal). These species are very sparsely illustrated.)

Myers, A. A. & J. K. Lowry 2020. A phylogeny and classification of the Talitridea (Amphipoda, Senticaudata) based on interpretation of morphological synapomorphies and homoplasies. ---- Zootaxa 4778, 281-310. https://doi.org/10.11646/zootaxa.4778.2.3 (An extensive review, resulting in the erection of many new taxa. These are not listed here, but are presented in the taxonomical listing in this newsletter.)

Myers, A. A. & J. K. Lowry 2020. A revision of the genus Orchestia Leach, 1814 with the reinstatement of O. inaequalipes (K. H. Barnard, 1951), the designation of a neotype for Orchestia gammarellus (Pallas, 1776) and the description of three new species (Crustacea: Amphipoda, Talitridae, Talitrinae). ---- Zootaxa 4808, 201-250 https://doi.org/10.11646/zootaxa.4808.2.1 (This thorough revision deals with O. gammarellus, , O. forchuensis n. sp. (Cape Fourchou, Yarmouth Co., Nova Scotia; occurs also on Iceland), O. xylinus, O. montagui, O. aestivalis, O. magnifica, O. mediterranea, O. inaequalipes (revived), O. peroni n. sp. Concon, Valparaiso region, Chile) and O. tabladoi n. sp. (Golfo de San Mathias, Argentina.).

Nair, K. K. C., K. V. Jayalakshmy & K. K. Naveen Kumar 2020 Generation studies on benthic amphipod---Quadrivisio bengalensis (Gammaridae) from the Kochin Estuary, Southwest coast of India. ---- Environmental Monitoring and Assessment 192:68 https://doi.org/10.1007/s10661-019-7962-6

Nurshazwan, J., A. B. Ahmad-Zaki & B. A. R.-Azman 2020. A new species of Cerapus (Amphipoda: Senticaudata: Ischyroceridae) from Pulau Bum Bum, Sabah, Malaysia, with an identification key to Cerapus species. ---- Zootaxa 4802, 519-533. https://doi.org/10-11646/zootaxa.4802.3.7 (C. bumbumiensis n. sp. from Pulau Bum Bum, Sabah. A key to male world Cerapus is provided.)

Passarelli, M. C., D. M. S. Abessa & A. Cesar 2019. Sensitivities of two tropical epibenthic amphipods to physical chemical variables and reference toxicants. ---- Ecotoxicology and Environmental Contamination 14, 27-33 http://dx.doi.org/10.5132/eeec.2019.01.03 (Hyale nigra and H. youngi)

Pawlak, J., K. Nadolna-Altyn, B. Szostkowska & M. Pachur 2019. First evidence of the presence of Anisakis simplex in Crangon crangon and Contracaecum osculatum in Gammarus sp. by in situ examination of the stomach contents of cod (Gadus morhua) from the southern Baltic Sea. ---- Parasitology 146, 1699-1706. https://doi.org/10.1017/S0031182019001124

Peralta, M. A. & A. V. I. Miranda 2019. A new species of Hyalella (Crustacea, Amphipoda, Hyalellidae) from the Puna biogeographic province in Argentina. ---- ZooKeys 865, 87-102. https://doi.org/10.3897/zookeys.865.32878 (H. puna n. sp. from Salta, La Poma. With a synoptic key to high-altitude Hyalella in Argentina)

Petrunina, A. S. & R. Huys 2020. A new species of Tantulocarida (Crustacea) parasitic on a deep-water cumacean host from the southwestern Atlantic, with a review of tantulocaridan host utilization, distribution, and diversity. ---- Journal of Crustacean Biology, ruaa020. https://doi.org/10.1093/jcbiol/ruaa020 (Still only a single record from an amphipod host. Who finds the next one?)

Raja, S. & C. Prasannakumar 2019. A monograph on marine amphipods of Indian waters. ---- Indian Ocean Census of Marine Life, 1-71 (This somewhat misleadingly named paper consists of a species checklist (in part with incorrect author names), and short descriptions and (quite good) partial illustrations of some 25 species, none new.)

