Dear Amphipodologists,

We are delighted to present to you Amphipod Newsletter 39! This issue includes interviews with two members of our amphipod family – Alicja Konopacka and Krzysztof Jazdzewski. Both tell an amazing story of their lives and work as amphipodologists. Sadly we lost a member of our amphipod family – Michel Ledoyer. Denise Bellan-Santini provides us with a fitting memorial to his life and career. Shortly many members of the amphipod family will gather for the 16th ICA in Aveiro, Portugal. And plans are well underway for the 17th ICA in Turkey (see page 64 for more information).

And, as always, we provide you with a Bibliography and index of amphipod publications that includes citations of 376 papers that were published in 2013-2015 (or after the publication of Amphipod Newsletter 38). Again, what an amazing amount of research that has been done by you! Please continue to notify us when your papers are published. We hope you enjoy your Amphipod Newsletter!

Best wishes from your AN Editors,

Wim, Adam, Miranda and Anne Helene
Interview with two prominent members of the “Polish group”.

The group of amphipod workers in Poland has always been a visible and valued part of the amphipod society. They have organised two of the Amphipod Colloquia and have steadily provided important results in the world of amphipod science. For this edition of the Amphipod Newsletter, the editors have asked Michal Grabowski and Karolina Baella-Spychalska to interview the retiring seniors Alicja Konopacka and Krzysztof Jazdzewski.

Alicja Konopacka

When and why did you start studying amphipods?

Well, my „amphipod way of life” wasn’t very straight; however I always wanted to be a scientist. First, in 1970 I did a master’s degree in biochemistry at the University of Lodz, in my hometown in Poland. I was studying activity of hormones extracted from thymus of calves. I was fascinated by physiology of metabolism and biochemistry - a supermodern science at that time, which, I believed, was opening wide horizons compared to traditional zoology or botany. But, simultaneously, I wasn’t very keen on regular visits in slaughterhouse in order to receive fresh (still warm) glands for my studies. And soon I realised that 1) I cannot imagine my whole scientific life in slime and blood, 2) what really fascinates me is biology at the level of organisms – their diversity, way of life and interaction with other components of ecosystem. So I applied for an assistant position in the Laboratory of General Zoology (which later transformed to the Department of Invertebrate Zoology & Hydrobiology) at the same university and also decided to do another master’s degree, this time in zoology, which I accomplished in 1973. My first objects of zoological studies weren’t amphipods but freshwater sponges (Porifera) and their associated, symbiotic and commensal, fauna. This became a subject for my doctoral thesis that I defended in 1981. But again sponges, however very interesting, were lacking something... some dynamics, I would say... So, again, I was looking for a subject to explore... Krzysztof (Jazdzewski) was then an associate professor at the department, already well experienced in studying marine (including Antarctic ones) and freshwater amphipods. He proposed me to join him in the research upon the distribution, ecology and taxonomy of amphipods in inland waters of Poland. It was in 1982 and that’s how my life-long adventure with amphipods started.

What are your favourite amphipod species names?
There are many, but two of them come to mind first. They are *Gammarus leopoliensis* and *Chelicorophium curvispinum* – each for a very different reason. Let me explain that, please.

First, *G. leopoliensis*, I have described with Krzysztof in 1988 as a species new to science from the western outskirt of Eastern Carpathians that are now the Poland’s eastern border. The adjective “*leopoliensis*” refers to Leopolis (meaning “the city of lions”), which is a Latin name of Lviv/Lwów – a nearby major city in Ukraine. It is to commemorate a long tradition of this city as a prominent academic and cultural centre, very important both for Polish and Ukrainians and a symbol of bonds between the two countries. This beautiful city full of historical buildings is a home to one of the oldest academies in Eastern Europe. It’s Ivan Franko National University of Lviv (formerly Jan Kazimierz University) founded in 1661. Among their numerous notable alumni and professors were: Henryk Arctowski (oceanographer and Antarctica explorer), Rudolf Weigl (biologist and inventor of the first effective vaccine for *epidemic typhus*), Stefan Banach (mathematician, father of functional analysis), János Bolyai (mathematician, founder of non-Euclidean geometry), Ivan Franko (poet and linguist, reformer of the Ukrainian language), Stanisław Lem (science-fiction writer).

While this was serious, the second name, *Chelicorophium curvispinum*, always makes me laughing. In Latin *curvispinum* means “with curved spines” referring to the feature on the species chelae – nothing funny, right…but in Polish and other Slavic languages *curva*, although spelled with “k” and “w” is a vulgar word for a prostitute. Once I have a student working upon a life cycle of that species and she, asked by her non-academic friends about the subject of her study, mentioned the name. After a while, during next meeting, they politely and seriously asked her “And how is your work on this... *prostitutis*, is that right?” Apparently the name ringed some bell... :-) Hope it’s not too obscene for the Amphipod Newsletter…

What amphipod appendage(s) do you like illustrating the best?

That will be a short one – meaning the answer, not the appendage. It’s pereiopod 7. There are couple of simple reasons. First, in gammarids it usually bears some important diagnostic features so it’s an appendage I look at very often. Second, it has very simple appearance compared to many other amphipod appendages so it can be drawn quite quickly.

What amphipod appendage(s) do you like illustrating the least?

Definitely the mouthparts! They’re so complex, and often asymmetric – particularly mandible, which is tridimensional in shape.
what makes it particularly difficult to illustrate reliably on the sheet of paper.

These are probably trivial answers to both the above questions but remember I’m not drawing that often. Now I’m buried in identifying tonnes of material for the biogeographical and ecological studies, not in taxonomy anymore.

Where is your favourite place to collect amphipods?

That relates a lot to my fieldwork as a beginner. My first serious sampling for amphipods was in the Pieniny Mountains in southeastern Poland – exactly in the same area, where we had the 15th ICA in 2013. So you can imagine how sentimental it was for me to come back to that place as a senior amphipodologist, receiving the “Amphipod Way of Life” award and retiring that year. But getting back to the topic... my next sampling area were the Bieszczady Mountains, a part of Eastern Carpathians. Ever since then I love collecting amphipods in montane regions, in all those springs and fast flowing streams with all that picturesque landscapes around, icy-fresh air and deep-green forests... Particularly I recall the sampling trip to the Alps in May 2011. With Michal (Grabowski), Karolina (Bącela-Spychalska), Remi (Wattier) and Tomek (Rewicz) during ten days we surveyed 50 alpine lakes, looking for the invasive killer shrimp (*Dikerogammarus villosus*). It was obviously a very hard work but the circumstances of nature and the company were more than rewarding. Generally, fieldwork has always been a very important part of my amphipod work since I really love to see how those animals look when alive and in what habitats they thrive. With all the other guys from team we had so many collection trips all around Poland and also other European countries and we spent such a great time together – not only having fun while working but also visiting interesting places and enjoying local cuisines (as we’re all very fond of it). It wouldn’t be complete without saying that while identifying all these species in the lab it’s so great to bring memories associated with each sample label.

Places you wished you never tried to collect amphipods?

This is surely Antarctica. For a while I was also doing some work with the Antarctic material. I remember that while identifying *Hippomedon kergueleni*, I told Krzysztof that
it’s such a nice looking species but unfortunately blind. Krzysztof laughed and said that when alive the species has prominent red eyes. No traces of these eyes were visible in the fixed material. Then I started to wonder how all these Antarctic species really look like and how great it would be to see them alive and in that surrounding. Particularly that other colleagues from our department who worked there, witnessed the magic of the place. But well, I was mostly working with European freshwater species and also due to some health problems I have never visited Antarctica and never had a chance to sample there. At least some reward for that was to see the beautiful colour pictures of alive Antarctic amphipods made by Gautier Chapelle (from Belgium), who brought them to the 8th ICA in Lodz in 1994. I think these were the first such good pictures of them I could see...

Describe/name the most memorable amphipod moment(s)?

There are so many of them, some I have already mentioned... One comes to my mind at the moment and it’s my first visit to Claude’s (De Broyer) labs in Brussels. It was in late 1980s, at the end of quite a gloomy decade in Poland, just before the Polish “round table”, free elections and all the political changes that have greatly reshaped our country. There was a shortage of nearly everything, including modern optical equipment, good access to scientific literature etc. And remember that this was also the pre-internet era. I was then studying some Antarctic material and couldn’t proceed without consulting a comparative collection and taxonomic papers we didn’t have an access to in Poland. And then I entered the very well organised Claude’s lab

with his at that time not-yet-digitalised but perfectly organised taxonomic literature database devoted to Antarctic amphipods. In almost a second I could find the proper paper and illustrations for each identified species. The comfort of work and also hospitality of Claude and his wife, Anne-Marie, made me feeling heavenly in both scientific and personal terms. On the other side it made me also aware in how mediocre conditions we had to work back in Poland. Those times are long-gone and I’m sure that now it’ll all sound funny and almost unbelievably. But I cannot
help it that I spent nearly half of my life during “those” times and it still amazes me how it all changed since then. It also brings me a reflection that now too often people, particularly the younger generations, take things for granted and do not really appreciate the comfort of work they have... but possibly I go too pesky now...

Describe/name your most memorable amphipod meeting/s)?

Actually all the amphipod meetings are memorable due to the always “family-reunion” type of atmosphere, everybody mentions at every occasion. And it’s not only an expression but the reality of these meetings during which all the newcomers are quickly embraced in the society. Again, I have two flashbacks now, completely unrelated to each other. First is from the 7th ICA in Walpole, Massachusetts in 1990, at the very end of the Cold War period. I remember talking to our late colleague Stella Vasilenko, then from Soviet Union, who complained to me that she was given the passport and was let out to visit the USA only at the condition that, until back to Soviet Union, she will keep this trip top secret even from her closest family and friends. I felt so sorry back then. Again, so good now the world’s different and I hope such times will never come back.

My second flashback is the 8th ICA in Lodz, Poland in 1994 – the first I co-organised with Krzysztof. It was such a great and unforgettable experience for me to host in my hometown all the colleagues and friends from all over the world with Traudl (Kropp-Schickel) and Wim (Vader) to be named among others. It was the first time I met Sandro Ruffo and spent friendly time with Jan Stock, the two “gods” from the Pantheon of amphipodologists. Particularly well I remember the very gentle young man named Adam Baldinger, then a freshman in amphipod research and a first-timer, both in ICA and in Europe. We made friends that time and since then I met Adam many times, observing how he gets established in the field. Our last meeting was again in Poland during the 15th ICA in Szczawnica, another memorable meeting to me, what I have already mentioned.

We know the work with other scientists can shape your life. We are sure many will like to hear about such your experiences if you’d like to share...

As I have mentioned before, Krzysztof is the person to whom I inevitably owe being an amphipodologist. He directed me to study distribution of freshwater amphipods and their life histories – a subject to which I devoted most of my career. He also introduced me to other amphipodologists. That’s the feature I’ve always admired in Krzysztof – his will to share the knowledge and creating opportunities to other people and facilitating their development. Thanks to such attitude, our team has developed and grown re-shaping my “amphipod way of life” couple of times more. First time it was when I found the first
two invasive Ponto-Caspian amphipods in the Vistula River in 1996. In result we focused upon spread of the invasive amphipods and its consequences for the local species. Soon after, in 1998, Michal has joined our team after coming back from Gulf Coast Research Laboratory, Mississippi. He was still doing his PhD in phylogeography of penaeid shrimp but already started his “amphipod way of life” helping us a lot during field monitoring for the invaders. Soon he applied new skills to study their expansion patterns and also started to lead his own studies upon diversity, biogeography and phylogeography of gammarids and other crustaceans in the Balkan Peninsula. Few years later, Karolina became my graduate student, working upon life cycle of the invasive Pontogammarus robustoides. She has successfully continued studying invaders during her doctoral studies, broadening her scope also on their feeding ecology. Then she came for a post-doc to Thierry Rigaud and Remi Wattier in Dijon, France, and came back with a wealth of ideas to study behaviour of the alien amphipods and their interactions with parasites. Together with Michal their revitalised a lot our team and became its leaders, attracting new young and enthusiastic scholars, such as the two Tomeks (Mamos and Rewicz), Kamil (Hupalo) or Michal (Rachalewski), who has become part of our family of amphipodologists. Working together with all of them has broadened my horizons and also put my research on new tracks that I would never foresee before. And still it is a great adventure for me.

Any other general thoughts/comments?

Looking back from the perspective of a few decades, the satisfaction from my career only partially comes from the research and discoveries I made. Even more important is participating in the development of our team – working with people having new ideas and points of view. Also observing how the new students mature and get even more interested when proceeding with their research – eventually becoming independent researchers but, often, also partners in science. That progress, taking part in development of other people, knowing that work of my generation is continued and ameliorated is a source of great joy for me.
When and why did you start studying amphipods?

I think that proper year is 1958 when, as a student of biology at the University of Lodz, I was attending the student practice. First I was in Swinujscie (north-eastern Poland) in the Marine Fisheries Institute, where for a month I was taught to collect benthic fauna from the Baltic and Szczecin Lagoon. There were many crustaceans in the collected samples, but mainly amphipods. That time I was not interested in this group of arthropods and I remember that the most astonishing and fantastic crustacean for me was a cumacean *Diastylis rathkii* occurring in the southern Baltic. However, the amount of amphipods in the samples was so evident and that was my first experience with these animals. Soon after I started my second student practice in the Hel Peninsula. I joined the group of students from Warsaw under the leadership of prof. Zdzisław Raabe, the world famous protozoologist. We were also sampling benthic animals, but this time in other part of the Baltic - in the Bay of Puck. Professor Raabe suggested me to try to determine amphipods using a not yet published key by Wiktor Micherdzinski. It was his PhD thesis and prof. Raabe was reviewing it. I followed the suggestion and tried to use this key. By the way, this paper was published in 1959. It was first time I could see that these superficially similar animals like *Gammarus zaddachi, G. salinus, G. duebeni* or *G. locusta* may be discriminated with some invisible for the first sight features as different species.

I think that this moment, my student practice, was my first amphipod experience.

What are your favourite amphipod species names?

Ohhh, there are so many names, it is difficult to say... The name *Caprella* sounds for me...
very nice and interesting when you look on this animal. But there are so many interesting or strange names and it is difficult to me to find one very special. I remember well many names of Antarctic amphipods because I was working a lot with the Antarctic amphipod fauna, but I cannot find the one special. It is too difficult.... There are also so many funny names..

What amphipod appendage(s) do you like illustrating the best?

I like to draw appendages that carry morphological information for different species and are so obvious. Of course it depends on the genus or family which appendage it is, but for instance the structure of antennae or 3rd uropod or the base of 7th pereiopod is often used. But of course, there are more. That could be also gnathopods. I like to illustrate morphological parts that are informative from the taxonomic point of view. Just recently I was working upon the structure of the second antennae. This way I said I like this appendage to draw (). I think the structure of 3rd uropod is very important for so many amphipods.

What amphipod appendage(s) do you like illustrating the least?

Wow... some mouthparts, maybe maxillipeds.. In fact now it is much easier to prepare drawings as you may use all these special arrangements / equipment to make drawing. I do not see a big difference in making drawing of the mouthparts I like or not really like, so for me is hard to say which ones I do not like to illustrate...

Where is your favourite place to collect amphipods?

I have collected amphipods in many places in the world. I would say that the nicest place for sampling amphipods is Mediterranean Sea.
However, I have never published my results of these samplings. Just for collecting it’s a good place because of water temperature, of course I mean the summer temperatures, also because of the transparency of water. Of course, such a collecting during snorkelling is very fine to me. I can say that this is my favourite place to collect amphipods. Another great and very exciting experience was sampling amphipods in Antarctic waters, where I have collected benthic samples when diving with my dear colleague Jurek Zychlinski, not deeper than 15-20 m, with a special bottom sampler. Of course amphipods were mainly crawling in the bottom but I also saw many of them on the surface and swimming around us... That was really exciting.

Places you wished you never tried to collect amphipods?

That is also very difficult question. Because, really, I have had the possibility to collect amphipods in many different ecosystems: tropical waters, fresh, brackish and saline waters. In Poland, in polar regions, both Antarctic and arctic Spitsbergen waters, also in the seashore of Australia, but not in its coral reefs. From the coral reefs I collected amphipods in Mexico. Well, I had really many possibilities and I do not know where I should go farther to collect more and to be honest, I do not know any place where I would not like to collect amphipods… Of course, the best is to collect amphipods in clear water.

Describe/name the most memorable amphipod moment(s)?

Amphipod moment… how to understand “amphipod moment” ?... This could be a nice meeting with amphipodologists, discussions about these fantastic animals, or amphipod moment as just collecting amphipods, for instance. Surely, the most exciting moment as sampling of amphipods was definitely this Antarctic diving. But I think that I could also name such a moment during the 1-st Polish Marine Antarctic Expedition in 1976. It was on board of the r/v “Professor Siedlecki” and we were trawling fauna from the depth of 600 m. Among many animals that were collected, the biggest sensation for me were giant amphipods as *Eusirus perdentatus*, lysianasoids *Eurythenes gryllus*, or *Cyphocaris* sp. And it was so exciting for me because I have not seen such big amphipods before. And also the colours of these animals, as of *Eurythenes gryllus*, were something special for me. As I remember well this big, about 8 cm long amphipod was beautifully painted in red colours. This first contact with
these giant amphipods was truly something fantastic.

Describe/name your most memorable amphipod meeting/s)?

For me, absolutely, the most memorable meeting was this last one, 15th ICA, organised by my pupils. I was so happy that they did so excellent work and there were many, many participants, as I remember from 30 countries and I had such an emotion that my pupils were so good in this organisation and so good in presentation of their results upon Amphipoda. This feeling that I experienced is something very important for a teacher. I remember my father, who was also a teacher, telling me that the best teacher is the teacher that creates pupils better than he himself... and that is true. This is why I was so satisfied. I should add that except of the first *Niphargus* colloquium I participated in all subsequent 14 Amphipod colloquia and I have organized 2 of them; I have to say that the meeting of friends can be just named: “Amphipod Colloquium”.

We know the work with other scientists can shape your life. We are sure many will like to hear about such your experiences if you’d like to share...

It is worth to say warm words about my main colleagues and teachers in amphipod biology and ecology. My first meeting with amphipodologists was in Lyon in 1973 organised by Albert Louis Roux from the University of Claude Bernard. That time our University had very strong connections with this French institution. So, me myself and my colleagues visited that University afterwards several times and our collaboration with Department of Louis Roux was very fruitful. I have one paper published together with Louis. He was my very good first amphipod friend.
During the same meeting in Lyon I have met Dutch famous amphipodologists: Jan Hendrick Stock and Sjouk Pinkster. We had several meetings in Amsterdam where I had a possibility to study some samples of amphipods in the Museum of University of Amsterdam and Sjouk Pinkster came also to Poland. And we were real friends!

Afterwards also our pupils have still good connections. Other very good amphipodological contacts I’ve had with Meertinus Meijering from Limnological Station in Schlitz (Max-Planck-Inst.). Our department well collaborated with this Station. My friendship with Meertinus is permanent. When I started to work with Antarctic amphipods in late 70-ties I get acquainted with Claude De Broyer from Brussels. In fact, he also participated in the meeting in Lyon in 73, but our closest collaboration started few years later. Since that time I can frankly say that he is my best amphipod friend. We met many times, or in Brussel or in Lodz, spending also a lot of time together with our families. What is more, we were together in two polar expeditions: one to the Antarctic and one to the Spitsbergen region. And, of course, such expeditions unite people especially strongly. Simply, Claude is my best friend but also my very common co-author; we have published together many papers. He was a very important person in my amphipod way. I would like also to mention my warm friendship with Traudl Krapp-Schickel and Wim Vader. We had good contacts many times. They hosted me in Germany and in Norway so nicely. I will always remember our fantastic trip all around the Crete. Wim was a perfect driver. And the great end of this stay in Crete: the Amphipod Colloquium organised by Wanda Plaiti.

Any other general thoughts/comments?
For me the most amazing phenomenon is biological diversity. In each group of organisms: plants, animals.... This is a kind of special beauty. I concentrated on amphipods but you can observe the same in many other crustacean group and many other group of organisms. And of course, this friendship with
other people studying the same scientific problem is from my point of view very important - you may learn so much from them.

I believe that people are happy when they are doing things they love. And I love to work with amphipods and that is the reason why, even retired, I am nearly every day in my Department still studying amphipods. Especially I am doing that so willingly, as the atmosphere in our Department was always very friendly and special. All masters are in close contact with their pupils and always have doors open for them. Now the speed of everything: life, science is too big for me and I have the feeling that it is not necessary to be so quick in so many matters….

ERRATUM:

Rosagammarus minichiellus is not a giant fossil amphipod – it is actually a Decapod tail!

In AN 38 we presented a paper published by McMenamin, et al. (2013) in which the authors reported the discovery of Rosagammarus minichiellus, a giant (17 cm) fossil amphipod from Triassic limestone in Nevada, USA. Well it turns out, at the May 2015 Geological Society of America annual meetings, Starr et. al. (2015) presented a paper that retracts the identity of Rosagammarus as an amphipod. The fossil is actually the right half of a decapod tail.

https://gsa.confex.com/gsa/2015NC/webprogram/Paper256121.html
In Memoriam Michel Ledoyer (1937-2015)

Le 27 mars 2015, Michel Ledoyer nous quittait. Comment parler d’une personnalité comme Michel ? Enthousiaste, infatigable, ingénieux, chaleureux, imprévisible, d’une intelligence hors du commun !

Nous avons fait nos études d’Océanographie ensemble, sous la direction du Professeur Jean Marie Pérès, promotion 1959-1960. J’étais marseillaise, lui venait de Rennes, la Provençale et le Breton, ont rapidement fait équipe. Nous avons par la suite travaillé côte à côte jusqu’à cette Faune des Amphipodes de Méditerranée qui sous la chaleureuse et paternelle organisation de Sandro Ruffo réunit tous les Amphipodologues prêts à tenter cette improbable aventure remplie d’embuches qui dura une vingtaine d’années et qui fut un de ses derniers chantiers important.

Michel était toujours prêt à tous les défis : aller traquer les Crustacés de la faune vagile dans tous les milieux, depuis la surface jusqu’au bathyal, de la Méditerranée à l’Atlantique, de Kerguelen au Canada, du Mexique à Madagascar, le jour et la nuit, avec toutes les méthodes: fauchoir, chalut, à pied, en scaphandre autonome ou avec un navire hauturier !