Rewicz, T., J. Brodecki, K. Bąceła-Spychalska, A. Konopacka & M. Grabowski 2020. Further steps of *Cryptorchestia garbinii* invasion in Polish inland waters with insights into its molecular diversity in Central and Western Europe. ---- *Knowledge and Management of Aquatic Ecosystems* 421, 17 https://doi.org/10.1051/kmae/2020009

Rolla, M., S. Consuegra, E. Carrington, D. J. Hall & C. G. de Leaniz 2019. Experimental evidence of chemical attraction in the mutualistic zebra mussel-killer shrimp system. ---- *Peer Journal* 7, e8075. https://doi.org/10.7717/peerj.8075

Santos, C. B. de los, F. Arenas, T. Neuparth & M. M. Santos 2019. Interaction of short-term copper pollution and ocean acidification in seagrass ecosystems: Toxicity, bioconcentration and
dietary transfer. ---- *Marine Pollution Bulletin* 142, 155-163. https://doi.org/10.1016/j.marpollbul.2019.03.034

Shadrin, N., V. Yakovenko & E. Anufrieva 2020. *Gammarus aequicauda* and *Moina salina* in the Crimean saline waters: New experimental and field data on their trophic relation. ---- *Aquaculture Research* 51, in press https://doi.org/10.1111/are.14648

Sinclair, K. M. 2019. Toxicity and bioaccumulation kinetics of cadmium and potassium permanganate in two clades within the *Hyalella azteca* species complex. ---- M. Sc. Thesis, Univ. of Waterloo, 125 pp (Not seen)

Sudo, H., M. Matsuo, S. Sato & M. Azuma 2020. (Temporal changes in benthic amphipod assemblages inn the central part of the Ariake Sea during the five years following the dike closure in Isahaya Bay, Japan). ---- *Japanese Journal of Benthology 74*, 100-108. https://doi.org/10.5179/benthos.74.100 (In Japanese)

Sun, S., Y. Wu, X. Ge, I. Jakovlic, J. Zhu, S. Mahboob, K. A. Al-Ghanim, F. Al-Misned & H. Fu 2019. Disentangling the interplay of positive and negative selection forces that shaped mitochondrial genomes of *Gammarus pisinnus* and *G. lacustris*. ---- *Royal Society Open Science* 7; 190669 https://doi.org/10.1098/rsos.190669

Takhteev, V. V. 2019. On the current state of taxonomy of the Baikal Lake amphipods (Crustacea: Amphipoda) and the typological ways of constructing their system. ---- *Arthropoda Selecta* 28, 374-402. https://doi.org/10.15298/arthsel.28.3.03 (In this paper the author defends his classification of Baikal amphipods (contra Timofeyev), and provides a survey of this classification, with many beautiful illustrations of life Baikal amphipods. Sadly this paper has become the author’s swan song.)

Taylor, A., J. Li, J. Wang, D. Schlenk & J. J. Gan 2019. Occurrence and probable sources of urban-use insecticides in marine sediments off the coast of Los Angeles. ---- *Environmental Science and Technology* 53, 9584-9593. https://doi.org/10.1021/acs.est.9b02825

Trivedi, J. N., J. K. Lowry, A. A. Myers & R. Keloth 2020. Two species of Talorchestia Dana, 1853 (Crustacea, Amphipoda, Talitridae) including T. lakshadweepensis sp. nov. from the Lakshadweep Islands, India. ---- Zootaxa 4732, 295-306. https://doi.org/10.11646/zootaxa.4732.2.4 (Deals with T. affinis and T. lakshadweepensis Trivedi, Lowry & Myers n. sp. (Cheriyan Island, Lakshadweep Archipelago.))

importance of crustaceans as hosts. ---- Diseases of Aquatic Organisms 136, 87-103. https://doi.org/10.3354/dao03417

contaminant inputs. ---- *San Francisco Estuary & Watershed Science* 17(3), 3. https://doi.org/10.15447/sfews.2019v17iss3art3 (*Hyalella azteca*).

Weston, J. N. J., P. Carrilo-Barragan, T. D. Linley, W. D. K. Reid & A. J. Jamieson 2020. New species of *Eurythenes* from hadal depths of the Mariana Trench. Pacific Ocean (Crustacea: Amphipoda). ---- *Zootaxa* 4768, 163-181. https://doi.org/10.11646/zootaxa.4748.1.9 (*Eurythenes plasticus* Weston n. sp. The species got its name, because plastic was found in a specimen; from baited traps at 6000-6900m in the Sirena Deep, Mariana Trench.)

White, K. N. 2019. Simplification of a species complex: Two new species of Leucothoidae (Crustacea: Amphipoda) previously attributed to *Leucothoe spinicarpa* (Abildgaard, 1789) in Florida, U.S.A. ---- *Journal of Crustacean Biology* 39(6): 739-747. https://doi.org/10.1093/jcbiol/rzu058 (The relatively widespread *Leucothoe tunica* n. sp. (from both Tampa Bay and Belize) and the so far more geographically restricted *L. machidai* n. sp. (Tampa Bay) are described using a combination of morphology, COI and 18S).

Winfield, I. & M. E. Hendrickx 2020. A new deep-sea species of *Epimeria* Costa in Hope, 1851 (Amphipoda, Amphipholichidea, Epimeriidae) from off Southwestern Mexico. ---- *Zootaxa* 4803, 75-86. https://doi.org/10.11646/zootaxa.4803.1.4 (*E. karamani* n. sp. (off Jalisco, SW Mexico, 1609-1843m).

Zimina, O. L., N. A. Strelkova & O. S. Lyubina 2019. Species Composition and Peculiarities of the Distribution of Benthic Peracarida (Crustacea, Malacostraca) in the Barents Sea, Based on

NEW TAXA

(In the listing of new taxa we have included all that is available online or in print. This is a larger set of new taxa that what is covered as accepted new taxa by the International Code of Zoological Nomenclature (http://www.iczn.org/code). Taxa that are not as yet properly covered by the code as accepted (and thus not added to WoRMS (http://www.marinespecies.org/)) are marked with an * in font in the alphabetical list.)

ERRATA FROM AN 43:

Orientogidiella Sidorov, Ranga Reddy & Shaik, 2018

Austroniphargidae

is incorrect. This should (of course) be in the family Bogidiellidae. We apologize and thank Mikhail Daneliya for spotting this and bringing it to our attention!

HIGHER TAXA

Magnovioidea Alves, Lowry & Jonsson, 2020
superfamily

Protorchestoidae Myers & Lowry, 2020
(epifamily in Talitroidea)

Protodulichoidea Ariyama, 2019
superfamily

Talitroidae Rafinesque, 1815
(epifamily in Talitroidea)

FAMILIES and subfamilies

Arcitalitridae Myers & Lowry, 2020

Floresorchestiinae Myers & Lowry, 2020
Talitridae

Galeatylinae Just, 2019
Atylidae

Lepechinellidae Schellenberg, 1926 (Upgraded) (Thurston & Horton, 2019)

Magnovidae Alves, Lowry & Jonsson, 2019

Parabogidiellidae Cannizaro, Gibson & Sawicki, 2020

Protodulichiidae Ariyama, 2019 (in Ariyama & Hoshino 2019)

Protorchestiidae Myers & Lowry, 2020

Pseudorchestoideinae Myers & Lowry, 2020
Talitridae
Uhlorchestiiidae Myers & Lowry, 2020

GENERAS

- **Aokiorchestia** Morino, 2020
- **Atlantiphoxus** Andrade & Senna, 2020
- **Austropacifica** Lowry & Springthorpe, 2019
- **Bathyra** Wang, Zhu, Sha & Ren, 2020
- **Caecorchestia** Hegna & Lazo-Wasem, 2019 (in Hegna et al., 2019)
- **Carpentaria** Lowry, Springthorpe & Myers, 2020
- **Clippertonia** Lowry & Myers, 2020
- **Exiliphotis** Jung, Coleman & Yeon, 2019
- **Galeatylus** Just, 2019
- **Gazia** Lowry & Springthorpe, 2019
- **Gondwanorchestia** Lowry, Myers & Perez-Schultheiss, 2020
- **Leptorchestia** Morino, 2020
- **Magnovis** Alves, Lowry & Jonsson, 2020
- **Miyamotoia** Morino, 2020
- **Parapseudoaeginella** Guerra-Garcia, 2020
- **Protodulichia** Ariyama (in Ariyama & Hoshino, 2019)
- **Pseudoliropus** Guerra-Garcia & Ahyong, 2020
- **Simplexia** Cannizaro, Gibson & Sawicki, 2020
- **Stebbingiella** Marques-Junior & Senna, 2020