Au laboratoire, Michel était un travailleur infatigable, avec des litres de café, dans un brouillard de fumée de cigarettes, les prélèvements, collections de Cumacés, de Mysidacés, de Décapodes et surtout d’Amphipodes livraient leurs secrets. Jean Marie Pérès et Jacques Picard, dans leur projet de décrire le benthos mondial et d’en démontrer l’unité écologique nous avaient distribué comme sujets de thèse, soit les groupes zoologiques, soit les niches écologiques : à moi étaient revenus les peuplements de substrats durs, à Henri Massé les peuplements de sable, à Gérard Bellan les Polychètes, à Jean Vacelet les Eponges, … à Michel la faune vagile.

Entre les prélèvements, les descriptions, les publications, les cours, car Michel avait choisi très tôt la voie de l’enseignement, ce qui lui a permis de transmettre son enthousiasme pour ce qu’il appelait « les petites bêtes » à plusieurs générations de naturalistes, il n’arrêtait jamais. En fait Michel était profondément un naturaliste, la Nature sous toutes ses formes l’intéressait et lorsqu’il ne travaillait pas il allait parcourir la campagne pour récolter des escargots ou montrer les insectes à ses enfants. Lorsqu’il prit sa retraite, assez désenchanté
par un monde universitaire devenu de plus en plus dur et stérilisant, il décida de tout laisser et d’aller soigner ses roses, chez lui, à Pleubian en Bretagne, heureux, ayant probablement trouvé la paix qu’il avait cherché toute sa vie. Depuis, il manque à ses amis.

Denise Bellan-Santini

Michel Ledoyer

le-

us
	on

27	

March	

2015

How
to
describe
a
personality
as
Michel? Enthousiastic, tireless, ingenious, warm, unpredictable, and of uncommon intelligence.

We did our studies in oceanography together, under the direction of Prof. Jean Marie Pérès, crowned with a PhD in 1959-1960. I was from Marseille, he from Rennes, A Provencal and a Breton, and we quickly became a team. Later we worked side by side on the Fauna of Mediterranean Amphipoda, and under the warm and paternal leadership of Sandro Ruffo succeeded in finishing this improbable adventure full of pitfalls; this project lasted some twenty years and became one of Michel’s last important pieces of work.

Michel was always ready for all setbacks: let’s go and track the motile epifauna in all habitats, from the surface to the bathyal, from the Mediterranean to the Atlantic, from Mexico to Madagascar, day or night, with all different methods: hand-netting, trawling, on foot, free-diving or with a sea-going vessel.
In the lab, Michel was a tireless worker; with liters of coffee, in a fog of cigarette smoke, all the samples of Cumacea, Mysidacea, Decapoda and above all Amphipoda gave up their secrets.

Jean Marie Pérès and Jacques Picard, as part of their project of describing the global benthos and showing its ecological unity, had given each of us as subject for our theses either a taxonomic group or ecological niches: to me fell the populations of hard substrates, to Henri Massé those of sands, to Gérard Bellan the polychaetes, to Jean Vacelet the sponges,, and to Michel the motil epifauna.

In between the collecting, descriptions, the courses,— as Michel very early had chosen the road of teaching, which permitted him to transmit his enthusiasm for what he called ‘the beasties’ to several generations of naturalists—, he never stopped and rested. In fact, Michel was in reality a true naturalist. Nature in all its forms fascinated him, and when he did not work he was out in the field to collect snails for consumption, or to show insects to his children. When he retired, quite disenchanted with the university world which had become more and more hard and sterile, he decided to leave it all completely and to go and grow roses, at home, in Pleubian in Betagne, a happy man, probably finally having found the peace that he has sought his entire life. Since then, he quite lost contacts with his friends.

Denise Bellan-Santini

(English translation by Wim Vader)
In July 2013 the World Amphipoda Database [http://www.marinespecies.org/amphipoda] was launched. It is hosted by the World Register of Marine Species (WoRMS [www.marinespecies.org]). In order to make this work, thirty amphipod taxonomists agreed to give their time and expertise to work on improving and updating the information on their specialist area of the database. With nearly 10,000 species to look after, we needed to get more experts involved.

The World Amphipoda Database arose from a merger in 2010 of the World Amphipoda List compiled over many years by Jim Lowry (Australian Museum), with the European Register of Marine Species (ERMS) amphipod list, compiled by Mark Costello with the help of Denise Bellan-Santini and Jean-Claude Dauvin, and edited up until 2013 with significant additions from the RAMS Amphipoda (Antarctic) list (compiled by Claude De Broyer) and from other regional editors.

The aim of a World Register is to provide an authoritative and comprehensive list of names of marine organisms, including information on synonymy. While highest priority goes to valid names, other names in use are included so that this register can serve as a guide to interpret taxonomic literature. Each entry can hold a lot of information – the correct name and synonyms, the original description, taxonomic references, plus habitat, distribution and bathymetric data.

Information from the World Amphipoda Database is fed into the World Register of Marine Species (WoRMS), which, as the most comprehensive primary source of quality-assured information on marine species, is the international standard in its field. Beneficiaries of the information – which is often accessed through other databases that are fed by WoRMS – include scientists, consultants, conservationists, journalists, the general public, and many others. While the data is managed and hosted by WoRMS, the WAD holds data on ALL amphipod species, whether Marine, Freshwater or terrestrial. There are currently 9,747 species listed.

It is, of course, an ever growing database, with updates of new taxa and edits to older entries being made all the time. It also contains many errors and has areas for improvement. Tammy Horton, who coordinates the editorial team and undertakes much of the editing points out that there is a priority for entering information into the database. The first priority is of course to include all valid species names. This alone takes time as every...
new species added (149 taxa added for 2013, 125 taxa added for 2014) needs to have additional data entered.

These other pieces of information are critical to the usability of the dataset. We ensure the authority is included and correct and the original description is linked as a reference, but preferably also made available as a PDF. This is particularly important when adding older taxa as some older literature is hard to find. Synonyms can also be added to the database and linked to the valid name. In this way you can always find the valid name even if your list is old and changes have taken place (as often happens in taxonomy). A literature reference that recorded the change in taxonomic status should always be linked to the taxon page when making such changes so that the user can check this. All information in the World Amphipoda Database is a reflection of what is already published.

Two projects are currently underway to make improvements to the WAD and also to publish checklists using the database. These include a checklist of freshwater taxa (to include distributional data) and a checklist of deep-sea taxa (to add depth range data). The World Amphipoda Database is also a place where we host our beloved Amphipod Newsletter (see the main page – menu item on the right hand side). Current efforts are underway to scan all of the older ones but we do have already 2000 to 2014

If you wish to report any errors or would like to contribute to the database please contact the coordinating editor Tammy Horton.

Please remember to cite the database when using data from it in your publications as:

Bibliography

Once more I want to thank Frank Krapp (Bonn) for his constant and tireless assistance in finding amphipod litterature, as well as those authors who send us editors copies of their recent papers.

Volume 2 of the amphipod fauna of China, again written by professor Ren, has come out; I have ordered it, but as yet not seen it, and its content will therefore first be treated in the bibliography of AN40.

There are many papers, also in this bibliography, where amphipod species, often *Gammarus* or *Hyalella* species, but also others, are used as test animals in toxicology studies. I increasingly wonder, whether any of the colleagues using this bibliography ever has great interest in any of these papers. I have a sneaking suspicion that the users of AN have little or no interest in this type if papers, while the people who ARE interested probably never see the Amphipod Newsletter and its bibliography. I should therefore be very grateful for feedback on this topic: Should we continue to include toxicology papers with amphipods as test animals, or should we skip this type of publications?

My email address still is: wim.vader(at)uit.no

Wim

AKIYAMA, T. 2014. *Circatidal and circadian rhythms in crustacean swimming behavior*. ---- Chapter 4 in Annual, Lunar and Tidal Clocks, Springer (Not seen)

ARIYAMA, H. 2015. Three new species of the *Eriopisa* group (Crustacea: Amphipoda: Eriopisidae) from Japan, with the description of a new genus. ---- *Zootaxa* 3949, 91-110. (Deals with *Paraflagitopisa excavata* n. gen., n. sp. (Misaki town, Osaka pref.), *Psammogammarus lobatus* n. sp. (also Misaki town, Osaka pref.), and *Victoriopisa wadai* n. sp, (Sajio City, Ehime pref.). A key to Japanese species in the *Eriopisa* group is provided.)

ALMON, B., J. PÉREZ, R. BAÑON & J. TRIGO 2014. First record of Caprella mutica from the Iberian Peninsula: expansion southwards in European waters. ---- Marine Biodiversity Records 7, e 30 (Found in the Ria de Arosa, Galicia)

ARIYAMA, H. 2013. Reinstatement of Paragrantidierella (Crustacea: Amphipoda: Aoridae) from Japan, with the description of a new species. ---- Species Diversity 18, 223-235. (Sadly, overlooked earlier. Deals with P. urauchensis n. sp. (Urauchi River, Okinawa pref.) , P. unidentata (Ren), transferred from Grandidierella, and P. minima. A key to the three species is provided.)

BACELA-SPYCHALSKA, K. 2015. Attachment ability of two invasive amphipod species may promote their spread by overland transport. ---- *Aquatic Conservation: Marine and Freshwater Ecosystems*, in press DOI: 10.1002/aqc.2565. (*Dikerogammarus haemobaphes* and *Pontogammarus robustoides*.)

BEDINI, R., L. BONECHI & L. PIAZZI 2014. Mobile epifauna assemblages associated with Cystoseira beds: comparison between areas invaded and not invaded by Lophocladia lallemandii. ---- *Scientia Marina* 78 (3), 425-432. (Many amphipod spp in Table 1)

BELAN, L. S., T. A. BELAN & A. V. MOSCHENKO 2014. (Macrozoobenthic communities along the marine pipeline route at the Lunskoye field (shelf of northeastern Sakhalin) and their long-term variability.). ---- *Izvestia TINRO* 176, 177-188. (In Russian).

BERGMAN, M. P., F. B. REYDA & J. S. HEILVEIL 2015. Host use of Leptorhynchoides thecatus (Acanthocephala) from the Upper Susquehanna River Basin, New York, U.S.A.. ---- *Comparative Parasitology* 82, 109-114. (The intermediate host is an amphipod)

BOVY, H. C., D. BARRIOS-O’NEILL, M. C. EMMERSON, D. C. ALDRIDGE & J. T. A. DICK. Predicting the predatory impact of the “demon shrimp” Dikerogammarus haemobaphes, on native and previously introduced species. ---- *Biological Invasions*, 17, 597-607.

BUNKE, M., M. E. ALEXANDER, J. T. A. DICK, M. J. HATCHER, R. PATERSON & A. M. DUNN 2015. Eaten alive: cannibalism is enhanced by parasites. ---- *Royal Society Open Science* 2, 140369 (infestation by the microsporidan *Pleistophora mulleri* increases cannibalism rate in *Gammarus duebeni celticus*.)

Estuaries and Coasts, in press DOI:10.1007/s12237-015-9984-9. (Stickleback density tends to correlate negatively with amphipod density)

CARR, L. A. & K. E. BOYER 2014. Variation at multiple trophic levels mediates a novel, seagrass-grazer interaction. ---- Marine Ecology Progress Series 598, 117-128. (The introduced amphipod Ampithoe valida in San Francisco Bay)

CARTLIDGE, R., D. NUPEGODA & D. WLODKOWIC 2015. GammarusChip: innovative lab-on-a-chip technology for ecotoxicological testing using the marine amphipod Allorchestes compressa. ---- Proc SPIE 9518 (Not seen)

COLEMAN, C. O. & J. K. LOWRY 2014. *Epimeria rafaeli* sp. nov. (Crustacea, Amphipoda, Epoimeriidae) from Western Australia. ---- *Zootaxa* 3873, 218-232. From the Abrolhos Islands. Rp+The paper provides an annotated list of all *Epimeria* and a synoptic table comparing 9 similar species.)