SPECIES

- **anakao** Lowry & Springthorpe, 2019 (*Talorchestia*)
- **australiensis** Guerra-Garcia, 2020 (*Parapseudoaeginella*)
- **australiensis** Guerra- Garcia & Ahyong, 2020 (*Pseudoprotella*)
- **biseta** Morino, 2020 (*Leptorchestia*)
- **bonhami** Andrade & Senna, 2020 (*Pseudharpinia*)
- **bonnieri** Othaitz & Sorbe, 2020 (*Eusirus*)
- **bousfieldi** Hegna & Lazo-Wasem, 2019 (in Hegna et al. 2019) (*Caecorchestia*)
- **brevicarpus** Wang, Zhu, Sha & Ren, 2020 (*Bathyra*)
- **bronco** Jung, Coelman & Yeon, 2019 (*Photis*)
- **bumbumiensis** Nurshazwan, Ahmad-Zaki & Azman, 2020 (*Cerapus*)
- **careocavata** Jung, Coleman & Yeon, 2019 (*Latigammaropsis*)
cheyennis Bueno, Oliveira & Wellborn, 2019 (Hyalella)
chichijimaensis Morino, 2020 (Morinoia)
ciscaucasicus Marin & Palatov, 2019 (Niphargus)
cloqueti (Audouin, 1826) (Talitrus) rev.
contigua Ariyama, 2020 (Grandidierella)
coripes Just, 2019 (Galeatylus)
daistoensis Morino (Miyamotoia)
eqmao Özbek & Güloglu, 2019 (Gammarus)
elizabethae Alves, Lowry & Jonsson, 2019 (Magnovis)
ephemerus Cannizzaro & Sawicki, 2019 (Crangonyx)
etynogovae Moskalenko, Neretina & Yampolsky, 2020 (Eulimnogammarus)
fiseri Mamaghani-Shishvan & Esmaeili-Rineh, 2019 (Niphargus)
forchuensis Myers & Lowry, 2020 (Orchestia)
fortisetus Andrade & Senna, 2019 (Cephalophoxoides)
gazi Lowry & Springthorpe, 2019 (Gazia)
gegi Marin, 2019 (Niphargus)
gigantea Kodama, Onitsuka & Kawamura, 2020 (Sunamphitoe)
globulosa Marques-Junior & Senna, 2020 (Stebbingiella)
gordankaramani Özbek & Sket, 2020 (Rhipidogammarus)
inqualipes (K. H. Barnard, 1951) (Orchestia) rev.
incura Ariyama, 2020 (Orientomaera)
infirmichelata Andrade & Senna, 2019 (Limnoporeia)
insinuomanus Jung, Coleman & Yeon, 2019 (Podoceropsis)
jajima Morino, 2020 (Aokiorchestia)
japonicoides Ariyama, 2020 (Grandidierella)
jinbe Tomikawa, Yanagisawa, Higashiji, Yano & Vader, 2019 (Podocerus)
jonesyi Andrade & Senna, 2020 (Pseudharpinia)
joolaei Lee, Tomikawa, Nakano & Min, 2020 (Pseudocrangonyx)
kaingang Reis, Penoni & Bueno, 2020 (Hyalella)
karamani Winfield & Hendrickx, 2020 (Epimeria)
keablei Guerra-García & Ahyong, 2020 (Pseudoliropus)
kiensis Ariyama, 2019 (Ceradocus)
koropokkuru Sidorov, 2020 (Paramoera (Ganigamoera))
lakshadweepensis Trivedi, Lowry & Myers, 2020 (in Trivedi et al. 2020)
laleyei Gnohossou & Piscart, 2019 (Quadrivisio)
lui Wang, Yu, Sha & Ren, 2020 (Epimeria)
longicarpus Jung, Coleman & Yeon, 2019 (Photis)
longicus Cannizaro, Gibson & Sawicki, 2020 (Simplexia)