COLEMAN, C. O. & M. H. THURSTON 2014. A redescription of the type species of *Oedicerina* Stephensen, 1931 (Crustacea, Amphipoda, Oedicerotidae) and the description of two new species. ---- *Zoosystematics and Evolution* 90, 225-247. (Deals with *Oedicerina ingolfi*, *O. vaderi* n. sp. (East Iceland Basin, 2640m) and *O. loerzae* (Chatman Rise, NZ). A key to all *Oedicerina* species is provided.)

COULAUD, R., O. GEFFARD, A. VIGNERON & H. QUÉAU 2015. Linking feeding inhibition with reproductive impairment on Gammarus confirms the ecological relevance of feeding assays in environmental monitoring. ---- Toxicology and Chemistry, 34, 1031-1038. (Not seen)

CUNHA, T. J., A. Z. GUTH, S. BROMBERG & P. Y. G. SUMIDA 2013. Macrofauna associated with the brown alga Dictyota spp (Phaeophyceae, Dictyotaceae) in the Sebastião Gomes Reef and Abrolhos Archipelago, Bahia, Brazil. ---- Continental Shelf Research 70, 140-149. (Amphipods in Table 3; Ampithoidae, esp. Ampithoe ramondi dominant.)

CZARNECKA, M., F. PILOTTO & M. T. PUSCH 2014. Is coarse woody debris in lakes a refuge or a trap for benthic invertebrates exposed to fish predation? ---- Freshwater Biology, 59, 2400-2412. (Dikerogammarus villosus)

n. ssp. and *D. p. stenocephala* n. spp. They all occur at different localities in Lake Baikal.)

De Smet, W. H. 2015. Description of *Pseudingolfiella possessionis* n. sp. (Crustacea, Amphipoda) from sub-Antarctic Ile de la Possession, Crozet archipelago: the second freshwater amphipod known from the Antarctic biome, a human introduction of Gondwanan ancestry? ---- *Zootaxa* 3941, 221-238.

Dedourge-Geffard, O., L. Charron, C. Hofbauer, V. Gaillet, F. Palais, E. Lacaize, A. Geffard & O. Geffard 2013. Temporal pattern of digestive enzyme activities and feeding rate in gammarids (*Gammarus fossarum*) exposed to inland polluted waters. ---- *Ecotoxicology and Environmental Safety* 97, 139-146.

Di Lorenzo, T., M. Cifoni, P. Lombardo, B. Fiasca & D. M. P. Galassi 2014. Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy. ---- *Hydrobiologia*, 743, 139-150.

EINFELDT, A. L. & J. A. ADDISON 2015. Anthropocene invasion of an ecosystem engineer: resolving the history of Corophium volutator (Amphipoda: Corophiidae) in the North Atlantic. ---- Biological Journal of the Linnean Society, in press. (The species was probably introduced in N. America in historical times.)

EL GTARI, M., N. BOURIGUA, M. F. BOUSLAMA, F. CHARFI-CHEIKHROUHA & F. SCAPINI 2014. Experimental changes of the orientation of two populations of Talitrus saltator (Crustacea Amphipoda Talitridae) from Cap Bon (North-eastern Tunisia). ---- Ethology 120, 1-12

ESPINASA, L., A. McCAHILL, A. KAVANAGH, J. ESPINASA, A. M. SCOTT & A. CAHILL 2015. A troglobitic amphipod in the Ice Caves of the Shawangunk Ridge: behavior and resistance to freezing. ---- Subterranean Biology 15, 95-104. (Stygobromus allegheniensis can survive being frozen in solid ice)

FAASSE, M., G. v. MOORSEL & W. LENGKEEK 2014. (The amphipod Lysianassa ceratina (Walker, 1889) in The Netherlands. ---- Het Zeepaard 74, 48-54. (In Dutch. Contains a key to Dutch lysianassoid genera. There is a good photograph of this species on the cover of this issue.)

FEDOSEEVA, E. V. & D. I. STOM 2015. Preference and avoidance reactions in some Baikalian amphipods and Holarctic Gammarus lacustris Sars, 1863 in response to a
humic-containing preparation. --- *Inland Water Biology* (Biologiya Vnutrennikh Vod) 8, 130-135. (The Baikalian amphipods are *Gmelinoides fasciatus*, *Eulimnogammarus cyanus*, *E. vittatus* and *Ommatogammarus flavus*.)

FEINER, M., S. BEGGEL, N. JAEGGER & J. GEIST 2014. Increased RO concentrate toxicity following application of antiscalants—Acute toxicity tests with the amphipods *Gammarus pulex* and *Gammarus roeseli*. --- *Environmental Pollution*, 197, 309-312.

FORSSTRÖM, T., A. M. FOWLER, I. MANNINEN & O. VESAKOSKI 2015. An introduced species meets the local fauna: predatory behavior of the crab *Rhithropanopeus harrisii* in the Northern Baltic Sea. --- *Biological Invasions*, in press. (Predatory pressure in the field appears less than feared after laboratory experiments.)

Canal and marine bioinvasions in the Mediterranean Sea. ---- *Biological Invasions*, 17, 973-976.

GALVAN-VILLA, C. M. & M. AYON-PARENTE 2015. *Caprella suprapiscis* sp. nov. (Crustacea: Amphipoda: Caprellidae) from the Pacific coast of Mexico. ---- *Zootaxa*, 3956, 569-578. (This species (from Bahia Chamelas, Isla Cocina) lives on the back of the scorpionfish *Scorpaena mystes* in shallow water.)

GASCA, R., R. HOOVER & S. H. D. HADDOCK 2014. New symbiotic associations of hyperiid amphipods (Peracarida) with gelatinous zooplankton in deep waters off California. ---- *Journal of the Marine Biological Association UK*, 95, 503-511. (51 different associations are described, including some concerning *Vibilia* spp and salps.)

GOLDSTEIN, M. C., H. S. CARSON & M. ERIKSEN 2014. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. ---- *Marine Biology*, 161, 1441-1453. (Seven amphipod species, mostly largely unidentified, in Table 1.)

HENDRICKX, M. E. & M. AYON-PARENTE 2014. Two new species of deep-water Caprella (Peracarida, Amphipoda, Caprellidae) from the Pacific coast of Mexico collected during the TALUD XIV cruise, with a checklist of species of Caprellidae recorded for the eastern Pacific. ---- *Crustaceana* 87, 41-63. (*C. calderoni* n.sp. (from the sea urchin *Spatangus californicus*) and *C. mercedesae* n. sp. (from hydroids) both from the northern part of the central Gulf of California)

HIKI, K. & F. NAKAJIMA 2014. *Toxicity of road dust under various salinities to an estuarine amphipod* Grandidierella japonica. ---- 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7-12 September 2014, 8 pp

HOSONI, T. 2014. Temperature explains reproductive dynamics in caprellids at different latitudes. ---- *Marine Ecology Progress Series* 511, 129-141. (Caprella cristibrachium, *C. danilevskii* and *C. scaura*.)

HOU, Z., B. SKET & S. LI 2014. Phylogenetic analyses of Gammaridea Crustacea reveal different diversification patterns among sister lineages in the Tethyan region. ---- *Cladistics* 30, 352-365. (An important paper, which in time also will lead towards taxonomic changes)

HUGHES, L. E. 2015. Ampithoidae and Maeridae amphipods from Timor-Leste (Crustacea: Peracarida). ---- *Records of the Australian Museum* 67, 83-108. (Deals with *Ampithoe atauro* n. sp., *Ceradocus serratus*, *Elasmopus alalo*, *E. hooheno*, *E. tibarensis* n. sp., *Linguimaera christorei* n. sp., *Mallacoota latibrachium*, *Parelasmopus cymatilis*, and *Quadrimaera metinaro* n. sp. . All material was collected along the north coast of Timor-Leste.)

HUGHES, L. E. & R. A. PEART 2015. Three new species of *Exampithoe* from Australia and New Zealand (Amphithoidae: Amphipoda: Crustacea). ---- *Zootaxa* 3918, 559-570. (Deals with *E. burrowwo* n. sp. (Port Jackson, NSW, Aus.), *E. taylori* n. sp. (Leigh, NZ) and *E. waratah* n. sp. (Walkerville, Vict., Aus). A key to Exampithoinae is provided.)

JOHANSEN, P.-O. & W. VADER 2015. New and little known species of Lepechinella (Crustacea, Amphipoda, Lepechinellidae) and an allied new genus Lepesubchela from the North Atlantic. ---- European Journal of Taxonomy 127, 1-35 (Deals with Lepechinella arctica, L. norvegica n. sp. (Teistengrunnen, N. Norway), L. schellenbergi (revived), L. victoriae n. sp. (Norwegian Arctic, 83°N, 2350m), and Lepesubchela christinae n. gen., n. sp. (N. Atlantic, N. of Rockall, 1414m). Keys to lepechinellid genera and to Atlantic and Arctic Lepechinella species are provided.

KAIM-MALKA, R. A. 2014. New Lysianassoid amphipods from the North Eastern Atlantic Ocean. ---- Zootaxa 3821, 551-566. (Deals with Ambasia anophthalma n. sp. (Bay of Biscay, 1460m) and Bathymaryllis biscayensis n. sp. (Bay of Biscay, 1460m). A key to Bathymaryllis spp is provided).

KILGALLEN, N. M. 2014. Three new species of Hirondella (Crustacea, Amphipoda, Hirondelleidae) from hadal depths of the Peru-Chile trench. ---- Marine Biology Research 11, 34-48. (Deals with H. sonne n. sp. (17°25'S, 73°37'W, 7050m), H.thurstoni n. sp (23°22'S, 71°20'W, 8072m) and H. wagneri n. sp. (7°48'S, 81°17'W, 6173m). A key to all Hirondella spp is provided)

KILGALLEN, N. M. & J. K. LOWRY 2015. A review of the scopelocheirid amphipods (Crustacea, Amphipoda, Lysianassoidae) with the description of new taxa from Australian waters. ---- Zoosystematics & Evolution 91, 1-43. (Deals with the Scopelocheiridae, with two new subfamilies, the Scopelocheirinae and the Paracallisominae. A key to the genera is provided. Aroui onagawae is transferred from Scopelocheirus. Paracallisomopsis baljaevi is redescribed, as is Scopelocheirus crenatus. The new genus Austrocallisoma (Paracallisominae) is erected for A. jerryi n. gen., n. sp. from deep water off Sydney, 1800m. Bathycallisome pacifica is illustrated and shown to be a junior synonym of B. schellenbergi. Eucallisoma glandulosa is illustrated, as is Paracallisoma alberti. New species are P. woolgoolga (Coffs Harbour, NSW) and P. zivianii (Flynn Reef, Queensland). Also Scopelocheiropsis abyssalis is illustrated, and a new genus Tayabasa n. gen., is erected for Eucallisoma barnardi.)

KOESTER, M. & R. GERGS 2014. No evidence for intraguild predation of Dikerogammarus villosus (Sowinsky, 1894) at an invasion front in the Untere Lorze, Switzerland. ---- Aquatic Invasions 9,489-497.