machidai White, 2019 (*Leucothoe*) Leucothoidae
martynovi Marin & Palatov, 2020 (*Gammarus*) Gammaridae
murrayae Guerra-Garcia, Keable & Ahyong, 2020 (*Paraproto*) Caprellidae
nana Ariyama, 2020 (*Grandidierella*) Aoridae
obtusimanus Andrade & Senna, 2019 (*Cephalophoxoides*) Phoxoceanidae
ogilviae Ashford & Thurston, 2019 (in Ashford et al.) (*Acutoxoe*) Podosiridae
ogumi Alves, Neves & Johnsson, 2020 (*Stenothoe*) Stenothoidae
oxumae Alves, Neves & Johnsson, 2020 (*Leucothoe*) Leucothoidae
pagei Andrade & Senna, 2020 (*Pseudharpinia*) Phoxoceanidae
palmeirensis Streck-Marx & Castiglioni, 2019 (*Hyalella*) Hyalellidae
panamensis Varela, 2020 (*Epimera*) Epimeriidae
parhobbsi Cannizaro & Sawicki (in Cannizaro et al., 2020) (*Crangonyx*) Crangonyctidae
perezi Myers & Lowry, 2020 (*Orchestia*) Talitridae
petila Jung, Coleman & Yeon, 2019 (*Exiliphotis*) Photidae
planta Andrade & Senna, 2020 (*Pseudharpinia*) Phoxoceanidae
plasticus Weston (in Weston et al. 2020) (*Eurythenes*) Eurytheneidae
platycheles Guérin, 1832 (*Talitrus*) rev. Tatitridae
posterolobus Jung, Coleman & Yeon, 2019 (*Photis*) Photidae
pseudoclawipes Jung, Coleman & Yeon, 2019 (*Podoceropsis*) Photidae
pseudoephemerus Cannizzaro & Sawicki, 2019 (*Crangonyx*) Crangonyctidae
pseudosakaensis Ariyama, 2020 (*Grandidierella*) Aoridae
puna Peralta & Miranda, 2019 (*Hyalella*) Hyalellidae
sagamiensis Ariyama, 2020 (*Maera*) Maeridae
scandens Ariyama & Hoshino, 2019 (*Protodulichia*) Protodulichiiidae
schmitti Lowry & Myers, 2020 (*Clippertonia*) Talitridae
shoemakeri Andrade & Senna, 2020 (*Heterophoxus*) Phoxoceanidae
spinolabrum Morino, 2020 (*Miyamotoia*) Talitridae
spongoteras Peart, Spong, Sutherland & Kelly, 2019 (*Polycheria*) Dexaminiidae
stoddartae Hughes, 2020 (*Lepidepecreoides*) Tryphosidae
tabladoi Myers & Lowry, 2020 (*Orchestia*) Talitridae
taboukeli Piscart, Ayati & Coulis, 2019 (*Cerrorchestia*) Brevitalitridae
tephuana Marron-Becerra, Hermoso-Salazar & Rivas, 2020 (*Hyalella*) Hyalellidae
tchernykhi Moskalenko, Neretina & Yampolsky, 2020 (*Eulimnogammarus*) Gammaridae
tephuana Marron-Becerra, Hermoso-Salazar & Rivas, 2020 (*Hyalella*) Hyalellidae
trispina Gasca & Hendrickx, 2020 (*Scina*) Scinidae
tristanensis Lowry, Myers & Perez-Schultheiss, 2020 (*Gondwanorchestia*) Talitridae
tropicalis Lowry, Springthorpe & Myers, 2020 (*Carpentaria*) Protorchestiidae
tunica White, 2019 (*Leucothoe*) Leucothoidae
unicoxae Wang, Zhu, Sha & Li, 2019 (*Parandania*) Stegocepalidae
Taxonomic overview

Ampithoidae
- *Sunamphitoe gigantea*

Aoridae
- *Grandidierella contigua, japonicoides, nana, pseudosakaensis*

Atylidae
- *Galeatylinae*
- *Galeatylus coripes*

Brevitalitridae
- *Cerrorchestia taboukeli*

Calliopiidae
- *Bathya brevicarpus*

Caprellidae
- *Paraproto murrayae*
- *Parapseudoaeginella australiensis*
- *Pseudoliropus keablei*
- *Pseudoprotella australiensis*

Crangonyctidae
- *Crangonyx ephemerus, parhobbsi, pseudoephemerus*

Dexaminidae
- *Polycheria spongoteras*

Epimeriidae
- *Epimeria karamani, liui, panamensis*
Eurytheneidae
 Eurythenes plasticus

Eusiridae
 Eusirus bonnier

Gammaridae
 Eulimnogammarus etingovae, tchernykhi
 Gammarus egmao, martynovi
 Rhipidogammarus gordankaramani

Hyalellidae
 Hyalella cheyennis, kaingang, palmeirensis, puna, tepehuana, xabriaba

Ischyroceridae
 Cerapus bumbumiensis

Lepechinellidae

Leucothoidae
 Leucothoe machidai, oxumae, tunica

Maeridae
 Ceradocus kiiensis
 Maera sagamiensis
 Orientomaera incisa
 Quadrivisio laleyei

Magnovidae
 Magnovis elizabethae

Melphidippidae
 Stebbingiella globulosa

Niphargidae
 Niphargus ciscaucasicus, fiseri, geci, urmiensis

Parabogidiellidae
Simplexia longicrus

Photidae
Exiliphotis petila
Latigammaropsis carecavata
Photis bronco, longicarpus, posterolobus
Podoceropsis insiuomanus, pseudoclavapes

Phoxocephalidae
Atlantiphoxus wajapi
Cephalophoxoides fortisetus, obtusimanus
Heterophoxus shoemakeni
Limnoporeia infirmichelata
Pseudharpinia bonhami, jonesyi, pagei, planti

Podoceridae
Podocerus jinbe

Podosiridae
Acutocoxae ogilvae

Pontogeneiidae
Paramoera (Ganigamoera) koropokkuru

Protodulichiidae
Protodulichia scandens

Protorchestiidae
Carpentaria tropicalis

Pseudocrangonyctidae
Pseudocrangonyx joolaei, wonkimi

Scinidae
Scina trispina

Stegocephalidae
Parandania unicoxae
Stenothoidae

Stenothoe ogumi

Talitridae

Aokiorchestia jajima
Austropacifica
Caecorchestia bousfieldi
Clippertonia schmitti
Gazia gazi
Gondwanorchestia tristanensis
Leptorchestia biseta
Miyamotoia daitoensis, spinolabrum
Morinoia chichijimaensis
Orchestia forquensis, inaequalipes (rev.), perezi, tabladoi
Talitrus cloqueti (rev.), platycheles (rev.)
Talorchestia anakao, lakshadweepensis

Tryphosidae

Lepidepecreoides stoddartae

Compilation of Amphipod relevant literature

Please tell the AN editors and Olli Coleman about your recent publications on amphipods - and send a pdf of your paper. Olli can include it on the server and the editors can include it in the bibliography....
Updates on the 19th ICA

Following the meeting of the Tunisian organisation committee, we decide in this uncertain time and because the pandemic to postpone the next ICA to 2022. The date of the next ICA will be in autumn 2022. It will held in Jerba Island and a web site of the colloquium is under construction.

All the best
Faouzia Charfi
The Old Photo

During his presentation at the 18th ICA in Dijon August 2019, José Guerra-García showed several old photos from the early amphipod meetings. José has shared these photos with the AN, and we plan to share them here, to make sure everybody have the possibility to enjoy these photographic gems. Thank you to José for collecting these pictures, and for making them available to everybody.

We have tried to annotate the photos, but many names are missing or even uncertain. If anybody who are in the pictures (or who recognises people not named or wrongly named in the annotated photos) could help us with names of the participants, we will be very happy for the help. Please email the editors - we promise to share the updated annotations!

Lyon 1973 (photographer unknown)

And the original (without annotations):