KRAPP-SCHICKEL, T. 2015. Minute but constant morphological differences within members of Stenothoidae: the Stenothoe gallensis group with four new members, keys to Stenothoe worldwide, a new species of Parametopa and Sudanea n. gen. (Crustacea: Amphipoda). ---- Journal of Natural History, in press (Deals with Stenothoe gallensis, S. cattai (rev.), S. crenulata (rev.), S. dentirama, S. andamanensis n. sp. (Havelok, Andaman Islands), S. clavetta n. sp. (Bermuda), S. himyara n. sp. (Port Sudan), S. senegalensis n. sp. (Dakar, Senegal), S. valida, S. aucklandica, S. macrophthalma and S. verrucosa.. Keys to Stenothoe from different parts of the world are provided. Moreover, also described are Parametopa gorea n. sp. (Gorée, Senegal), with a key to Parametopa, and Sudanea inopinata n. gen., n. sp from Port Sudan.)

KRAPP-SCHICKEL, T. & S. LO BRUTTO 2015. Two new Mediterranean Stenothoe (Crustacea, Amphipoda) from the coast of Israel. ---- Marine Biodiversity Records 8, e84, 5 pp. (S. bella n. sp. and S. levantina n. sp, both collected near Ashdod in shallow water.)

KRAPP-SCHICKEL, T & B. SKET 2015. Melita mirzajanii n. sp. (Crustacea. Amphipoda: melitidae), a puzzling new member of the Caspian fauna. ---- Zootaxa 3948, 248-262. (from the harbor of Bandar-e-Anzali, Iran. Contains a key to those species of Melita that lack dorsal teeth and a second article on U3.)

KRUSE, S., E. A. PAKHOMOV, B. P. V. HUNT, Y. CHIKARAISHI, N. O. OGAWA & U. BATHMANN 2015.Uncovering the trophic relationship between Themisto gaudichaudii and Salpa thompsoni in the Antarctic Polar Frontal Zone. ---- Marine Ecology Progress Series 529, 63-74. (Themisto is a predator on Salpa.)

This beautiful paper deals with *Quasimelita formosa*, *Q. quadrispinosa*, *Q. tolyza* n. sp. (NE shelf of Sakhalin Island), *Q. jarettii* n. sp. (a misprint for *jarrettii*?)(Chikhacheva Bay, Tatar Strait), *Q. serraticoxae* (NE shelf of Sakhalin Island), and *Melitoides kawai* n. sp. (also NE shelf of Sakhalin Island). Keys to *Quasimelita* and *Melitoides* are provided, and the relationships of these genera analyzed.

LAGRUE, C., R. WATTIER, M. GALIPAUD, Z. GAUTHIER, J.‑P. RULLMANN, C. DUBREUIL, T. RIGAUD & L. BOLLACHE 2014. Confrontation of cryptic diversity and mate discrimination within *Gammarus pulex* and *Gammarus fossarum* species complexes. ---- *Freshwater Biology* 59, 2555-2570. (High cryptic diversity is found in these two species, and also some degree of mate discrimination. However, precopulatory pairs of specimens from different MOTU's occur regularly and lead to successful mating.)

LAHIVE, E., J. O’HALLORAN & M. A. K. JANSEN 2014. A marriage of convenience: a simple food chain comprised of *Lemna minor* (L.) and *Gammarus pulex* (L.) to study the dietary transfer of zinc. ---- *Plant Biology*, 12, 75-81.

LAVERTY, C., J. T. A. DICK, M. E. ALEXANDER & F. E. LUCY 2014. Differential ecological impacts of invader and native predatory freshwater amphipods under environmental change are revealed by comparative functional responses. ---- *Biological Invasions* 17, 1781-1770. (The native species is *Gammarus duebeni celticus*, the invader *Gammarus pulex.*)

LIM, J. H. C., B. H. R. OTHMAN & I. TAKEUCHI 2015. Description of Orthoprotella bicornis, new species, and Paraprotella teluksuang, new species (Crustacea: Amphipoda) from Johor, Malaysia with special references to unusual sexual bias towards females in Paraprotella. ---- Raffles Bulletin of Science 63, 33- 48. (With keys to all Orthoprotella and Paraprotella species. No males of P. teluksuang were found among 360 females.)

LOWRY, J. K. & N. M. KILGALLEN 2014. New tryphosine amphipods from Australian waters (Crustacea, Amphipoda, Lysianassoida, Lysianassidae, Tryphosinae). ---- Zootaxa 3844, 1-64. (Deals with Cedrosella fomes, C. cito n. sp. (Point Hicks, Vic., 1840m), Lysianella petalocera (Norwegian material), L. lui n. sp. (SSE of Nowra, NSW, 1000m), L. moonamaona n. sp. (Jervis Bay, NSW), Microlysisia xenokeras (S. African material), M. soela n. sp. (North West Shelf, W. Aus.), Paralysisanopsis odhneri (S. Georgia), P. capricornia n. sp. (Fitzroy Reef, Qld), P. dandenong n. sp. (Jervis Bay, NSW), P. elliotti (transferred from Rhinolabia), P. cf jebbi, P. pomona n. sp. (Point Hicks, Vic.), P. ruffoi n. sp. (Darwin, NT), Patonga new genus, erected for P. nona n. sp. (Long Reef Point, NSW), Tasmanosa new genus, erected for T. tasman n. sp. (Tasman Sea, Tas., 1000m) and T. toogooloo n. sp. (Long Reef Point, NSW), Tryphosites longipes (Norwegian material), T. calmani n. sp. (Long Reef Point, NSW), T. psittacus n. sp. (Broken Bay, NSW).)

LOWRY, J. K. & N. M. KILGALLEN 2014. A generic review of the lysianassid family Uristidae and descriptions of five new taxa from Australian waters (Crustacea, Amphipoda, Uristidae). ---- Zootaxa 3867, 1-92. (This important review deals with all uristid genera: Abyssorchomene, where the present authors keep A. plebs and A. rossi (contra d’Udekem d’Acoz & Havermans). A key to the genus is provided. A. distinctus and A. gerulicorbis (transferred from Orchomenella) are discussed. In the genus Anonyx, A. nugax is illustrated, while A. lebedi is removed to Tmetonyx and 3 other Gurjanova species are considered incertae sedis. Caeconyx caeculus, Cicadosa cicadoides, Eclecticus eclecticus and Des griffini n. gen. n. sp. (Broken Bay, NSW, Austr.) are fully illustrated. The genus Euonyx is reviewed, and E. conicurus is considered incertae sedis. E. chelatus is fully illustrated, and E. urania n. sp. (Broken Bay, NSW, Austr.) and E. xarifa n. sp. (Cape York, Qld, Austr.) are described. A key to Euonyx is provided. Galatheella galatheae, Gippsia jonesae, and Ichnopus taurus are illustrated, as is Koroga megalops, which is recorded for the first time in Australia. Kyska dalli, Menigrates obtusifrons and Menigratopsis svennilssoni are illustrated, as are Nagada uwedoae, Onisimus edwardsi and Paralibrotus setosus. The genus Parschisturella is reviewed and P. simplex, P. martrudan n. sp. (Broken Bay, NSW, Austr.), P. medora n. sp. (S. of Point Hicks, Vic., Austr.) and P. pilot n. sp. (near Cape Sorell, Tasm., Austr.) are described and illustrated. In the genus Stephonyx, S. biscayensis is illustrated, as are S. arabiensis (new for Australia) and S. pirloti, while S. rafaeli n. sp. was found off Wollongong, NSW, Austr.. Tmetonyx cicada is illustrated, while in the genus Uristes most species are removed: U. personis to Cedrosella, U. abyssalis tentatively to Gronella, U. barbatipes to Tasmanosa, U. serratus and U. yamana to a new uristid genus, U. velia to Cheirimedon, and U. adarei, U. antennibrevis, U. californicus, U. mediator, U. stebbingi and U. sulcus all to Tryphosella. This leaves only U. gigas and U. subchelatus in the genus Uristes and these two are illustrated. Finally, also Ventiella sulfuris is illustrated.)

LOWRY, J. K. & N. M. KILGALLEN 2015. Debroyerella gen. nov. and Ulladulla gen. nov., two new lysianassoid genera (Crustacea, Amphipoda, Lysianassoidea). ---- Zootaxa 3920, 153-162. (The genus Debroyerella (Uristidae) is erected for Cheirimedon similis (type), Ch. fougneri and Ch. solidus. The genus Ulladulla (Tryphosinae) is erected for U. selie n. sp. (Cape Otway, Victoria, Aus.))

LOWRY, J. K. & R. T. SPRINGTHORPE 2015. The tropical talitrid genus *Floresorchestia* (Crustacea, Amphipoda, Talitridae). ---- *Zootaxa 3935* (1), 1-68. (This monograph describes and illustrates *F. andrevo* n. sp. (Madagascar= *Orchestia anomalas* s. Ledoyer, 1972), *F. anomalas*, *F. floresiana*, *F. itampolo* n. sp. (Itampolo, Madagascar), *F. kalili* n. sp. (New Ireland, Bismarck Archipelago; = *O. anomalas* s. Bousfield, 1971), *F. laurenas* n. sp. (Timor-Leste), *F. malayensis*, *F. oluanpi* n. sp. (Taiwan), *F. papeari* n. sp. (Tahiti), *F. serejoae* (Cooktown, Queensland), *F. seringat* n. sp. (Lazarus island, Singapore), *F. thienemannii* (transferred from Orchestia), *F. yap* n. sp. (Yap, Micronesia), *F* sp 1, 2 and 3. A key to adult males is provided.)

LOWRY, J. K. & R. SPRINGTHORPE 2015. Coastal Talitridae (Amphipoda: Talitroidea) from north-western Australia to Darwin with a revision of the genus *Cochinorchestia* Lowry & Peart, 2010. ---- *Zootaxa 3985*, 151-202. (Deals with *Australorchestia tantabiddyensis* n. sp. (Tantabiddy Rockholes Cave, NW Cape Peninsula, W. Austr.), *Cochinorchestia lindsayae* n. sp. (Darwin, NT), *C. metcalfeae* n. sp. (Darwin, NT), *C. morini* (transferred from *Parorchestia*), *C. morrumbene* n. sp. (Morrumbene estuary, S. Mozambique), *C. notabilis*, *C. poka* n. sp. (Ambon, Indonesia), *C. tulear* n. sp. (Tuléar, Madagascar), *C*. sp. (Vietnam), *Floresorchestia limicola* (transferred from *Chelorchestia*), *Microchestia ntensis* n. sp. (Port Keats, NT), *Talorchestia dampieri* n. sp. (King Sound, W. Austr.), *Tropicorchestia derbyensis* n. gen., n. sp. (Derby, W. Austr.) and *T. glasbyi* n. sp. (Darwin, NT). A key to *Cochinorchestia* spp is provided.)

LYUBINA, O. S., V. F. BRYAZGIN & S. V. RAZNOVSKAYA. The composition and distribution of benthic amphipods (Crustacea: Amphipoda) in the southern Barents Sea. ---- *Russian Journal of Marine Science 40*, 241-254. (Data on 144 spp; a number of boreal spp are for the first time recorded from the area.)

MacNEIL, C. & J. T. D. DICK 2014. The enemy of my enemy is my friend: intraguild predation between invaders and natives facilitates coexistence with shared invasive prey. ---- *Biology Letters 2014* 10 20140398. (On the relations between the native *Gammarus duebeni celticus*, the older invader *Gammarus pulex*, and the more recent invader, *Crangonyx pseudogracilis*, in Ireland.)
MANTENI, R. 2014. Role of cave features for aquatic troglobiont fauna occurrence: effects on ‘accidentals’ and troglobiotic organisms distribution. ---- *Acta Zoologica Academia Scientiarum Hungaricae* 60, 257-270.

MARCHINI, A., J. FERRARIO, A. SFRISO & A. OCCHIPINTI-AMBROGI 2015. Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea. ---- *Biological Invasions*, in press. (Caprella scaura only amphipod)

MEKHANIKOVA, I. V. & T. YA. SITNIKOVA 2014. Amphipods (Amphipoda, Gammaridea) at the Gorevoy Utes oil and Methane seep, Lake Baikal. ---- *Crustaceana* 87, 1500-1520. (23 spp found, among which two *Echiuropus* species may be new. *Leptostenus leptocerus* is likely to be an indicator for methane and oil discharge areas.

MEYER, K. S., T. SOLTWEDER & M. BERGMANN 2014. High biodiversity on a deep-water reef in the eastern Fram Strait. ---- *PLos One* 9(8), e105424.

MOMTAZI, F., A. SARI & A MAGHSOUDLOU 2014. New species and new record of hadzioids (Amphipoda: Senticaudata, Hadzioida) from the Persian Gulf, Iran. ---- *Zootaxa* 3881, 440-452. (Deals with *Elasmopus menurte*, and *Melita persia* n. sp. (Qeshm Island))

MOORSEL G. van, M. FAASSE & W. LENGKEEK 2014. (The caprellid *Caprella tuberculata* Guérin, 1836 on a wreck in the Netherlands) ---- *Het Zeepaard* 74, 66-70 (In Dutch. The first autochtonous report of this species in Dutch waters.)

MORINO, H. & H. MIYAMOTO 2015. Redefinition of *Paciforchestia* Bousfield, 1982 and description of *Pyatakovestia* gen. nov. (Crustacea, Amphipoda, Talitridae). ---- *Bulletin of the National Museum of Natural Sciences, Ser. A* 41, 105-121. (*Pyatakovestia* n. gen has as type species *Orchestia pyatakovi*, and as additional species *Paciforchestia gageoensis*, *P. iwasai* n. sp. (Ibaraki) and *P. boninensis* n. sp. (Ogasawara Islands). A key is provided)

MYERS, A. A. & F. MOMTAZI 2015. *Elasmopus alkhiranensis* sp. nov., a new species of amphipod (Senticaudata, Maeridae) from the Persian Gulf. ---- *Zootaxa* 3973, 185-194. (In the *pectenicrus*—group of species, found at several localities in the Persian Gulf.)

NEUPARTH, T., C. MARTINS, C. B. de los SANTOS, M. H. COSTA, I. MARTINS, P. M. COSTA & M. M. SANTOS 2014. Hypocholesterolaemic pharmaceutical simvastatin disrupts reproduction and population growth of the amphipod *Gammarus locusta* at the ng/L range. ---- *Aquatic Toxicology* 155, 337-347.

PAVLICHENKO, V. V., M. V. PROTOPOPOVA, M. TIMOFEEV & T. LUCKENBACH 2014. Identification of a putatively multixenobiotic resistance related Abcb1 transporter in
amphipod species endemic to the highly pristine Lake Baikal. ---- *Environmental Science and Pollution Research* 22, 5453-5465.

PAZ-RIOS, C. E. & P.-L. ARDISSON 2014. *Elasmopus yucalpeten* sp. n. (Crustacea, Amphipoda, Maeridae) from the northern Yucatan coast, with a key for the genus in the Gulf of Mexico and biogeographic comments. ---- *Zoosystematics & Evolution* 90, 95-104

PAZ-RIOS, C., J. M. GUERRA-GARCIA & P.-L. ARDISSON 2014. Caprellids (Crustacea: Amphipoda) from the Gulf of Mexico, with observations on *Deutella mayeri*, redescription of *Metaprotella hummelincki*, a taxonomic key and zoogeographic comments. ---- *Journal of Natural History* 48, 2517-2578. (Deals with 17 spp, among which the following are illustrated: *Caprella equilibra, C. penantis, C. scaura, Deutella incerta, D. mayeri, Hemiaegina minuta, Mayerella redunda, Metaprotella hummelincki, Paracaprella guerraragac, P. pusilla, P. tenuis, Pseudoegina bescaynensis, Hemiproto wigleyi, and Phtisica marina*. A key is provided.)

PEART, R. A. 2014. Two new genera and four new species of amphithoids (Amphipoda: Ampithoidae) from southern Australian waters. ---- *Journal of Crustacean Biology* 34, 886-907. (Deals with *Austrothoe* n. gen with type species *A. jimlowryi* n. sp. (Portland, Vic.) and further species *A. ochos* n. sp. (near Cape Naturaliste, W. Austr.), as well as *Paranexes* n. gen. with type species *P. yallingup* n. sp. (Yallingup, W. Austr.) and further species *P. gallaharai* n. sp. (Cape Banks, NSW). A key to amphithoid genera is provided.)

PEREZ-SCHULTHEISS, J. 2015. A new species of *Aristias* Boeck, 1871 (Amphipoda, Gammaridea: Aristiidae) from Aysén Region, Chile. ---- *Biodiversity and Natural History* (2015)1, 35-40. (*A. linnaei* n. sp. from Traiguen Island, Aysén Region, Chile.)

PÖCKL, M. 2014. (Freshwater amphipods: declaration of love—self-reflection of a so-called 'specialist'.) ---- *Denisia* 33, 369-392. (In German. A moving and most interesting effort to explain why someone works all his life on this special group of animals.)

RASMUSSEN, T. K. & H. S. RANDHAWA 2015. Factors influencing spatial variation and abundance of a mermithid parasite in sand hoppers. ---- Parasitological Research 114, 895-901. (Thaumamermis zealandica in Bellorchestia quoyana in New Zealand.)

SANCHEZ-MOYANO, J. E., L. GARCIA-ASENCIO & J. M. GUERRA-GARCIA 2014. Littoral caprellids (Crustacea: Amphipoda) from the Mexican Central Pacific coast, with the description of four new species. ---- *Journal of Natural History* 49, 77-117. (Deals
with *Aciconula acanthosoma*, *Caprella equilibra*, *C. mendax*, *C. pitu* n. sp. (Isla de los Pajaros, Mazatlan, found on gorgonians), *Liropus isabelensis* n. sp. (Cerro Pelon, Isla Isabel), *Paracaprella carballoi* n. sp. (Isla de los Pajares, Mazatlan), and *Paracaprella isabelae* n. sp. (Las Monas, Isla Isabel).)

SCAPINI, F. 2014. Behavior of mobile macrofauna is a key factor in beach ecology as response to rapid environmental changes. ****Estuarine, Coastal and Shelf Science* 150, 36-44.

SCHIAPARELLI, S., M. C. ALVARO, N. KILGALLEN, A. SCIINTA & A.-N. LÖRZ 2015. Host-shift speciation in Antarctic symbiotic invertebrates: further evidence from the new amphipod species *Lepidepecreella debroyeri* from the Ross Sea? ****Hydrobiologia*, in press. (This new species, from shallow water in the Terra Nova Bay, is an ectoparasite of the sea urchin *Sterechinus neumayeri*. It also hosts tantulocarid hyperparasites, the second such case with an amphipod host)

SCHMIDLIN, L., S. von FUMETTI & P. NAGEL 2015. Copper sulphate reduces the metabolic activity of *Gammarus fossarum* in laboratory and field experiments. ****Aquatic Toxicology* 161, 138-145.

chemically deterrent macroalgae. ---- *Marine Biology* 162, 425-433. (*Gondogeneia antarctica*)

SCHRÖDER, M., M. SONDERMANN, B. SURES & D. HERRING 2015. Effects of salinity gradients on benthic invertebrate and diatom communities in a German lowland river. ---- *Ecological Indicators* 57, 236-248. (A study from the Lippe river)

SELTENRICH, N. 2015. New link in the food chain? Marine plastic pollution and seafood safety. ---- *Environmental Health Perspectives* 123, 34-41

SENSA, A. R., L. P. ANDRADE, L. P. CASTELO-BRANCO & R. L. FERREIRA 2014. *Spelaeogammarus titan*, a new troglobitic amphipod from Brazil (Amphipoda: Bogidielloidea: Artesiidae). ---- *Zootaxa* 3887, 55-67. (From a cave in St Maria de Vitoria, Bahia state); the animals can get up to 18 mm long! Table 1 compares all *Spelaeogammarus* species.)

SEREJO, C. S. 2014. A new species of Stilipedidae (Amphipoda: senticaudata) from the South NMid-Atlantic Ridge. ---- *Zootaxa* 3852, 133-140. (*Alexandrella setosa* n. sp from from the Walvis Ridge Sector, 4120m. With a key to all *Alexandrella* species.)

SIDOROV, D. A., A. A. GONTCHARIV, D. M. PALATOV, S. J. TAYLOR & A. A. SEMENCHENKO 2015. Shedding light on a cryptic cavernicole: A second species of Zenkevitchia Birstein (Crustacea, Amphipoda, Typhlogammaridae) discovered via molecular techniques. ----Subterranean Biology 15, 37-55. (Z. jakovi Sidorov n. sp. (Gultipshi district, Abkhazia, Kaukasus); the species is morphologically almost identical to Z. admirabilis, but molecularly clearly different.)

are transferred to the Phoxocephalopsidae; a key to the genera of that family is provided. The genus *Urothoe* is in need of a revision. Two new urothoid genera are here established: *Carangolioides* n. gen with type species *C. castellatus* n. sp and further species *C. hamatus*, both from the Campos Basin, and *Coronaurothoe* n. gen, with as only species *C. rotunda* n. sp., also from the Campos Basin. A key to urothoid genera is also provided.)

STARR, H., T. HEGNA & M. A. S. McMENAMIN 2015. *Epilogue to the tale of the Triassic amphipod: Rosagammarus is a decapod tail (Luning formation, Nevada)*. ---- North Central Section-Geological Society of America, 49th Annual Meeting. (The recently described *Rosagammarus* from the Triassic turns out, after further investigations, not to be an amphipod at all, but part of the tail section of an unidentifiable decapod. Sic transit!)

SUDO, H. & N. KAJIHARA 2015. Mortality of juvenile Japanese flounder *Paralichthys olivaceus* caused by scavenging amphipods and ostracods in trap experiments. ---- *Fishesries Science* 81, 301-308. (*Orchomene naikaiensis* and *O. spec.*)

TAKADA, Y., N. KAJIHARA, S. MOCHIZUKI & T. MURAKAMI 2014. Effects of environmental factors on the density of three species of peracarid crustaceans in micro-
tidal sandy shores in Japan. ---- Ecological Research 30, 101-109. (i.a. Haustorioides japonicus)

TERRON-SIGLER, A., P. PEÑALVER-DUQUE, D. LÉON-MUEZ & F. ESPINOSA TORRE 2014. Spatio-temporal macrofaunal assemblages associated with the endangered orange coral Astroides calycularis (Scleractinia: Dendrophylliidae). ---- Aquatic Biology 21, 143-154. (Many amphipod species in Table 1. Stenothoe cavimana and Lembos sp. are codominant)

UDEKEM d’ACOZ, C. d’ & C. HAVERMANS 2015. Contribution to the systematics of the genus Eurythenes S.I.Smith in Scudder, 1882 (Crustacea: Amphipoda: Lysianassoidea: Eurytheneidae). ---- Zootaxa 3971, 1-80. (A thorough review, dealing with E. andhakarae n. sp. (Antarctic, 3060m), E. gryllys, E. magellanicus (revived), E. maldoror n. sp. (Argentine Basin, 4600m), E. obesus, E. sigmoiderus n. sp. (SW Atlantic, off Brazil, 4480m), and E.thurstoni. A key is provided, but the authors warn, that several as yet undescribed species exist.)

VADEH, W. 2015. (A small collection of amphipods from the light vessel ‘Noordhinder’). ---- *Het Zeepaard* 75, 53-54. (Dutch with English summary. *Caprella tuberculata*, *Jassa marmorata* and *Stenothoe valida*)

VARIGIN, A. Y. 2015. Sexual structure of population and reproduction cycle of *Echinogammarus olivii* (Crustacea, Isopoda) (sic! WV) in the fouling community of Odessa Bay. ---- *Visnyk of Dnipropetrovsk University, Biology, Ecology* 23 (Not seen)

fossarum population inhabiting a low-level contaminated stream. ---- Ecotoxicology, in press.

WANG, N., J. L. KUNZ, S. G. INGERSOLL, C. D. IVEY, W. G. BRUMBAUGH, E. A. GLIDEWELL, M. C. BARNHART, J. BARTOSZEK, B. SHEPHARD & T. NORBERG-KING 2015. Toxicity of hexavalent chromium [Cr(VI)] to two freshwater mussels (Margaritifera falcata, Lampsilis siliquoidea) and an amphipod (Hyalella azteca) with or without a co-stressor. ----Conference paper at SETAC North American Meeting 35, DOI: 10.13140/2.1.1677.2806

WILDISH, D. J. 2014. New genus and two new species of driftwood hoppers (Crustacea: Amphipoda: Talitridae) from northeast Atlantic and Mediterranean coastal regions. ---- Zoosystematics and Evolution 90, 133-146. (The new taxa are Neotenorchestia kenwildishi n. gen, n. sp. from driftwood in the Swale estuary, UK, and Macarorchestia pavesiae n. sp. from Lesina, Adriatic coast of Italy. Orchestia microphthalmalma is transferred to Macarorchestia)

WILDISH, D. J. & S. E. LECROY 2014. Mexorchestia: a new genus of talitrid amphipod (Crustacea, Amphipoda, Talitridae) from the Gulf of Mexico and Caribbean Sea, with the description of a new species and two new subspecies. ---- Zootaxa 3856, 555-577. (Deals with Tethorchestia antillensis (T. karukerae may have been based on immature specimens of this species), and Mexorchestia new genus, with the type species M. carpenteri n. sp. (Marco Island, Florida) and the new subspecies M. carpenteri raduloviciae n. spp (Turneffe Island, Belize).)

WINTERS, A. D. & M. FAISAL 2014. Molecular and ultrastructural characterization of *Haplosporidium diporeiae* n. sp., a parasite of *Diporeia* sp. (Amphipoda, Gammaridea) in the Laurentian Great Lakes (USA). ---- *Parasite Vectors*, in press

WONGKAMHAENG, K., J. NABHITABHATA & P. TOWATANA 2015. Corophiine amphipods of the genera *Chelicorophium* and *Paracorophium* from the lower Gulf of Thailand (Crustacea, Amphipoda, Corophiidae, Corophiinae). ---- *ZooKeys* 505, 35-50. (Deals with *Paracorophium angsupanichae* n. sp. (Middle Songkhla Lake) and *Chelicorophium madrasense* .)

ZAABAR, W., R. ZAKHAMA-SRAIEB, F. CHARFI-CHEIKROUHA & M. S. ACHOURI 2015. Abundance and diversity of amphipods (Crustacea: Peracarida) on shallow algae and seagrass in lagoonal ecosystem of the Mediterranean Tunisian coast. ---- *Zoological*
Studies 54:38 (Ten amphipod species, with *Gammarus aequicauda* the most common one.)

ZEIDLER, W. 2015. A review of the hyperiidean genus *Hyperoche* Bovallius, 1887 (Crustacea: Amphipoda: Hyperidea: Hyperiidae), with the description of a new genus to accommodate *H. shihi* Gasca, 2005. ---- Zootaxa 3905, 151-192. (Another one in Wolfgang’s beautiful series of careful reviews. A key is provided. *H. cryptodactylus* is considered to be a synonym of *H. luetkenides*. *Hyperoche macrocephalus* n. sp. was collected in the mid-eastern Indian Ocean, off Sumatra. The new genus *Prohyperia* is erected to accommodate *Hyperoche shihi*.)

Compilation of Amphipod relevant literature

Please tell the AN editors and Olli Coleman about your recent publications on amphipods - and send a pdf of your paper. Olli can include it on the server and the editors can include it in the bibliography....

List of new amphipod taxa AN39

New families and subfamilies

Paracallisominae Kilgallen & Lowry, 2015
Scopelocheiridae

Scopelocheirinar Kilgallen & Lowry, 2015
Scopelocheiridae

New genera and subgenera

Austrocallisoma Kilgallen & Lowry, 2015
Scopelocheiridae
Austrothoe Peart, 2014
Carangoloides Sittrop, Serejo, Souza-Filho & Senna, 2014
Coronaurothoe Sittrop, Serejo, Souza-Filho & Senna, 2014
Debroyerella Lowry & Kilgallen, 2015
Des Lowry & Kilgallen, 2014
Lepesubchela Johansen & Vader, 2015
Mexorchestia Wildish & Lecroy, 2014
Mizuhorchestia Morino, 2014
Neotenorchestia Wildish, 2014
Nipponorchestia Morino & Miyamoto, 2015
Papuadocus Corbari & Sorbe, 2015
Paraloxotopisa Ariyama, 2015
Paranexes Peart, 2014
Patonga Lowry & Kilgallen, 2014
Prohyperia Zeidler, 2015
Pyatakovestia Morino & Miyamoto, 2015
Sudanea Krapp-Schickel, 2015
Tasmanoosa Lowry & Kilgallen, 2014
Tayabasa Kilgallen & Lowry, 2015
Ulladulla Lowry & Kilgallen, 2015

New species and subspecies

adangensis Wongkamhaeng & Boonyanusith, 2015 (Ceradocus)
alkhiranensis Myers & Morni, 2015 (Elasmopus)
amoto Morino, 2014 (Bousfieldia)
andamanensis Krapp-Schickel, 2015 (Stenothoe)
andhakarae d’Udekem d’Acoz & Havermans, 2015 (Eurythenes)
andrevo Lowry & Springthorpe, 2015 (Floresorchestia)
angsupanichae Wongkamhaeng, Nabhitabhata & Towatana, 2015 (Paracorophium)
ankeri Alves, Johnsson & Senna, 2014 (Dulichiella)
anophthalma Kaim-Malka, 2014 (Ambasia)
atauro Hughes, 2015 (Ampithoe)
bella Krapp-Schickel & Lo Brutto, 2015 (Stenothoe)
bicorns Lim, Othman & Takeuchi, 2015 (Orthoprotella)
bodi Corbari & Sorbe, 2015 (Papuadocus)
biscayensis Kaim-Malka, 2014 (Bathyamaryllis)
boloceropsis Krapp-Schuckel, Häussermann & Vader, 2015 (Stenothoe)
bonensis Morino & Miyamoto, 2015 (Pyatakovestia)
botoi Vonk & Jaume, 2014 (Ingolfiella)
burrowwo Hughes & Peart, 2015 (Exampithoe)
calderoni Hendrickx & Ayon-Parente, 2014 (Caprella)
capricornia Lowry & Kilgallen, 2014 (Paralysianopsis)
carballoi Sanchez-Moyano, Garcia-Asencio & Guerra-Garcia, 2014 (Paracaprellia)
carpenteri Wildish & Lecroy, 2014 (Mexorchestia)
castellatus Sittrop, Serejo, Souza-Filho & Senna, 2014 (Carangoloides)
christinae Johansen & Vader, 2015 (Lepesubchela) Lepechinellidae
christorei Hughes, 2015 (Linguimaera) Maeridae
cito Lowry & Kilgallen, 2014 (Cedrosella) Tryphosinae
clavetta Krapp-Schickel, 2015 (Stenothoe) Stenothoidae
colmani Lowry & Kilgallen, 2014 (Tryphosites) Tryphosinae
curvata Morino & Miyamoto, 2015 (Nipponorchestia) Talitridae
dampieri Lowry & Springthorpe, 2015 (Talorchestia) Talitridae
dandenong Lowry & Kilgallen, 2014 (Paralysianopsis) Tryphosinae
debroyeri Schiaparelli et al., 2015 (Lepidepecreella) Lepidepecreellidae
delectabilis Hughes & Lowry, 2015 (Socarnella) Lysianassidae
derbyensis Lowry & Springthorpe, 2015 (Tropicorchestia) Talitridae
dongtanense Ren & Liu, 2014 (Sinocorophium) Corophiidae
dubiasi Lacerda & Masunari, 2014 (Paracaprella) Caprellidae
evacavta Ariyama, 2015 (Parafflagitopisa) Eriopisidae
dfoscæ Siqueira & Serejo, 2014 (Cheirimedon) Tryphosinae
gallaharae Peart, 2014 (Paranexes) Ampithoidae
glasbyi Lowry & Springthorpe, 2015 (Tropicorchestia) Talitridae
gorea Krapp-Schickel, 2015 (Parametopa) Stenothoidae
griffini Lowry & Kilgallen, 2014 (Des) Unistidae
gurui Senna, Sorrentino, Chatterjee & Schizas, 2014 (Boca) Aristiidae
guryongensis Shin, Coleman, Hong & Kim, 2015 (Peramphiathoe) Ampithoidae
hamatus Sitrop, Serejo, Souza-Filho & Senna, 2014 (Carangoloides) Urothoidae
hanajevi Daneliya & Väinölä, 2014 (Dorogostaikia parasitica) Acanthogammaridae
haraktis Piscart, Merzoug & Hafis, 2013 (Echinogammarus) Gammaridae
helgæ Ringvold & Tandberg, 2014 (Halirages) Calliopiidae
herrerae Ortiz & Winfield, 2015 (Cymadusa) Ampithoidae
himyara Krapp-Schickel, 2015 (Stenothoe) Stenothoidae
hippolyte Kilgallen & Lowry, 2015 (Hippomedon) Tryphosinae
inopinata Krapp-Schickel, 2015 (Sudanea) Stenothoidae
isabelae Sanchez-Moyano, Garcia-Asencio & Guerra-Garcia, 2014 (Paracaprella) Caprellidae
isabelensis Sanchez-Moyano, Garcia-Asencio & Guerra-Garcia, 2014 (Liopus) Caprellidae
Itampolo Lowry & Springthorpe, 2015 (Floresorchestia) Talitridae
iwasai Morino & Miyamoto, 2015 (Pyatakovaestia) Talitridae
jakovi Sidorov, 2015 (in Sidorov et al 2015.) (Zenkevitchia) Typhlogammaridae
jarettii Labay, 2014 (Quasimelita) Melitidae
jerryi Kilgallen & Lowry, 2015 (Austrocallisoma) Scopelocheiridae
jimlowryi Peart, 2014 (Austrothoe) Ampithoidae
kalii Lowry & Springthorpe, 2015 (Floresorchestia) Talitridae
hanajevi Daneliya & Väinölä, 2014 (Dorogostaikia parasitica) Acanthogammaridae
kawai Labay, 2014 (Melitoides) Melitidae
kenwildishi Wildish, 2014 (Neotenorchestia) Talitridae
laurenæ Lowry & Springthorpe, 2015 (Floresorchestia) Talitridae
levantina Krapp-Schickel & Lo Broto, 2015 (Stenothoe) Stenothoidae
lindsayæ Lowry & Springthorpe, 2015 (Cochinorchestia) Talitridae
linnaei Perez-Schultheiss, 2015 (Aristias) Aristiidae
lobatus Ariyama, 2015 (Psammogammarus) Eriopisidae
loerzae Coleman & Thurston, 2014 (Oedicerina) Oedicercotidae
lui Lowry & Kilgallen, 2014 (*Lysianella*)

macrocephalus Zeidler, 2015 (*Hyperoche*)

magellanicus (H. Milne-Edwards, 1848) (*Eurythenes*) revived

maldivensis Vonk & Jaume, 2014 (*Ingolfiella*)

maldoror d’Udekem d’Acoz & Havermans, 2015 (*Eurythenes*)

martrudan Lowry & Kilgallen, 2014 (*Parschisturella*)

medora Lowry & Kilgallen, 2014 (*Parschisturella*)

mercedesae Hendrickx & Ayon-Parente, 2014 (*Caprella*)

metcalfeae Lowry & Springthorpe, 2015 (*Cochinorchestia*)

metinaro Hughes, 2015 (*Quadrimaera*)

mirzajanii Krapp-Schickel & Sket, 2015 (*Melita*)

misionensis Colla & César, 2015 (*Hyalella*)

moonamoona Lowry & Kilgallen, 2014 (*Lysianella*)

morrumbene Lowry & Springthorpe, 2015 (*Cochinorchestia*)

mukudai Tomikawa, Soh, Kobayashi & Yamaguchi, 2014 (*Gammarus*)

nana Lowry & Kilgallen, 2014 (*Patonga*)

norvegica Johansen & Vader, 2015 (*Lepechinella*)

ntensis Lowry & Springthorpe, 2015 (*Microrchestia*)

nudiramus Morino & Miyamoto, 2015 (*Nipponorchestia*)

ochos Peart, 2014 (*Austrothoe*)

odessana Sidorov & Kvtun, 2015 (*Synurella*)

oluanpi Lowry & Springthorpe, 2015 (*Floresorche*)

papeari Lowry & Springthorpe, 2015 (*Floresorche*)

pavesiae Wildish, 2014 (*Macarorche*)

persia Momtazi, Sari & Maghsoudou, 2014 (*Melita*)

pilot Lowry & Kilgallen, 2014 (*Parschisturella*)

pitu Sanchez-Moyano, Garcia-Asencio & Guerra-Garcia, 2014 (*Caprella*)

poka Lowry & Springthorpe, 2015 (*Cohinorchestia*)

pomona Lowry & Kilgallen, 2014 (*Paralysiso*)

possessonis De Smet, 2015 (*Pseudingo*)

psittacus Lowry & Kilgallen, 2014 (*Tryphosi*)

queshm Lowry & Momtazi, 2015 (*Talaroche*)

ssp. raduloviciae Wildish & Lecroy, 2014 (*Mexorchestia carpente*)

rafaeli Coleman & Lowry, 2014 (*Epimera*)

rasra Lowry & Kilgallen, 2014 (*Stephonyx*)

rostra Jung & Yoon, 2015 (*Kama*)

rotunda Sittrop, Serejo, Souza-Filho & Senna, 2014 (*Coronaurothoe*)

ruffoi Lowry & Kilgallen, 2014 (*Paralysiso*)

samroiyodensis Azman, Wongkamhaeng & Dumrongrojwattana, 2014 (*Floresorche*)

schellenbergi Stephensen, 1944 (rev.) (*Lepechinella*)

selje Lowry & Kilgallen, 2015 (*Ulladulla*)

senegalensis Krapp-Schickel, 2015 (*Stenothoe*)

serejoae Lowry & Springthorpe, 2015 (*Floresorche*)

seringat Lowry & Springthorpe, 2015 (*Floresorche*)

serraticoxae Labay, 2014 (*Quasimelita*)

setosa Serejo, 2014 (*Alexandrella*)

sifimitifera d’Udekem d’Acoz & Havermans, 2015 (*Eurythenes*)

soela Lowry & Kilgallen, 2014 (*Microlysi*)

sson Kilgallen, 2014 (*Hiroonella*)
ssp stenocephala Daneliya & Väinölä, 2014 (*Dorogostaikia parasitica*)

suprapiscis Galvan-Villa & Ayon-Parente, 2015 (*Caprella*)
tantabiddynensis Lowry & Springthorpe, 2015 (*Australorchestia*)
tasman Lowry & Kilgallen, 2014 (*Tasmanoosa*)
taylori Hughes & Peart, 2015 (*Exampithoe*)
teloksuang Lim, Othman & Takeuchi, 2015 (*Paraprotella*)
thalvae Gouilliex & Sorbe, 2015 (*Elasmopus*)
thurstoni Kilgallen, 2014 (*Hirondellea*)
tibarensis Hughes, 2015 (*Elasmopus*)
tirmiziae Bano & Karmi, 2008 (*Hirayamaia*)
titan Senna, Andrade, Castelo-Branco & Ferreira, 2014 (*Spelaeogammarus*)
tolyza Labay, 2014 (*Quasimelita*)
toogooloo Lowry & Kilgallen, 2014 (*Tasmanoosa*)
touville Kilgallen & Lowry, 2015 (*Hippomedon*)
tulear Lowry & Sringthorpe, 2015 (*Cochinorchestia*)
urania Lowry & Kilgallen, 2014 (*Euonyx*)
urauchiensis Ariyama, 2013 (*Paragrandidierella*)
ssp ushkaniensis Daneliya & Väinölä, 2014 (*Dorogostaikia parasitica*)
uropina Morino, 2014 (*Mizuhorchestia*)
vaderi Coleman & Thurston, 2014 (*Oedicerina*)
victoriae Johansen & Vader, 2015 (*Lepechinella*)
wadai Ariyama, 2015 (*Victoriopisa*)
wagneri Kilgallen, 2014 (*Hirondellea*)
waratah Hughes & peart, 2015 (*Exampithoe*)
woolgoolga Kilgallen & Lowry, 2015 (*Paracallisoma*)
xarifa Lowry & Kilgallen, 2014 (*Euonyx*)
yallingup Peart, 2014 (*Paranexes*)
yap Lowry & Springthorpe, 2015 (*Floresorchestia*)
yucalpeten Paz-Rios & Ardisson, 2014 (*Elasmopus*)
zeidleri Hughes & Lowry, 2015 (*Riwo*)
zivianii Kilgallen & Lowry, 2015 (*Paracallisoma*)

New taxa ranged alphabetically after families

Acanthogammaridae

parasitica hanajevi, p. kamaltynovi, p. stenocephala, p. ushkaniensis

Amaryllidae

Bathyamaryllis *biscayensis*

Ampithoidae

Ampithoe atauru

Austrothoe jimlowryi, ochos

Cymadusa *herrerae*

Exampithoe *burowwo, taylori, waratah*

Aoridiidae

Artesiidae

Melitidae

Tryphosinae

Hirondelleidae

Maeridae

Corophiidae

Arctidae

Talitridae

Tryphosinae

Talitridae

Uristorydae

Aoridiidae

Scopelocheiridae

Uristidae

Scopelocheiridae
Paranexes gallaharae, yallingup
Peramphithoe guryongensis

Aoridae
Paragrandidierella urauchiensis

Aristiidae
Aristias linnaei
Boca gurui

Artesiidae
Spelaeogammarus titan

Calliopiidae
Halirages helgae

Caprellidae
Caprella calderoni, mercedesae, pitu, suprascis
Liropus isabelensis
Orthoprotella bicornis
Paracaprella carballoi, dubiaki, isabelae, teloksuang

Corophiidae
Hirayamaia tirmiziae
Paracorophium angsupanichae
Sinocorophium dongtanense

Crangonyctidae
Synurella odessana

Epipteraidae
Epimeria rafaeli

Eriopisidae
Paraflagitopisa excavata
Psammogammarus lobatus
Victoriopisa wadai

Eurytheneidae
Eurythenes andhakarae, magellanicus (rev.), maldoror, sigmiferus

Gammaridae
Echinogammarus haraktis
Gammarus mukudai

Hirondelleidae
Hirondellea sonne, thurstoni, wagneri

Hyalellidae
Hyalella misionensis
Hyperiidae
 Hyperoche macrocephalus
 Prohyperia

Ingolfiellidae
 Ingolfiella botoi, maldivensis

Kamakidae
 Kamaka rostra

Lepechinellidae
 Lepechinella norvegica, schellenbergi (rev.), victoriae
 Lepesubchela christinae

Lepidepecreellidae
 Lepidepecreella debroyeri

Lysianassidae
 Ambasia anophthalma
 Riwo zeidleri
 Socarnella delectabilis

Maeridae
 Ceradocus adangensis
 Elasmopus alkhiranensis, thalyae, tibarensis, yucalpeten
 Linguimaera christorei
 Papuadocus biodiwa
 Quadratimaera metinaro

Melitidae
 Dulichiella ankeri
 Melita mirzajani, persia
 Melitoides kawaii
 Quasimelita jarettii, serraticoxae, tolyza

Oedicerotidae
 Oedicerina loerzae, vaderi

Pseudingolfiellidae
 Pseudingolfiella possessionis

Scopelocheiridae
 Austrocallisoma jerryi
 Paracallisoma woolgoolga, zivianii
 Tayabasa

Stenothoidae
 Parametopa gorea
Stenothoe *andamanensis, bella, boloceropsis, cattai* (rev.), *clavetta, crenulata* (rev.), *himyara, levantina, senegalensis*
Studanea inopinata

Stilipedidae
Alexandrella *setosa*

Talitridae
Australorchestia *tantabiddyensis*
Bousfieldia *amoto*
Cochinorchestia *lindsayae, metcalfeae, morrumbene, pok, tulear*
Floresorchestia *andrevo, itampolo, kalili, laurenae, oluanpi, papeari, samroiyodensis, serejoae, seringat, yap*
Macarorchestia *pavesiae*
Mexorchestia *carpenteri, (carpenteri) raduloviciae*
Microrchestia *ntensis*
Mizuorchestia *urospina*
Neotenorchestia *kenwildishii*
Nipponorchestia *curvatus, nudiramus*
Pyatakovestia *boninensis, iwasai*
Talorchestia *dampieri, queshm*
Tropicorchestia *derbyensis, glasbyi*

Tryphosinae
Cedrosella *cito*
Cheirimedon *foscae*
Hippomedon *hippolyte, tourville*
Lysianella *lui, moonamoona*
Microlysias *soela*
Paralysianopsis *capricornia, dandenong, pomona, ruffoi*
Patonga *nona*
Tasmanoosa *tasman, toogooloo*
Tryphosites *colmani, psittacus*
Ulladulla *selje*

Typhlogammaridae
Zenkevitchia *jakovi*

Uristidae
Debroyerella
Des *griffin*
Euonyx *urania, xarifa*
Parschisturella *martrudan, medora, pilot*
Stephonyx *rafaeli*

Urothoidae
Carangolioides *castellatus, hamatus*
Coronaurothoe *rotunda*
How do you get in touch with the Amphipod Newsletter?

Email editors: Wim Vader – (wim.vader(at)uit.no); Adam Baldinger – (abaldinger(at)oeb.harvard.edu); Miranda Lowe -(m.lowe(at)nhm.ac.uk) or Anne Helene Tandberg – (pansdamen(at)gmail.com)